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Abstract— Robots in swarms take advantage of localization
infrastructure, such as a motion capture system or global
positioning system (GPS) sensors to obtain their global posi-
tion, which can then be communicated to other robots for
swarm coordination. However, the availability of localization
infrastructure needs not to be guaranteed, e.g., in GPS-denied
environments. Likewise, the communication overhead associated
with broadcasting locations may be undesirable. For reliable and
versatile operation in a swarm, robots must sense each other and
interact locally. Motivated by this requirement, we propose an
onboard relative localization framework for multirobot systems.
The setup consists of an anchor robot with three onboard
ultrawideband (UWB) sensors and a tag robot with a single
onboard UWB sensor. The anchor robot utilizes the three UWB
sensors to estimate the tag robot’s location by using its onboard
sensing and computational capabilities solely, without explicit
interrobot communication. Because the anchor UWB sensors lack
the physical separation that is typical in fixed UWB localization
systems, we introduce filtering methods to improve the estimation
of the tag’s location. In particular, we utilize a mixture Monte
Carlo localization (MCL) approach to capture maneuvers of the
tag robot with acceptable precision. We validate the effectiveness
of our algorithm with simulations as well as indoor and outdoor
field experiments on a two-drone setup. The proposed mixture
MCL algorithm yields highly accurate estimates for various speed
profiles of the tag robot and demonstrates superior performance
over the standard particle filter and the extended Kalman filter.

Index Terms— Formation control, Monte Carlo localization
(MCL), multirobot localization, ultrawideband (UWB) sensor.

I. INTRODUCTION

AUTONOMOUS mobile robots have been deployed in
various civil and military applications, such as goods

delivery in urban areas, service industry, manufacturing, and
border security. A mobile robot’s decision mechanism can
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function reliably only with a high-performance localization
framework. The mobile robot localization problem is defined
as developing a hypothesis about a robot’s location in a given
environment that is usually represented by a set of landmarks
or a detailed map.

The standard methods for mobile robot localization include
geometric, optimization, and filtering methods. The geometric
and optimization-based approaches take a set of anchor-sensor
distance measurements and produce solutions for possible
sensor locations based on distance geometry. The accuracy
of both methods is impacted by measurement noises and
motion of the localized sensors. If the distance measurements
are constantly available, then various filtering approaches
can be used. Bayesian approaches, particularly the extended
Kalman filter (EKF), are commonly employed for localization.
Filtering-based methods first predict the robot motion with
inertial sensors and then update the belief with exteroceptive
sensor data. EKF localization yields high performance in many
scenarios. However, tuning the EKF parameters requires exten-
sive time and experiments, the initial condition significantly
affects the EKF performance, and EKF localization usually
does not suffice to track agile robots.

One can obtain sensor data for mobile robot localization
in two ways. In the first method, sensor data related to the
robot position are obtained from a fixed infrastructure in
a well-designed environment. A conventional indoor setup
for this approach comprises at least three anchors, a ground
station, and sensors mounted on robots [see Fig. 1(a)]. The
anchors are installed in a room at certain positions separated
at the maximum distances from each other so that they form a
large convex hull. Therefore, the mobile robot always moves
inside the convex hull of the anchors. The ground station
estimates the positions of the mobile robots and transmits
the estimates to the robots continuously. A common exam-
ple of these localization setups is motion capture (mocap)
systems. Generally, this method yields a highly accurate
location estimate with high data rate. However, this framework
entirely depends on the environment, i.e., localization can be
performed only in that particular environment. In the second
method, the robot implements a localization algorithm with
its onboard sensing and computational capabilities solely. The
robot either measures its distances and bearing angles to
specific landmarks or employs vision sensors to identify its
location in a given map of the environment.

In a multirobot system, a mobile robot needs to localize
itself with respect to the other robots as well. Recently,
several works exploited the advantages of both approaches for
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Fig. 1. Left: conventional localization framework. A set of anchors are
mounted at certain locations for high-precision positioning. No robot is used
as landmark. Right: onboard localization framework. A robot acts as a set of
anchors (three blue sensors) to localize another robot (with the yellow tag
sensor). The horizontal planes on which robot R0 and R1 fly are shown with
the transparent green and orange planes, respectively.

multirobot localization under the framework of onboard anchor
configuration [see Fig. 1(b)] [1]–[3]. In this framework, a robot
is equipped with a set of anchors onboard, with the interanchor
distances being limited by the physical characteristics of the
robot. Notably, the resulting anchor configuration forms a
smaller convex hull than in the conventional case, and the
localized robot always lies outside of the anchors’ convex hull.
Accordingly, several filtering approaches need to be applied to
improve the estimation performance.

We are interested in a completely distributed, real-time,
infrastructure-free, and onboard localization algorithm for
multirobot systems. In particular, we propose a localiza-
tion framework for a two-robot system that utilizes three
ultrawideband (UWB) anchors on one robot and a single
UWB sensor on the other. We use a mixture Monte Carlo
localization (MCL) algorithm based on a particle filter to
estimate the relative position between the two robots. The
proposed filter utilizes the most recent sensory information
in the prediction phase based on a probabilistic measure. This
framework allows the anchor robot to track agile maneuvers
of the localized robot with a small number of particles,
which would otherwise require a larger number of particles
under standard particle filtering. Remarkably, this framework
does not utilize an explicit communication structure, i.e., the
robots do not communicate with each other or with a ground
station. Furthermore, we demonstrate with experiments that
the estimation accuracy suffices to implement some formation
control objectives such as relative position maintenance when
integrated with simple motion control algorithms.

Our contributions are as follows.

1) We propose an MCL approach based on an onboard
UWB configuration for the multirobot localization prob-
lem that is suited to handle agile robot motions by using
a small number of particles.

2) We relax the assumptions of a good initial condition
and a priori information about the velocity profile of
the localized robot, without imposing a communication
framework.

3) We combine the localization algorithm with simple
motion control laws to solve a formation control

objective and demonstrate its experimental performance
on a two-drone system.

The rest of this article is organized as follows. Section II
reviews the literature on mobile robot localization with
detailed comparisons. Section III presents the multirobot local-
ization problem in general terms. Section IV summarizes the
standard and dual MCL algorithms. Section V presents the
proposed localization algorithm. Sections VI and VII demon-
strate the simulation and experimental results. Section VIII
gives a discussion on the results. Finally, Section IX contains
concluding remarks.

II. RELATED WORKS

Mobile robot localization has been studied extensively
(see [4]–[9] and the references therein for a detailed sur-
vey). In the literature, the localization problem for a mul-
tirobot system was translated into two ways based on the
control objectives: self-localization and relative localization.
Self-localization refers to computing a robot’s location in
a global coordinate frame by a fixed localization system.
Accordingly, the multirobot localization problem can be posed
as self-localization of each robot in the system. However, this
approach does not lead to distributed applications for several
reasons listed in the following. Relative localization refers to
estimating relative quantities between robots in body frames
of the robots.

The majority of previous works on indoor localization
utilized the conventional anchor configuration [10]–[12] to
solve self-localization. Wang et al. [10] combined UWB
sensors with a visual-inertial system to correct drifts when
building maps. González et al. [12] utilized particle filtering
to handle the multimodal error behavior of the nonline-of-sight
(NLOS) UWB measurements. Furthermore, the conventional
configuration is used in [11] to solve the single-robot as well
as the multirobot localization problem. Kia and Martinez [13],
Kia et al. [14], Rekleitis et al. [15], and Prorok and Marti-
noli [16] exploited interrobot communication and proposed
cooperative EKF localization architectures to improve estima-
tion accuracy in multirobot systems. The key idea in [13]–[16]
is that each robot receives the estimation-related information
from its neighbor robots through communication.

In outdoor environments, several works employed the
global positioning system (GPS) sensors onboard the
robots to achieve formation control tasks. For instance,
Vásárhelyi et al. [17] equipped every robot in a swarm with a
GPS receiver and demonstrated a flock behavior with drones
by the aid of interrobot communication. Although the frame-
works in [13]–[15] and [17]improve the estimation perfor-
mance for multirobot systems with undirected graphs, they
still depend on a GPS (or mocap system) and bring an extra
cost for the additional communication layer, which makes their
reliability aspect questionable in occluded environments.

