
miRModuleNet: Detecting
miRNA-mRNA Regulatory Modules
Malik Yousef1*†, Gokhan Goy2,3† and Burcu Bakir-Gungor2

1Department of Information Systems, Zefat Academic College, Zefat, Israel, 2Department of Computer Engineering, Faculty of
Engineering, Abdullah Gul University, Kayseri, Turkey, 3The Scientific and Technological Research Council of Turkey, Ankara,
Turkey

Increasing evidence that microRNAs (miRNAs) play a key role in carcinogenesis has
revealed the need for elucidating the mechanisms of miRNA regulation and the roles of
miRNAs in gene-regulatory networks. A better understanding of the interactions between
miRNAs and their mRNA targets will provide a better understanding of the complex
biological processes that occur during carcinogenesis. Increased efforts to reveal these
interactions have led to the development of a variety of tools to detect and understand
these interactions. We have recently described a machine learning approach miRcorrNet,
based on grouping and scoring (ranking) groups of genes, where each group is associated
with a miRNA and the group members are genes with expression patterns that are
correlated with this specific miRNA. The miRcorrNet tool requires two types of -omics
data, miRNA and mRNA expression profiles, as an input file. In this study we describe
miRModuleNet, which groups mRNA (genes) that are correlated with each miRNA to form
a star shape, which we identify as a miRNA-mRNA regulatory module. A scoring
procedure is then applied to each module to further assess their contribution in terms
of classification. An important output of miRModuleNet is that it provides a hierarchical list
of significant miRNA-mRNA regulatory modules. miRModuleNet was further validated on
external datasets for their disease associations, and functional enrichment analysis was
also performed. The application of miRModuleNet aids the identification of functional
relationships between significant biomarkers and reveals essential pathways involved in
cancer pathogenesis. The miRModuleNet tool and all other supplementary files are
available at https://github.com/malikyousef/miRModuleNet/
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1 INTRODUCTION

TheWorld Health Organization (WHO) reported in 2019 that cancer is the leading cause of death in
three out of four countries in the world (Sung et al., 2021). Approximately 19.3 million people were
diagnosed with cancer in 2020 and 10 million people lost their lives due to cancer. Lifestyles,
environmental, demographic and cultural factors all contribute to these problematic statistics. If
these statistics are to change, it is important to better understand the complex molecular processes
that lead to cancer development and progression as precisely as possible. This information is critical
to both traditional drug development approaches and for personalized medicine approaches
(Schmidt, 2014).

miRNAs are non-coding RNAs, roughly 22–25 nucleotides in length (Bartel, 2004; Allmer and
Yousef, 2016; Allmer and Yousef, 2022) and are present in animals and plants, as well as in humans.
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The observations that miRNAs with similar sequences are
detected in all living things further support the idea that
miRNAs perform critical biological functions (Cai et al., 2009).
miRNAs are known to be responsible for the regulation of
approximately 60% of protein coding genes (Friedman et al.,
2009) and cellular processes including cell proliferation,
apoptosis and necrosis (Keller et al., 2011). miRNAs can affect
gene expression by binding to the seed regions of mRNAs (Ivey
and Srivastava, 2015; Yousef et al., 2018) and, in general, repress
the expression of their target mRNAs via physically interacting
with them. In other words, miRNAs tend to have a negative
correlation with mRNAs. The elucidation of the relationships
between miRNAs and mRNAs is important in order to
understand the mechanisms of complex diseases such as
cancer (Pencheva and Tavazoie, 2013; Yousef et al., 2014). A
better understanding of the associations between miRNAs and
the mRNAs can reveal important information on normal and
aberrant gene regulation and cell biology.