Toward the goal of freeing the localization framework
from environment completely, recently, several works have
considered an onboard anchor configuration where a moving
vehicle equipped with a set of anchors localizes another robot
or human [1]–[3], [18], [19]. In [1], a quadrotor equipped with
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UWB anchors on board tracks a target with a single UWB
sensor by employing an iterated EKF. However, the approach
of [1] still depends on infrastructure because the quadrotor
control relies on Mocap or GPS data instead of localization
feedback. In [2], a quadrotor searches for safe paths for a
ground vehicle and localizes itself with respect to the vehicle
by unscented Kalman filter and optimization techniques.

An alternative method to estimate the tag location is design-
ing custom UWB sensor kits based on the angle-of-arrival
(AOA) method [20], [21]. This procedure requires modifying
the anchor antenna to measure the angle of the received UWB
signals. For instance, Dotlic et al. [20] installed two antennas
on the anchor sensor and used the phase-difference-of-arrival
(PDOA) for precise bearing angle estimation.

Trilateration method takes a set of anchor-sensor dis-
tance measurements at a particular time instant and pro-
duces a closed-form solution for possible sensor locations
based on the distance geometry [22]–[24]. Similarly, opti-
mization methods minimize the additive noise on a set of
anchor-sensor distances, subject to equalities obtained from
the geometric structure [2], [25]. However, neither approach
is preferred for mobile robot localization standalone because
they suffer from measurement noises. To obtain reliable
estimation results for mobile robots under noisy distance
measurements, Bayesian methods are commonly employed.
Kim and Kim [26] designed an EKF algorithm with sonar
anchors. Mueller et al. [27] fused inertial and UWB sensor
data to estimate a quadrotor’s position. In [12], a particle
filter-based localization algorithm was applied to UWB dis-
tance data for both LOS and NLOS measurement cases.
Similarly, in [11], particle filtering was applied to local-
ize single-robot and multirobot systems in a well-designed
environment. Prorok and Martinoli [16] proposed a simple
model that captures the multimodal error behavior of the
UWB measurements in NLOS environments and designed
a particle filter-based localization algorithm for multirobot
systems in an indoor environment. Our framework differs
from [2], [11], [12], [16], and [22]–[27] in that these works
utilized a set of UWB beacons located at known positions in
a room to provide the robots with distance data, which makes
the algorithms infrastructure-dependent.

MCL algorithms have been developed to track the states
of nonlinear, non-Gaussian models [5], [28]. The dual MCL
approach was initially proposed in [9] to handle the particle
depletion issue in cases where the state transition distribu-
tion covariance is incomparably higher than the measurement
covariance. This technique was used in [29] to solve the
grid mapping problem with precise laser range finders. This
framework, with suitable modifications, fits well our particular
problem setting because the UWB measurements produce
a better prediction about an agile robot’s current location
than the state transition distribution of the robots. Therefore,
we opted for a mixture MCL algorithm to solve our particular
localization objective.

The preliminary versions of this work were presented in [3]
and [19]. The main differences between the current work
and [3] are twofold. First, we propose an MCL algorithm
here, whereas Güler et al. [3] proposed EKF-based algorithms.

Second, while nonholonomic ground robots were considered
in [3], here, we develop the results for holonomic vehicles as
well. In [19], a dual MCL algorithm was utilized to solve the
multirobot localization objective. Here, we extend the result
of [19] with a mixture MCL algorithm and demonstrate a
comprehensive set of simulation and experimental results.

III. SYSTEM DEFINITION

Consider a two-robot system {R0, R1}, where Ri denotes the
i th robot. Robot R0 constitutes the base for our localization
architecture, and thus, the derivation of our algorithm varies
based on its motion characteristics. Accordingly, we consider
two commonly used motion models for robot R0: holonomic
and nonholonomic. We assume that robots R0 and R1 always
fly on horizontal planes at operational altitudes h0, h1, respec-
tively, from the ground. These planes are parallel to the
ground, and the operational altitudes do not need to be the
same. We set h0 = h1 in the design process for ease of
calculations and describe the small algorithmic modifications
for h0 �= h1 in the following.

Let FG ⊆ �2 denote the global frame and Fi denote the
body frame of Ri. We represent the vectors in the body frame
F0 of robot R0 unless we denote a vector with superscript vG,
which represents frame FG. For the case of holonomic R0,
we consider the following kinematics model:[

p0G
k+1

v0G
k+1

]
=

[
I2 TsI2
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][
p0G
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where p0G = [x0G, y0G]� ∈ �2 is the position, v0G ∈ �2

is the velocity, a0G ∈ �2 is the acceleration of robot R0, k
is the time step, Ts is the sampling time, and w0 ∈ �4 is
the process noise. The model (1) approximates the behavior
of a second-order mechanical system where the accelera-
tion between two successive time steps is assumed constant.
In particular, the horizontal motion of a quadrotor is well
approximated by this model when it flies at a constant altitude
and its internal nonlinear dynamics are controlled by an
independent, low-level microcontroller.

For the case of nonholonomic R0, we consider the following
kinematics model:
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where p0G = [x0G, y0G, θ0G]� ∈ �3 is the vector of position
and the heading angle, v0 and ω0 are the linear and angular
speeds, respectively, and w0 ∈ �3 is the process noise.

We consider a holonomic kinematics model for robot R1[
p1G

k+1

v1G
k+1

]
=

[
I2 TsI2
02 I2

][
p1G

k

v1G
k

]
+ w1

k (3)

where p1G, v1G ∈ �2 are the position and velocity vectors
and w1 ∈ �4 is the random acceleration input, which satisfies
‖w1

k‖ ≤ w̄1 for all k and for some finite w̄1 > 0. For conve-
nience, we assume that the following saturation operation is
in effect in robot R1:

v1,min ≤ v1G
k ≤ v1,max
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where the constant vectors v1,min, v1,max ∈ �2 are predefined
based on the physical characteristics of robot R1.

We denote robot R0 as the anchor robot and mount three
UWB anchors on robot R0 at positions q1, q2, and q3 with
respect to frame F0 as follows [see Fig. 1(b)]:

q1 = [l, 0]�, q2 = [0, 0]�, q3 = [0, l]�, (4)

where the design parameter l is determined based on the
physical characteristics of robot R0. Thus, the three anchors
are rigidly linked to each other on R0. We set l = 1 in the
algorithm design process and discuss the modifications for
different values of l in Section VII.

The observation vector consists of three distance measure-
ments between qi on R0 and a UWB sensor at p1, and the
center of robot R1, i.e.,

zk = [
d1

k , d2
k , d3

k

]� (5)

di
k = d̄ i

k + εi
k, i ∈ {1, 2, 3} (6)

where

d̄ i
k = ∥∥p1

k − qi
∥∥ (7)

denotes the true distance between qi and p1 (in frame F0)
and εi denotes the measurement noise. As anticipated from
the geometry of the system, p1 always remains outside of the
convex hull of the triangle T (q1, q2, q3).

We consider the following state vector to represent the
relative quantities between robots R0 and R1:

xk = [
r�

k ,
(
v1G

k

)�]� (8)

where rk is the relative position between robots R0 and R1 in
frame F0 and v1G is the velocity of robot R1 in frame FG.

We assume that frame F0 coincides with frame FG at k = 0.
For holonomic R0, the dynamics of the relative position r is
trivially derived as follows:

rk+1 = rk + (
v1G

k − v0G
k

)
Ts − 0.5a0

kT 2
s + w̃k (9)

with w̃k being the noise vector. Here, we focus on holo-
nomic robots that can perform agile maneuvers and refer
to [3] for derivation of the relative position dynamics for
nonholonomic R0.

We assume that the robots do not have an explicit commu-
nication structure, i.e., they do not exchange information with
each other. Furthermore, we assume that the setup does not
include a ground station that can collect sensory information
and implement the estimation algorithm. Hence, the robots are
to utilize their onboard sensors solely for the estimation and
motion control objectives.

Robot R0 assumes that robot R1 moves based on the motion
model (3). Also, robot R0 knows the motion capability of
robot R1 that is encoded in v1,min, v1,max, w̄1. However, robot
R0 does not have access to the instant velocity v1G

k . This
assumption reflects a realistic multirobot scenario where each
robot is informed with the motion capabilities of the other
robot but cannot access the other robot’s states such as position
and velocity in real time.