There are presently sevenmajor techniques in literature for the
integration of miRNA-mRNAs, as shown in Figure 1 (Masud
Karim et al., 2016). In general, the correlation-based techniques
primarily start by identifying differentially expressed mRNAs and
miRNAs. Using various correlation metrics, mRNA-miRNA
pairs are identified and the integration is achieved through
these pairs (Feng et al., 2018; Li et al., 2018; Liu et al., 2018;
Yang et al., 2019; Yao et al., 2019). Hailu et al. (2021) have used
Spearman’s correlation and attempted to identify target genes and
signaling pathways associated with pediatric dilated
cardiomyopathy by integrating miRNA and mRNA data.

Correlation-based techniques have the following
disadvantages. These techniques assume that one miRNA
affects only one mRNA, an assumption that is not entirely
true (Huang et al., 2007). Linear modeling based techniques
have been developed in order to overcome this assumption.
Huang et al. (2007) suggested modeling mRNA expressions as
linear combinations of miRNAs to address this problem and
applied the Bayesian algorithm to discover hidden miRNA

targets. They also used a different distribution technique,
integrating sequence information with their previous study.
Stingo et al. (2010) proposed a comparable approach.
However, they did not consider the effect of different tissues
and suggested that miRNAs had a different promoter effect on
each mRNA (Le and Bar-Joseph, 2013) attempted to find the
mRNA modules that affect the functionality of miRNAs, using
interaction, expression and sequence information; and a
regression-based solution. They claimed that by using this
method, they could identify relevant modules in a more robust
and accurate way.

Another approach used for the integration of miRNA and
mRNA interactions is the Bayesian network technique. Liu et al.
(2009) performed an integrated analysis using differentially
expressed miRNAs and mRNAs through Bayesian network
technique. Due to the large amount of biological data
available, (Madadjim, 2021) emphasized the necessity of
producing a scalable solution and suggested that the Bayesian
network-based machine learning model could be a valid solution.

All events that take place in a living system happen within a
specific biological organization. In other words, the events that
occur at the molecular level are not random. This understanding
has motivated the development of statistical solutions for miRNA
and mRNA integration (Jayaswal et al., 2011). Along this line,
(Hecker et al., 2013) evaluated different miRNA-mRNA
expression data using statistical approaches, without any other
prior knowledge; and developed a method to distinguish different
tissues. Using a similar approach, (Nersisyan et al., 2021)
developed a new tool to generate miRNA-gene-TF networks.

Another method that generates miRNA-mRNA groups is the
probability learning based technique. In this approach, the
interaction probabilities of known miRNA-mRNA pairs are
estimated (Joung et al., 2007). However, in order for this
operation to be performed robustly and effectively, more than
one source of information is needed. The Non-Negative Matrix
Factorization technique is another important method. This
method accomplishes the integration process by successfully

FIGURE 1 | miRNA - mRNA integration techniques.
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separating different information sources (Zhang et al., 2011) was
able to successfully integrate information obtained from different
sources and generate significant miRNA-mRNA groups.
Additional approaches use rule induction-based techniques
based on information theory. Generally, as in the other
techniques, data obtained from more than one data source
needs to be integrated (Tran et al., 2008) used a rule
induction-based technique to find miRNA-mRNA groups
while (Lavrac et al., 2004) used the CN2-SD system as the rule
generation system to identify miRNA-mRNA groups.

With the advancements in technology we now have access to
data which describes different levels of molecular regulation from
the same individual. These rich and complicated data sets require
the development of novel techniques to integrate and understand
this data. All the tools that we have surveyed above are based on
statistical approaches. To the best of our knowledge, there are
only two available tools that can adequately address the
classification problem using integrated miRNA-mRNA groups.
These bioinformatics tools are maTE (Yousef et al., 2019) and
miRcorrNet (Yousef et al., 2021b). The main difference between
these two tools is the miRNA-mRNA grouping methodology.
While maTE adopts a biological grouping methodology,
miRcorrNet tool uses correlation information in order to
generate the groups. These two tools not only solve the
classification problem, but also provide a score for each group,
where the score reflects the contribution of each group to
classification.