Denoting the estimate of xk by x̂k , we define the objective of
this article as follows. Given the system {R0, R1} of robot R0

with the motion model (1) or (2), and robot R1 with the motion
model (3), the noisy distances d1

k , d2
k , and d3

k , a suitable initial
condition x̂0, and the aforementioned assumptions, generate
the estimate x̂k for k ≥ 1 so that the error ek = ‖x̂k − xk‖ is
minimized.

In Section IV, we review particle filters. Then, we present
our algorithm in Section V.

IV. PARTICLE FILTER REVIEW

Unlike the Kalman filter and its variations, a particle filter
does not use a compact state-space model to represent the
state distribution. Instead, it uses a large number of samples
to represent the current belief about the state. Similar to
other Bayesian filters, a particle filter generates the state
estimate in two phases: prediction and update. The resampling
process in the update phase forms an important part of particle
filters, where the samples are rearranged based on the current
exteroceptive measurement data. Particle filters can be applied
to models where the noise shows a non-Gaussian behavior
because inherently particle filters can track any distribution
under certain assumptions. We now summarize the standard
particle filter algorithm and refer the reader to [30]–[32] for
detailed descriptions.

Consider a dynamical system with state x, input u, and
output z. We denote by bel(xk) the current belief, or the
posterior probability, of the state distribution. Ideally, the belief
represents the actual state distribution as follows:

bel(xk) = π(xk|z1:k, u1:k) (10)

where u1:k and z1:k denote the inputs and observations up to
time step k, respectively. At any t = kTs , where Ts denotes the
sample time, a particle filter “approximates” the distribution
(10) with the set of samples Sk = {s1

k, . . . , sN
k }, where N ∈ Z+

denotes the number of samples and si
k = {xi

k, w
i
k} denotes the

i th sample with the state hypothesis xi and the corresponding
importance weight wi ∈ [0, 1). At each k, each sample
denotes the algorithm’s hypothesis on where the system state
x may lie. Thus, the combination of the hypothesis xi with
their associated weights wi constitutes bel(xk) to represent
an approximation of the posterior distribution π(xk |z1:k, u1:k).
Conceptually, as N approaches infinity, the belief improves,
i.e., bel(xk) approaches π(xk|z1:k, u1:k), at the expense of
increased computational complexity. Usually, N is chosen
large, e.g., N > 1000.

For the prediction phase, a common practice in mobile
robot localization is to propagate the samples in the set Sk−1
proportional to the robot’s state transition distribution, which
depends only on the last state and the current input, i.e.,

ϕk ∼ π(xk |xk−1, uk) (11)

where ϕk denotes the “proposal distribution.” Subsequently,
in the update phase, the weights are calculated based on the
observation model as follows:

wi
k = ηπ

(
zk

∣∣xi
k

)
. (12)

Next, the new set of samples Sk constructed with a resampling
process based on the weights {wi

k} represents the posterior
probability bel(xk).

Authorized licensed use limited to: Abdullah GUl Univ (KAYSERI ABDULLAH GUL UNIVERSITESI). Downloaded on February 17,2022 at 07:29:57 UTC from IEEE Xplore.  Restrictions apply. 



GÜLER et al.: PEER-TO-PEER RELATIVE LOCALIZATION OF AERIAL ROBOTS WITH UWB SENSORS 1985

Although the framework (11) and (12) usually yields high
performance, it may cause the particle depletion issue [5] in
some applications, including our specific problem. Especially,
when the variance of the exteroceptive measurement model is
much lower than that of the robot’s state transition distribution,
propagating the particles with the proposal distribution (11)
may populate most of the particles in regions that do not align
with the exteroceptive measurement model. This misalignment
would set the weights of the majority (or all) of the particles
to small values and reduce the efficiency of the resampling
process. To address this issue, several alternative proposal dis-
tributions were proposed. Thrun et al. [9], Blanco et al. [33],
and Doucet et al. [34] inverted the roles of the prediction and
update phases. In [9], the measurement model is used in the
proposal distribution

ϕk = π(zk |xk)
/
πn

k (13)

where πn is a normalizer. Accordingly, the following impor-
tance weights are used:

wi
k = π(xk |u1:k, z1:k−1), (14)

where π(xk|u1:k, z1:k−1) is calculated by an extra sampling
process at each time step. In other words, the belief is
predicted with the exteroceptive measurements, and the update
is performed based on the motion model, in contrast to the
standard particle filter. Therefore, this approach populates the
particles around the most recent observation and hence solves
the particle depletion issue for some scenarios. However,
this alternative approach usually yields chattering outcomes
because the state hypotheses are driven by measurements,
which may contain signals with low signal-to-noise ratio.

To overcome the abovementioned issues, Thrun et al. [9]
mixed the two approaches and proposed the mixture MCL
algorithm. The designer sets a threshold φ ∈ [0, 1] and at
every step implements the dual PF algorithm with probability
φ and the standard PF algorithm with probability 1 − φ.
We adopt this approach to solve our localization problem in
Section V. We use the terms MCL algorithm and PF algorithm
interchangeably in the rest of this article.

V. PEER-TO-PEER RELATIVE LOCALIZATION

We aim to design a distributed algorithm where robot R0
estimates the relative position r in its local frame F0 in real
time by employing its own computational devices solely. Our
design is assumed to include neither a central computational
unit, e.g., a ground station, nor an explicit communication
layer. However, the robots sense ranges with the onboard UWB
sensors by an implicit communication mechanism, which we
consider as a ranging mechanism similar to the case of the
laser range finder with a receiver. Since the measurement data
acquired from the sensors are noisy, the algorithm has to deal
with uncertainties. Also, the proposed algorithm’s performance
should suffice to be used as feedback to further motion control
algorithms on robot R0.

In the remainder of this section, we propose our localization
framework for a two-robot system. We describe the details
of the algorithm in Sections V-A–V-C. Then, we give the

Fig. 2. Block diagram of the proposed framework. Robots R0 and R1
are represented with yellow and green backgrounds, respectively. The dashed
arrow shows the optional data transmission from R0 to R1. The brown arrow
denotes the heading angle feedback which is required for nonholonomic robot
R0 case only.

pseudocode of our algorithm in V-D. We give the calibration
procedure of the UWB sensors in Section VII-B. We dis-
cuss the details of data acquisition and implementation in
Section VII.

A. Block Diagram

The block diagram of the two robot system {R0, R1} is
shown in Fig. 2. Robot R0 is to generate the estimate vector
x̂. The filtering algorithm runs on board the anchor robot R0.
Three raw UWB distance values are acquired from the UWB
anchors and passed to the UWB calibration and smoothing
block to eliminate biases based on a calibration procedure and
smoothen the chattering measurement signal. Afterward, the
Measurement model block accepts the three distance measure-
ments (and the IMU measurement if R0 is nonholonomic)
of robot R0 and outputs the “constructed” measurements.
The output signal is passed through another smoothing block.
Finally, the Filtering block generates the state estimate x̂,
which is then relayed back to the motion controller of R0
to close the motion control loop. Also, the state estimate can
be transmitted to robot R1 by communication to allow R1 to
use the estimate for better formation control performance, but
we do not consider that case in this article. We assume that
the estimation takes place and is used in robot R0 solely.

In the remainder of this section, we propose the localization
algorithm by assuming that the motion of each robot is con-
trolled by its low-level motion controller that is commanded by
exogenous inputs. We study the integration of the localization
output with the motion control algorithms in Sections VI
and VII. Inspired by the dual MCL approach of [9], we now
design the proposal distribution and resampling process of our
particle filter. We start by constructing the observation model.

B. Observation Model

In this section, we model the distribution π(zk |xk). The
exteroceptive measurement model consists of three indepen-
dent UWB measurements κ1, κ2, and κ3. First, we calibrate
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these measurements to generate κ̃ i , i = {1, 2, 3}. Details of
the calibration procedure are given in Section VII-B. Next,
we extract the height difference between the sensor’s antenna
and the anchors’ antennas from κ̃ i as follows:

κ̄ i
k = ((

κ̃ i
k

)2 − (h0 − h1)
2)1/2

i ∈ {1, 2, 3}.
Then, we filter the calibrated measurements κ̄ i with the
first-order exponential smoothing algorithm as follows:

di
k = ακ̄ i

k + (1 − α)di
k−1, i ∈ {1, 3}, (15)

where di
k denotes the smoothed distance measurement and 0 <

α ≤ 1 is a design parameter.
We use the constructed measurement model of [3] to map

the distance measurements to a location estimate as follows:
rfs

k = λ1
kq1 + λ3

kq3 = [
λ1

k, λ
3
k

]� (16)

where rfs denotes the measured position of R1 in frame F0,
q1 and q3 are the anchor locations, and λi = sgn(λi )|λi |
are the coordinates of p1 in F0 [see Fig. 5(a)]. The function
sgn(·) is defined as sgn(x) = −x for x < 0, sgn(x) = x
for x > 0 and sgn(x) = 0 for x = 0. Notably, the line
segments L(q2, q1), L(q2, q3) form the virtual x- and y-axes
of F0. We have the following geometric relations [25], [35]:

∣∣λ1
k

∣∣ =
∣∣A(

p1
k, q2, q3

)∣∣
|A(q1, q2, q3)| ,

∣∣λ3
k

∣∣ =
∣∣A(

p1
k, q1, q2

)∣∣
|A(q1, q2, q3)| (17)

sgn
(
λi

k

) = sgn
((

d2
k )2 + 1 − (

di
k

)2)
, (18)

where A(q1, q2, q3) = 0.5l2 denotes the area of the triangle
formed by the three anchors on robot R0. In particular, if l = 1
m, we have that∣∣A(

p1
k, q2, q3)∣∣

= 1

4

( − ((
d2

k

)2 − (
d3

k

)2)2 + 2
((

d2
k

)2 + (
d3

k

)2) − 1
)1/2

∣∣A(
p1

k, q1, q2)∣∣
= 1

4

( − ((
d1

k

)2 − (d2
k

)2)2 + 2
((

d1
k

)2 + (
d2

k

)2) − 1
)1/2

.

Therefore, we decompose the calculation of rfs into two
parts: λ1 and λ3. Furthermore, we decompose the calculation
of each λi into two parts: its magnitude and sign. To solve for
|λi

k |, i = (1, 3), we calculate the possible intersections of the
circles C(q j , d j

k ) and C(q2, d2
k ) for j ∈ {1, 3}, j �= i . Then,

we incorporate the distance di
k to calculate the half-plane in

which λi
k resides.

Consider the following inequalities:
di

k + d2
k > l,

∣∣di
k − d2

k

∣∣ < l, i ∈ {1, 3}. (19)

If condition (19) is satisfied, the method (17) and (18)
eliminates the singularities that arise due to noisy distance
measurements. We illustrate two cases for the construction
of rfs in Fig. 3. In Fig. 3(a), we represent a case where
the noisy measurements satisfy (19). Due to the distance
measurements noises, the circles C(qi , di ) intersect at multiple
locations (green squares) instead of the correct target location.
In this particular case, the trilateration algorithm does not

Fig. 3. (a) Construction of rfs under noisy distance measurements. The
proposed algorithm yields a unique point (brown), while the intersection of
the circles corresponds to three points near the actual solution. (b) Singularity
case where the noise ε3 is high.

yield a unique solution, whereas our algorithm yields a unique
location estimate (brown point).

If the condition (19) is not satisfied, at least two of the
three circles C(qi , di

k), i ∈ {1, 2, 3}, do not intersect. For
instance, the measurements d2 and d3 do not satisfy (19)
in Fig. 3(b), which results in an infeasible measurement set.
As a result, neither trilateration nor the method (16)–(18) can
yield a solution. To overcome this issue, we modify the
construction method (16)–(18) such that once the condition
(19) is not satisfied, we use the last feasible observation
vector as the current observation. We formalize this approach
in Algorithm 1. By initializing zfeas

0 with a feasible rfs
k ,

we guarantee to produce a unique rfs
k for all k. Also, with

Algorithm 1, we can terminate the operation as a safety
measure if the number of infeasible observations exceeds a
certain threshold ctr_thres. When l �= 1, we scale the distances
di and the constructed vector rfs

k accordingly. We note that
if l ≤ 1, the distance measurements scale up, and as a
result, the measurement noises scale up as well, which may
cause performance degradation. The smoothing and filtering
algorithms are to suppress the adverse effects of this scaling.
Indeed, the proposed algorithm performed well for l = 0.44
in our simulations and experiments (see Sections VI and VII).

Proposition 1: Consider {R0, R1} and the observation vec-
tor z. A sufficient condition for rfs

k to be well-defined is condi-
tion (19). Also, any rfs

k satisfying (19) is unique. Furthermore,
if the initial condition zfeas

0 is feasible, Algorithm 1 generates
unique rfs

k for all k.
Proof: Consider the triangle T (p1

k, q2, qi ) for i ∈ {1, 3}
with the edge lengths {d2, d j , l} where j ∈ {1, 3}, j �= i .
Then, the condition (19) should be satisfied to have a valid
|λi |. Furthermore, since the set of di s that satisfy (19) yields
unique A(p1

k, q2, q3),A(p1
k, q1, q2) based on (17), one has

unique |λ1
k |, |λ3

k |. Since the right-hand side of (18) is also
unique for each i ∈ {1, 3}, the resulting vector rfs

k is unique.
It is easy to see the last claim since Algorithm 1 yields either

the vector rfs
k constructed with (16)–(18) or the last feasible

observation vector zfeas
k−1 if the operation is not terminated due

to a large number of infeasible measurements.
Finally, we smoothen the relative position measurement

vector rfs
k with a first-order exponential smoothing algorithm

as in (15) and denote the resulting signal by rms
k .
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Algorithm 1 Observation Vector Construction

C. Proposed Mixture MCL Algorithm

Hepp et al. [1] and Güler et al. [3] studied the same
estimation problem with the one stated earlier. They assume
that the velocity v1G is a slightly varying state and use the
EKF to estimate the relative position r. Similar to [1] and [3],
here, we assume that robot R0 does not have access to the
instant velocity of robot R1. However, unlike [1] and [3],
we assume that robot R1 can be a slowly moving ground robot
or an aerial vehicle with agile motion behavior. Our design
aims at yielding good estimation performance for a broad
spectrum of motion characteristics for robot R1, including
aggressive maneuvers. We exploit the nonparametric nature of
particle filters to estimate r for different motion behaviors of
robot R1.

We argue that the implementation of the standard MCL
algorithm standalone may yield poor performance for our
particular problem. In Fig. 4, we illustrate a reason why the
estimation performance may degrade if the state transition
distribution is used as the proposal distribution. Consider the
problem definition in Section III. Assume that the entries of
v1,max, the maximum velocity of robot R1, are high. The
standard MCL algorithm would propagate the particles of the
previous time step with the motion model (depicted in yellow–
orange). However, robot R1 may reside far away from the
center of the proposal distribution, e.g., at the magenta cross.
In such a case, only a few particles, if not none, would survive
in the resampling process in which the measurement model is
evaluated. The repetition of this process would likely cause the
particle depletion issue. A solution to the particle depletion
requires using a large number of particles, e.g., more than
1000, which can be computationally inefficient for onboard
applications.

We propose to use a mixture MCL algorithm motivated
by the necessity of incorporating measurements in the pre-
diction phase. The mixture MCL algorithm combines the
standard and dual MCL algorithms based on a probabilistic
measure [29]. In particular, the designer chooses the mixing

Fig. 4. Likelihood of the motion model (demonstrated as a Gaussian
distribution originated at p = [0, 1]� m), the likelihood of the first sensor’s
observation model (gray ring), three onboard UWB anchors (white dots), and
the true location of robot R1 (magenta cross). If only the motion model is
used for the proposal distribution, the particles would condense at the peak
of the Gaussian distribution (yellow region) and likely miss robot R1’s true
location.

parameter φ ∈ [0, 1] and implements at each step the standard
MCL with probability φ and the dual MCL with probability
1 − φ. Accordingly, in the prediction phase, the particles
are propagated effectively based on either the state transition
model or the measurement model.

1) Proposal Distribution: In the standard MCL algorithm,
the particles are propagated based on the proposal distribution
(11). We use the motion model (9) for this distribution.