In this study, we present a novel bioinformatics tool named
miRModuleNet. miRModuleNet differs from our two previous
approaches in that miRNA-mRNA integration has been
developed using statistical information. In this paper, we have
comparatively evaluated these three different grouping
methodologies and showed the superiority of miRModuleNet
against state of the art methods.

2 MATERIALS AND METHODS

2.1 Datasets
In this study, miRNA and mRNA expression profiles which have
been obtained from the same individuals have been used. Due to
the aforementioned reasons, in this study we focused on cancer.

In this context, 11 different cancer datasets were downloaded
from The Cancer Genome Atlas (TCGA) data portal (Tomczak
et al., 2015). The details of these datasets are presented in Table 1.

2.2 The G-S-M Approach
miRModuleNet was developed based on the generic approach
named G-S-M. This generic approach was adopted by different
tools such as SVM RCE, SVM-RCE-R (Yousef et al., 2007; Yousef
et al., 2021a), maTE (Yousef et al., 2019), CogNet (Yousef et al.,
2021d), miRcorrNet (Yousef et al., 2021b), and Integrating Gene
Ontology Based Grouping and Ranking (Yousef et al., 2021c).
Recently, these tools and their competitors were reviewed in
(Yousef et al., 2020).

As illustrated in Figure 2, the algorithm mainly consists of 3
components (shown as circles):

1. G Component: Detect groups of genes
2. S Component: Score the groups.
3. M Component: Creates the model by training a classifier

(Random Forest)

In the first component G, bioD is a biological database, or
another prior biological knowledge that will be used to create the
groups that contain the genes from the mRNA (gene expression)
data. This operation is represented as the G component whose
output is the set of groups. Group names are the names of the
biological entity such as miRNA names, where a group of genes
may be targeted by that miRNA, a KEGG pathway name, or a
disease phenotype name. Note that, in most of the cases each
group has an important biological meaning. The resulting set of
groups is indicated in the Groups box in Figure 2.

Assume that we have n samples and k genes in our dataset C.
The C data is split into two parts as Ctrain and Ctest, where the
Ctrain is used to score the groups and to train the classifier in theM
component. The Ctest is used for testing and reporting the
performance.

Let m = size(Gr) be the number of groups generated by the G
component and let Gr be the collection of all the groups as Gr =
[bioD_grpf, where f = 1,..,size(Gr)]. From now on, we will refer to
one group of Gr as bioD_grp.

In Component S, each bioD_grp in Gr is scored, as shown in
Figure 2. In order to perform this task, we generate size (Gr)

TABLE 1 | Details of the datasets utilized in miRModuleNet.

TCGA data Abbreviation Control Case PMID

Bladder urothelial carcinoma BLCA 405 19 24476821
Breast invasive carcinoma BRCA 760 87 31878981
Kidney chromophobe KICH 66 25 25155756
Kidney renal papillary cell carcinoma KIRP 290 32 28780132
Kidney renal clear cell carcinoma KIRC 255 71 23792563
Lung adenocarcinoma LUAD 449 20 25079552
Lung squamous cell carcinoma LUSC 342 38 22960745
Prostate adenocarcinoma PRAD 493 52 26544944
Stomach adenocarcinoma STAD 370 35 25079317
Papillary thyroid carcinoma THCA 504 59 25,417,114
Uterine corpus endometrial carcinoma UCEC 174 23 23636398

Control and case columns denote the number of samples. Column PMID refers to Pubmed ID of the related publication, where further information about the dataset can be found.
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different sub_data sets which are the sub matrices of the gene
expression matrix Ctrain (illustrated in Figure 2). Each sub_data
set includes the columns from the original data matrix Ctrain,
corresponding to the genes in bioD_grp. In other words, each
sub_data set contains only the gene expression values of specific
genes included in that group and associated class labels. We will
refer to each sub_data as Ctrainsubf, where f = 1,..,size(Gr) that
contains genes that belong to the group of bioD_grp. Figure 3 is
an example of how to create sub_data based on a group of

mRNAs and then this sub-data is subject to a procedure for
scoring those groups.