In the dual MCL algorithm, the measurement model is
incorporated into the proposal distribution as in (13). We now
model the distribution π(zk |xk) by using the constructed vector
rms

k . If the objective was to localize the robot in a given map,
then a common method would be to take a large number of
sensor measurements, build the joint distribution π(zk |xk), and
form a grid map by kd-trees conditioned on some functions
of features [9]. Since our problem statement does not include
a map, we use a direct approach to obtain the distribution
π(zk |xk).

In Section V-B, we constructed the vector rms from the
smoothed distance measurements d1, d2, and d3 by algebraic
operations. In Section VII-B, we present a procedure to charac-
terize the uncertainty of the distance measurements di for cali-
bration purposes, which can be well-modeled by the Gaussian
distribution. However, the uncertainty characteristics of rms

greatly differs from that of the measurements di . Therefore,
we use an approximation of the uncertainty characteristics of
rms. Each distance measurement produces a circular likelihood
region as hypothesis for the true relative position rk . Notably,
in the absence of noise, the true distance measurements d̄1, d̄2,
and d̄3 intersect at the true relative position rk [see Fig. 5(b)].
Thus, the resulting configuration attains the highest probability
at rk and diminishing probability as it moves away from
rk . Assuming that the calibrated distance measurements are
unbiased, we approximate this uncertainty model as a Gaussian
distribution centered at rms. Accordingly, we generate N
relative position hypothesis around rms as follows:

ri
k ∼ N (

rms
k , Qobs

)
(20)

where Qobs = diag (σ 2
x,obs, σ

2
y,obs) denotes the measurement

covariance matrix and is a design parameter, and σx,obs and
σy,obs denote the standard deviations in the x- and y-axes
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Fig. 5. (a) Construction of rfs. (b) Representation of the uncertainty
model of rfs. The three rings depict the uncertainty regions of the distance
measurements within a certain σ bound (the darker the color, the more likely
the target may be). The target is shown in orange.

in frame F0, respectively. Similarly, we generate N velocity
estimates as follows:

vi
k = sat

(
ṽi

k, v1,min, v1,max), i ∈ {1, . . . , N} (21)

ṽi
k ∼ N (

v1,ms
k , Qobs

)
(22)

v1,ms
k = (

rms
k − r̂k−1

)/
Ts + v0G

k , (23)

where sat(x, a, b) is a saturation function that limits every
entry of the vector x within the bounds a and b and v1,ms

k
denotes a measure of v1G

k seen by robot R0. In summary,
we generate N particles around the constructed measurement
vectors rms

k and v1,ms
k to represent the state hypothesis.

The design parameters σx,obs and σy,obs can be found
empirically with numerical simulations. Evidently, a set of
distance measurements with high noise variances will result
in high σx,obs and σy,obs. We suggest using the values
that yield the best-observed performance. Notably, as σx,obs
and σy,obs increase, the number of particles required for
high-performance estimation would increase. We emphasize
that the approximations for these parameters are expected to
perform well because the particle filter does not require a per-
fect measurement. In our experiments, we obtained sufficient
performance with a small number of particles and with a set
of parameter values found empirically.

An alternative approach is to propagate the particles based
on the three distance measurements directly without construct-
ing rms

k , i.e., by distributing the particles in the rings that
represent the uncertainty regions of the distance measurements
[see Fig. 5(b)]. However, one would need a redundantly huge
number of particles to cover all the three rings. Therefore, this
method would yield a computationally inefficient algorithm.

2) Resampling: To calculate the importance weights wi in
the resampling phase of the standard MCL algorithm, we use
(12) with

zk =
[

rms
k

v1,ms
k

]
(24)

where rms
k is generated by Algorithm 1 and v1,ms

k is as in (23).
We now model the distribution π(xk |z1:k−1, u1:k) to calcu-

late the importance weights wi of the dual MCL algorithm.

Thrun et al. [9] proposed to use the kernel density estimation
method to construct the distribution π(xk |z1:k−1, u1:k). In that
method, every particle in bel(xk−1) is propagated based on the
motion model π(xk|uk, xk−1). As a result, the new particles
construct the kd-tree, which represents the likelihood of the
particles.

In our framework, the distribution π(xk|uk, xk−1) stands
for the dynamics (9). We assumed that robot R0 does not
have access to the instant velocity of robot R1 but has a
rough knowledge about its state transition distribution. This
uncertainty can be modeled with any distribution scheme,
including Gaussian distribution, multimodal Gaussian distri-
bution, and beta distribution, based on the a priori knowledge
on the motion behavior of robot R1. Notably, the Gaussian
and uniform distributions are good candidates to approximate
the state transition of robots with agile maneuver capabilities.
Here, we model the velocity of robot R1 as a normal distribu-
tion centered at the previous estimate vector v̂1

k−1. Therefore,
we derive the weights as follows:

wi
k ∼ π

(
μr

k

∣∣ri
k

)
π

(
μv

k

∣∣vi
k

)
(25)

where π(μr
k |ri

k) and π(μv
k |vi

k) are Gaussian distributions con-
ditioned on μr

k and μv
k , respectively, with covariances Qmot,

and

μr
k = r̂k−1 + (

v̂1G
k−1 − v0G

k−1

)
Ts (26)

μv
k = v̂1G

k−1 (27)

Qmot = diag
(
σ 2

x,motσ
2
y,mot

)
(28)

where Qmot is a critical design parameter that can be tuned
based on the application. For instance, small values for σx,mot
and σy,mot can be used for nonholonomic vehicles with slow
angular velocities, whereas relatively higher values can be
used for holonomic vehicles with aggressive maneuvers. The
velocity model (27) assumes no a priori information of
motion behavior of robot R1. If further information about
instant velocity of robot R1 through another measurement (e.g.
a camera image) is available, it can be integrated into (27).

D. Algorithm

We propose our localization algorithm in Algorithm 2.
Algorithm 2 requires a two-robot system {R0, R1} with the
onboard UWB sensor configuration given in Section III.
At any time step k, the algorithm receives the previous
particle set Sk−1, the smoothed three distance measurements
di

k , and the control input v0
k of robot R0 and generates the

new particle set Sk . The algorithm also requires the design
parameters Qmot, Qobs, and α inherently, but they are not
explicitly presented here for clarity.

First, the relative position estimate rms
k is constructed from

di
k (lines 3 and 4), and the velocity estimate v1,ms

k is calculated
(line 5). Then, the algorithm chooses the filtering method at the
current time step based on φ generated with a uniform random
number generator (line 6). Afterward, either the standard
MCL algorithm (lines 7–13) or the dual MCL algorithm
(lines 15–23) runs. Finally, the belief is updated by resampling
the particle set based on the importance weights wi (line 25).
The designer can freely choose the resampling method.
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Algorithm 2 Proposed Mixture MCL Algorithm

VI. SIMULATIONS

We examined the performance of the proposed mixture
MCL algorithm through extensive simulations. We aimed to
answer the following questions.

Q1: Does the proposed algorithm provide sufficient localiza-
tion accuracy?

Q2: In what aspects does the mixture MCL algorithm differ
from the standard MCL and EKF?

Although question Q1 could be answered subjectively,
we focused on consistency and reliability of the algorithm’s
outcome. We observed that our algorithm does not yield
centimeter-level precision in most scenarios; however, the
obtained precision sufficed to implement formation control
algorithms. We used the root mean square of the relative
position error as the performance measure

eest =
(

1

K

K∑
k=1

‖rk − r̂k‖2

)1/2

(29)

where K is the termination step.
We simulated our framework on a two-drone system with

the robot operating system (ROS) Gazebo software. The
framework consisted of an anchor robot R0 and a tag robot
R1. We assumed that robots R0 and R1 always move at
constant altitudes h0 and h1, respectively. We used the Pix-
hawk controller tools in Gazebo to maintain the velocities
and headings at given set points by controlling the internal
dynamics of the quadrotors. We considered two cases to eval-
uate the localization performance: externally actuated robots
case and localization-based formation control case. We used

TABLE I

PARAMETER VALUES IN SIMULATIONS

the “low-variance resampling” method [5] in the filtering
algorithm.

We followed a two-phase procedure in simulations. In the
first phase, the quadrotors hovered and were stabilized at
the desired altitudes h0 = h1 = 2 m. The quadrotors were
driven to the desired locations. In the second phase, we sent
the velocity commands to the quadrotors, which were either
externally entered or produced by the localization feedback,
and started the filtering algorithm concurrently.

A. Case 1: Externally Actuated Robots

In this section, we examine the localization performance
on externally actuated quadrotors. Accordingly, we sent the
velocity set points to the quadrotors externally and analyzed
the localization error for various parameter values. In other
words, the estimated state x̂ was not fed to the robot con-
trollers, which led to an open-loop system in each quadrotor
(see Fig. 2).

We used the parameter values given in Table I, where
UNIFORM(N, a, b) denotes N random numbers generated
with respect to uniform distribution within the boundary
values [a, b], and s = sgn(sin(πk/20)). Notably, robot R1
shows the agile motion behavior with this velocity profile.
We perturbed the distance readings with additive white noise
εi ∼ N (0, σ 2

dist). We selected σdist inspired by the real-time
characteristics of the UWB sensors used in the experiments
(see Section VII).

In the first set of simulations, we analyzed the effect of
the parameter φ for agile robot R1 [see Fig. 6(a)]. Recall that
φ tunes the mixing ratio of the standard and dual MCL algo-
rithms: φ = 0 corresponds to a standard MCL, whereas φ = 1
corresponds to a dual MCL. In these simulations, we used
N = 20 particles that can be considered a small number
compared to many conventional localization settings, yielding
a computationally effective structure [6]. We performed 42
simulation runs for six sets of parameter values of α and Qmot
evaluated at seven φ values. For φ = 0, the algorithm could
not track robot R1 in three runs and resulted in high errors.
We argue that the particle degeneracy issue mainly caused
the high level of error, i.e., a small number of particles were
distributed on a large area in the plane, resulting in a false
belief of robot R1 motion. However, the algorithm estimated
r with reasonable accuracy for 0 < φ ≤ 1. Furthermore,
we observed similar levels of errors for φ > 0 irrespective
of the values of the other parameters, α and Qmot. Therefore,
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Fig. 6. Simulation results. (a) RMSE of an EKF implementation and of the mixture MCL algorithm for various φ values. The data points for the mixture
MCL algorithm represent eest for different values of α and Qmot values. The data points for the EKF algorithm represent eest for different motion and
observation covariance matrices. The rectangular bars represent the average eest over six simulations. (b) RMSE of the mixture MCL algorithm for φ = 0.5
and N = {20, 50, 100, 200}. (c) RMSE versus φ in the square path experiments for two speed profiles of robot R1.

we argue that incorporating the distance measurements in the
prediction phase led to reasonable precision even with a small
number of particles. As a result, the mixture MCL algorithm
can be considered more reliable than the standard MCL algo-
rithm. Moreover, we demonstrate the performance of the EKF
algorithm mentioned in [3] for five sets of parameter values in
Fig. 6(a). We used r̂0 close to the true value r0 and used high
motion and observation covariance matrices. Nevertheless, the
EKF yielded eest = 6 m on average over five runs. Notably, the
EKF performance highly depended on the initial conditions
and agility level of robot R1. Also, we observed that the
standard MCL and EKF algorithms resulted in time-delayed
estimates. These results demonstrate the necessity of a good
initial condition and a sufficient number of particles for the
standard MCL and EKF algorithms for a reliable estimation
performance.

Furthermore, we set φ = 0.5 and compared the esti-
mation performance for N = {20, 50, 100, 200} in terms
of RMSE [see Fig. 6(b)]. We simulated the algorithm with
α = {0.1, 0.5, 1} for each N . We did not observe a significant
difference between N = {20, 50, 100}. However, the setting
N = 200 resulted in high RMSE for higher φ values because
the time required to run a simulation step exceeded the step
time 0.125 s, and as a result, the algorithm ran slower than 8
Hz. In our simulations, a dual MCL epoch was computation-
ally heavier than a standard MCL epoch.

B. Case 2: Localization-Based Formation Control

We tested the localization performance in a feedback control
system on robot R0. Robot R1 was externally actuated with
time-based velocity set points, whereas robot R0 was to
maintain the relative position r at a desired constant value rdes

by utilizing the estimate r̂. We used the parameter values given
in Table I. To compare the tracking performance in various
scenarios, we use the following measure together with eest:

etrack =
(

1

K

K∑
k=1

∥∥rk − rdes
∥∥2

)1/2

, (30)

where rdes is the constant desired relative position and K is
the termination step. We used a simple proportional controller
in robot R0 for relative position keeping as follows:

vdes
0x =

{
Kvex , if ex ≥ ē

0, otherwise
(31)

vdes
0y =

{
Kvey, if ey ≥ ē

0, otherwise,
(32)

where ex = rdes
x − r̂x, ey = rdes

y − r̂y, and ē is a small threshold.
We found the best N, Kv , and ē values empirically as Kv =
−2, ē = 0.1 m, and N = 50.

In the first set of simulations, we analyzed the effects of
robot R1’s velocity profile on the estimation performance [see
Fig. 6(c)]. We moved robot R1 on a square path with v1G =
γ [1+ sgn(cos(kπ/40)), 1+ sgn(sin(kπ/40))] m/s, where γ =
1 and γ = 4 for the first and second experiment, respectively.
For γ = 1, the proposed algorithm yielded similar eest for
all φ values, including the standard MCL algorithm, with low
tracking errors. On the other hand, for γ = 4, the standard
MCL algorithm yielded high eest; as a result, robot R0 lost
track of robot R1. We demonstrate the paths of the robots
for φ = 0 [see Fig. 7(a)] and φ = 0.7 [see Fig. 7(b)]. For
φ = 0, robot R0 produced a smoother estimation but lost
track of the agile maneuver of robot R1, yielding etrack =
6.99 m [see Fig. 7(a)]. For φ = 0.7, robot R0 estimated the
relative position within a reasonable bound and showed an
acceptable tracking performance [see Fig. 7(b)] at the expense
of a chattering estimate signal.

We note that (31) may not be the best controller for the
particular dynamical system, and a better tracking performance
can be obtained by implementing a more sophisticated control
algorithm instead of (31). We aim to demonstrate the suffi-
ciency of the proposed estimation algorithms in closed-loop
systems. Therefore, we leave a comparison of different con-
trollers to future works.

Moreover, we compared the estimation and tracking perfor-
mance of the proposed algorithm for a square-wave velocity
profile in robot R1 for φ = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}
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Fig. 7. Simulation results. Relative position estimates in a square path experiment for (a) φ = 0 and (b) φ = 0.7. (c) Tracking and estimation RMSE for
seven φ values for a square-wave velocity profile.

[see Fig. 7(c)]. We set v1G = [4 s, 0.3] m/s, which resulted in
an almost sinusoidal path on the x-axis. We performed four
simulations for each φ with parameters α = {0.75, 1}, σobs =
{1, 2}. We observed slight variations in the tracking and
estimation performance for different φ values. Unlike the
square path case, the standard MCL algorithm (φ = 0)
was able to track the sinusoidal path of robot R1 with 50
particles. We argue that the high performance of the standard
MCL algorithm stemmed from the smoothness of the path of
robot R1.

VII. EXPERIMENTS

A. Experimental Setup

We performed experiments with two drones, a hexacopter
equipped with three UWB anchors and a quadrotor equipped
with a single UWB sensor (see Fig. 8). The hexacopter was
to estimate the relative position to the quadrotor. Each drone
used a Pixhawk flight controller1 running a PX4 open-source
autopilot firmware to provide attitude stability and velocity
tracking. The flight controller used the PX4Flow optical flow
sensor [36] to provide accurate velocity feedback. We used
an onboard Odroid XU4 computer2 as a high-level controller
to send the velocity set points to the flight controller and to
execute the localization algorithms. We used a laser range
finder on each drone for precision altitude control in outdoor
experiments. Specifications of the components are given in
Table II. Videos of some experiments are available online.3

Since we assumed that the headings of the drones remained
constant during the entire operation, we set the attitude con-
trollers to maintain the yaw angles of the drones at their
initial configuration. Notably, this approach does not restrict
the motion capabilities of drones because a holonomic air
vehicle can reach the entire plane with constant heading.

The test procedure consisted of two stages. In the first stage,
both drones were driven to certain locations and altitudes
manually. Then, we switched to the autonomous mode and ran

1https://pixhawk.org
2https://www.hardkernel.com/main/products
3https://youtu.be/M9BXGaib0aU

Fig. 8. Hexacopter and the quadrotor used in the experiments.

TABLE II

DRONE COMPONENTS

the localization algorithm simultaneously. In the autonomous
mode, the quadrotor (robot R1) moved based on the predefined
velocity set points, and the hexacopter (robot R0) moved
based on either external inputs or the localization algorithm
feedback. To avoid occlusions between the UWB anchors
and the sensor, the drones flew at different altitudes. In all
experiments, we used N = 50 particles for a fair comparison
between different parameter sets.

B. UWB Sensor Calibration

We followed a standard procedure explained in [3] to
calibrate the DecaWave UWB sensors. The procedure requires
to record a set of distance measurements and find the bias and
noise variance for each anchor. In [3], the UWB sensors of
the same type were calibrated for low data rate setting. Here,
we calibrate the sensors for a higher (6.8 Mb/s) data rate.
We calibrate each sensor separately because the sensors can
show slightly different characteristics due to several reasons.
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Fig. 9. UWB calibration results. (a) Sample histogram of distance measurement noise at d̄i = 5 m for anchor 2 and its Gaussian approximation. (b) Bias
values of the anchors and their linear approximations. (c) Variance values of the anchors and their constant approximations.

We assume that the robots fly close to each other, e.g., r < 5
m, without any obstacles in between and focus on the LOS
cases in calibrating the UWB sensors. Hepp et al. [1], Prorok
et al. [11], González et al. [12], and Prorok and Martinoli [16]
provided tools and algorithms to handle NLOS cases and
multipath effects, which can improve the estimation for general
scenarios. We leave the detailed analysis of such cases to
future works.

Similar to [3], we assume that distance reading can be
formulated as follows:

di = d̄ i + β i (d̄ i ) + ζ i (d̄ i ), (33)

where β i and ζ i denote the i th anchor’s bias and zero-mean
additive noise, respectively. Notably, both parameters can be
dependent on the true distance value d̄ i .

The data set contained a certain number of distance mea-
surements collected at several anchor-sensor distances for each
anchor. In particular, we took 700 measurements for each
of ten distance values ranging between d̄ i = 0.5 m and
d̄ i = 5 m. Let Dd̄ i = {di

1, . . . , di
K } denote the sequence

of measurements at the distance d̄ i for anchor i , and let
Di, j = {di

1 − d̄ i , . . . , di
K − d̄ i } denote the sequence of additive

noise for d̄ i , where j denotes the index corresponding to d̄ i .
For all data sets, we observed histograms for Di, j similar to
the one in Fig. 9(a). This histogram can be well approximated
by a Gaussian distribution with certain mean and variance
for each d̄ i . Accordingly, we set β i (d̄ i ) = mean(Di, j ). The
bias values of the three anchors at ten distance values and
their first-order linear approximations are given in Fig. 9(b).
In particular, we found β0,fit = 0.045d̄0 − 0.096, β1,fit =
0.032d̄1 +0.049, β2,fit = 0.037d̄2 −0.088. Next, we assumed
that ζ i (d̄ i ) are zero-mean Gaussian noises with variance equal
to the variance of the Gaussian fits, i.e.,

ζ i (d̄ i ) ∼ N (0, var(Di, j )). (34)

We calculated the variance of the anchors for each data set
as in Fig. 9(c). Although the first-order polynomials could
yield better approximations, we fitted a constant value for each
anchor’s variance for ease of implementation.

The measurement noises ζ i might show non-Gaussian
behavior depending on the sensor and environment con-
ditions. Ledergerber and D’Andrea [37], [38] and Tie-
mann et al. [39] aimed at modeling the noise behavior

with maximum-likelihood approach and Gaussian processes.
We note that an advantage of our mixture MCL approach is
the use of particles to represent the tag sensor’s location. The
distribution of the particles scattered around the constructed
measurement zk can be adjusted with the parameters Qmot
and Qobs for the best-observed performance. Therefore, the
zero-mean Gaussian model for ζ i is expected to yield suf-
ficient performance in our framework. We leave the more
detailed analysis of the UWB antenna characteristics and
angle-dependent offsets as a future work, which can be useful
for enhancing the estimation performance.

Although the UWB sensors generally produced reliable data
measurements at 10 Hz, they yielded zero readings at times.
To tackle the zero measurement issue, we used two methods.
First, if a set of measurements contained zero reading, we used
the last nonzero reading at the current time step. The second
measure was the two-step smoothing procedure explained in
Section V.

C. Indoor Experiments

We performed several tests in a cage with a motion capture
system for externally actuated agile robots. Due to the space
constraint of the motion capture arena, we did not perform for-
mation control experiments indoor. For high-precision flights,
the control algorithms maintained the headings and altitudes
of the drones constant by the aid of the motion capture system.

The hexacopter hovered stationary, and the quadrotor was
driven with high speeds in random directions manually. The
maximum velocity of robot R1 was v1,max = [3.65, 3.65]�
m/s. In Fig. 10, we demonstrate the results of three tests
for φ = {0, 0.5, 1}. We used α = 0.8 and Qmot = 20I .
We observed that the algorithm could not capture the agile
motion of robot R1 for φ = 0 and yielded eest = 3.56 m.
Furthermore, the algorithm lost track of robot R1 after t =
40 s. However, the algorithm yielded reasonable performance
for φ = 0.5 (eest = 1.87 m) and φ = 1 (eest = 1.69 m).
Notably, this result is in line with our simulation results where
the setting φ = 0 yielded unreliable performance for the agile
robot R1 case. In Fig. 10(b) and (c), there are time lags
between the estimations and the ground-truth values. We argue
that these lags occur mainly because the speed of robot R1
was too high to capture the algorithm with ∼10-Hz distance
measurements.
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Fig. 10. Indoor experiments, externally actuated robots case results. (a) Standard MCL (φ = 0). (b) Mixture MCL (φ = 0.5). (c) Dual MCL (φ = 1 m).

Fig. 11. Outdoor experiments, externally actuated robots case results. (a) and (b) Paths of the robots and the relative position estimates with standard MCL
algorithm (φ = 0). (c) and (d) Paths of the robots and the relative position estimates with mixture MCL algorithm (φ = 0.5).

D. Outdoor Experiments

We conducted outdoor experiments for both the externally
actuated robots case and the formation control case. We set
the desired altitudes h0 = 2 m and h1 = 1.3 m and used
a laser range sensor to stabilize the altitudes of the drones.
We acquired the ground-truth data from GPS sensors onboard.
We used an optical flow sensor on each drone for hovering and
planar motion control, i.e., moving the drone with the given
velocity set points. Since optical flow sensors can drift in the
absence of a GPS, we also utilized the GPS data in sensor
fusion wherever they are available. We followed the same
test procedure with the indoor case. We first stabilized the
drones at the desired altitudes, and then, we ran the localization
algorithm and sent the velocity set points.

1) Externally Actuated Robots: The hexacopter moved on
a straight path with velocity v0G = [0, 0.2]� m/s, and the
quadrotor moved on an almost sinusoidal path with velocity
v1G = [sgn(sin(πk/20)), 0.3]� m/s. Trajectories of the drones
and the relative position estimates are presented in Fig. 11 for
φ = 0 and φ = 0.5. The standard MCL algorithm showed
reasonable performance for this smooth trajectory of robot R1
and yielded eest = 1.42 m [see Fig. 11(a) and (b)]. However,
the x-axis estimation captured the true location (with an offset)
after t = 6 s. On the other hand, the mixture MCL algorithm
with φ = 0.5 captured the true locations in both axes in the
first 2 s and tracked the sinusoidal pattern of robot R1 with
an offset yielding eest = 2.92 m.

2) Formation Control: In this set of experiments, we fed the
relative position estimate r̂ back to the control algorithm of
robot R0, while robot R1 moved with external inputs. In the

TABLE III

RMSE ERRORS IN FIELD EXPERIMENTS

first scenario, the quadrotor moved on an almost sinusoidal
path with velocity v1G = [sgn(sin(πk/20)), 0.3]� m/s. The
hexacopter was to maintain the relative position at the desired
value rdes = [2, 2]� m by utilizing the proportional controller
(31). The robot trajectories and relative position estimates are
presented in Fig. 12. The standard MCL algorithm lost track
of robot R1 after t = 5 s and yielded high eest and etrack (see
Table III); as a result, robot R0 could not capture the sinusoidal
pattern of robot R1 [see Fig. 12(a) and (b)]. In contrast, the
mixture MCL algorithm with φ = 0.5 showed a reasonable
estimation and tracking performance and yielded lower eest
and etrack compared with the standard MCL algorithm [see
Fig. 12(c) and (d)]. Notably, the oscillations in Fig. 12(d)
mainly stemmed from the controller choice, and the tracking
performance can be improved by utilizing more advanced
control algorithms (see Section VIII).

In the second scenario, the quadrotor moved in a ran-
dom trajectory with high speeds. In particular, the trajectory
consisted of piecewise straight paths that were connected
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Fig. 12. Outdoor experiments, formation control, and square-wave velocity case results. (a) and (b) Paths of the robots and the relative position estimates
with the standard MCL algorithm (φ = 0). (c) and (d) Paths of the robots and the relative position estimates with mixture MCL algorithm (φ = 0.5). The
desired positions are presented with yellow dashed lines in (b) and (d).

Fig. 13. Outdoor experiments, formation control, and agile robots case results. (a) Sample trajectory of robot R1 (the corners where the robot had sharp turns
are represented with green circles). Relative position estimates for (b) standard MCL algorithm (φ = 0, N = 150), (c) mixture MCL algorithm (φ = 0.5), and
(d) dual MCL algorithm (φ = 1). The desired positions are presented with yellow dashed lines in (b)–(d).

by corners where the quadrotor had sharp turns. A sample
trajectory of robot R1 from one of these tests is shown
in Fig. 13(a). The maximum speed of robot R1 in both
directions was 4 m/s. We used N = 150 particles for the
standard MCL algorithm [see Fig. 13(b)], N = 50 and
φ = 0.5 for the mixture MCL algorithm [see Fig. 13(c)],
and N = 50 for the dual MCL algorithm [see Fig. 13(d)].
The standard MCL algorithm could not capture the agile
motion of robot R1, whereas the dual MCL algorithm
showed high performance in both estimation and tracking.
The mixture MCL algorithm showed a reasonable estimation
performance.

VIII. DISCUSSION ON RESULTS

We presented simulation as well as indoor and outdoor
experiment results for two typical cases, namely, localization
in externally actuated robots and localization-based formation
control. Our algorithm yielded sufficient accuracy in most
simulation runs. We used less than 200 particles in all simula-
tions. Furthermore, we showed that our algorithm could yield
sufficient accuracy even in tracking agile robots by utilizing
only 50 particles. We now note some critical practical aspects.

Although we named our particular problem as localization,
it dramatically differs from the conventional localization prob-
lem in which mobile robots are localized in a well-represented
map. We aim at localizing a moving robot on another fly-
ing robot by utilizing the onboard computational capabilities
solely. Furthermore, the localized robot is allowed to show
aggressive behavior, we have not imposed a good initial
estimate assumption, and no communication took place in the

system. Admittedly, this setting inherently contains many more
difficulties compared with the conventional localization prob-
lem. The main difficulty stems from the presumed assumption.
The state space for the estimation result is the entire plane
instead of a constrained map. We have dealt with this diffi-
culty by exploiting the nonparametric structure of the mixture
MCL algorithm. We showed that incorporating exteroceptive
measurements in the prediction phase enables the algorithm
to capture the agile characteristics of the localized robot with
reasonable performance.

In addition, in the conventional localization setup, a robot in
motion localizes itself by taking measurements from stationary
landmarks with known positions. In contrast, our setup lacks
a reference entity from which robot R0 could take precise
exteroceptive measurements. We emphasize that not only the
distance measurement noises but also the motion inaccuracies
of the robots have direct effects on the performance. Therefore,
it is natural to observe high-level RMSE compared with the
conventional localization setups. Furthermore, our algorithm
together with the particular anchor setting alleviates the effects
of distance noises and outputs the unique estimates even in
cases the trilateration method fails.

Our algorithm does not require a communication framework
except for the internal communication mechanism. Our UWB
sensors served as distance sensors only. Although our setup
removes the need for another physical layer and risk of com-
munication failures, it also removes a possible coordination
structure between the two robots, which results in two separate
robots that are unaware of each other’s actions. A communi-
cation framework can be included in our framework easily for
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better coordination and formation control performance at the
expanse of additional cost and possible communication delays.

Moreover, the loop rate, or the system frequency, has
a significant impact on the performance. It is common to
use high-frequency sensors in drone applications, such as
IMUs with a 1000-Hz data rate. However, our UWB sensors
generated data at around 10 Hz. Since we aimed to imitate the
real-life scenario in our simulations, we set the loop rate at
8 Hz, which corresponds to a 1.25-s interval between two
successive time steps. We argue that while this data rate
setting allows sufficient time for filtering, the drone’s control
mechanism could yield much better performance in higher
frequencies.

We emphasize that we combined solutions for two separate
problems in the formation control scenarios, localization and
motion control, by feeding the estimated state vector to the
motion control algorithm. Notably, since the observation of
the velocity of robot R1 was not reliable due to noisy distance
measurements, we did not utilize the velocity estimate in
the feedback control algorithm. Therefore, we opted for a
proportional controller for tracking robot R1. The oscillations
of robot R0 in the x-axis when tracking robot R1 stemmed
from lack of a velocity term in the controller. We argue
that a different formation control algorithm or an additional
communication layer to transmit instant velocity information
of robot R1 to robot R0 may yield better tracking performance.

Unlike the standard particle filter and EKF, our algorithm
does not require an initial guess for high-performance esti-
mation if φ > 0. Therefore, the robots may start or end
the localization at any time in an operation. This feature
provides great flexibility in some applications, such as the
kidnapped robot problem [5]. However, due to the structure
of the dual MCL and the nonlinear transformation from raw
distances to rms, our algorithm is prone to high noise in
distance measurements if φ � 1. Therefore, the designer
has a tradeoff between the smoothness of the outcome and
the ability to obtain high-performance without a good initial
condition. The performance of our framework may vary based
on the experimental test bed, vehicle type, or even the wind
condition on the test day. For instance, lower φ values may
yield higher performance with ground robots or with different
types of drones. In this sense, the parameter φ provides
flexibility to the designer. We suggest to use low φ > 0
values for low v1,max cases and to use φ values close to 1
for agile robot R1 cases. Similarly, the signal smoothing term
α had a significant effect on the performance. Although low
α values, e.g., α = 0.1, mitigated the chattering issue, they
caused lags in estimating the smoothed signal and adversely
affected the tracking performance for agile robots. In summary,
we have provided a versatile estimation algorithm with few
adjustable parameters, and the designer is suggested to tune
these parameters based on the particular application.

IX. CONCLUSION

Motivated by the need for a reliable and versatile multirobot
localization solution, we have designed an onboard UWB
localization framework for a two-robot system. Our framework
utilizes UWB distance measurements and motion models of

the robots to generate an estimate of the interrobot relative
position in real time. We have exploited the nonlinear structure
of the dual MCL algorithm to generate accurate estimates
for a broad class of tag robot velocity profiles, including
agile maneuvers. Remarkably, our framework runs on board
the anchor robot in real time without any need for a central
computational unit, such as a ground station. Also, our frame-
work does not employ an explicit communication structure.
Therefore, our framework provides a flexible multirobot local-
ization solution for both indoor and field operations. Extensive
simulation and experimental studies have proved the reliability
and repeatability of our framework. We have demonstrated the
tradeoffs between the standard and mixture MCL algorithms
regarding the estimation performance in the case of agile
robots. To the best of our knowledge, this article is the
first to represent a real-time, onboard multirobot localization
framework tested on a two-drone setup both in indoor and
field experiments.

In the future, we plan to extend our framework to 3-D
scenarios by adding an extra UWB sensor to the anchor
drone. Furthermore, we plan to study various advanced control
techniques to improve the formation control performance.
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