Let S (sub_data) be the k-fold cross validation procedure that
computes and returns some performance measurements such as
accuracy, specificity, sensitivity and Area Under the ROC Curve
(AUC). We used AUC as the major performance metric to score
for the sub_data. Next, we score all the groups using the S function
which produces scores for groups, named as grp_scores and
grp_scores = [(bioD_grpf, scoref) f = 1,..,size(G)]. Then we sort

FIGURE 2 | The general integrative approach that is based on grouping and scoring/ranking.

FIGURE 3 | An example of how to create sub_data based on a group of genes and then this sub-data is subject to the scoring component S. gi refers to genei.
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this list based on score and obtain grp_scores_sorted =
[(bioD_grp_sortedf, score_sortedf) f = 1,..,size(G)]. Table 2
presents an example output of this S component. In Table 2,
microRNAs are shown as the group name since in this example
miRNAs are used within the G component to group a set of genes
targeted by that miRNA.

The last component is the M component, which creates the
model by training a classifier. In order to build the Random Forest
(RF) model and report the cumulative performance of the
algorithm, we implement the procedure presented in Table 3.
Here, topf specifies the number of top groups defined by the user.

In Table 3, RF_Model is the model created by training Random
Forest on the X_train data set. This model will be used to test on the
X_test. In Table 3, grp_bioD_sortedf is one of the groups of Gr (for
example, of miRNA, KEGG, GO databases). The Performance
Table inFigure 2 describes the cumulative performance of theG-S-
M approach, where #G is the number of genes in the cumulative
group. The output of this step is the Performance Table shown in
the right hand side of Figure 2.

2.3 miRModuleNet
miRModuleNet tool is developed as a specific application of our
G-S-M approach on the -omics data integration problem including
miRNA and mRNA expression profiles. Hence, miRModuleNet
makes use of the above-mentioned G-S-M approach with further
additions. Before utilizing the G-S-M method, miRModuleNet
includes some preprocessing steps as explained in detail below.
The main idea behind miRModuleNet is illustrated in Figure 4.
Initially, both miRNA andmRNA expression datasets are split into
training and testing parts. Following the general idea presented in
Figure 2, the training part is used to create the groups, define the
features in each group and to build themodel, while the testing part
is only considered in the evaluation step.

In the 1st step of miRModuleNet, both miRNA and mRNA
expression profiles are cleaned by removing the columns
containing the missing data. For miRNA-seq profiles, raw read
counts were normalized to reads per million mapped reads
(RPM). For mRNA-seq profiles, the raw read counts were

normalized to Reads Per Kilobase Million Mapped Reads
(RPKM). Subsequently, whole data at different ranges were
normalized using z-score normalization. Second step identifies
statistically important miRNAs and mRNAs that were to be used
in the following steps. In the 3rd step, using statistically significant
miRNAs and mRNAs, differentially expressed miRNAs and
mRNAs are detected using the edgeR package (Robinson et al.,
2010). In step 4, the mutual information matrix is generated in
order to determine the miRNAs and mRNAs that will be used to
form themiRNA-mRNA groups. Instead of considering each pair
in this matrix, we only select the pairs that exceeded a certain
threshold. We experiment with the values of 0.15, 0.25, and 0.5 as
the Mutual Information (MI) threshold and present data
identifying the value of 0.25 as the optimal threshold value.
This value is used in the later steps of miRModuleNet. The 5th

step corresponds to the grouping component in the general
approach. In this step the miRNA-mRNA regulatory groups
i.e., modules are generated according to the Algorithm 1.
Here, I(x,y) denotes the mutual information between two
variables x and y. I(x,y) = H(x)−H(y|x), where H(y) and H(y|
x) are the entropy of y and the conditional entropy of y given x.
The strategy for obtaining miRNA-mRNA regulatory modules is
explained in the following section.

Algorithm 1. Generate the “Star shaped” module that contains
single miRNA and multiple mRNAs.

1) Let C= {gene1, gene2, ...genek } be the profiles of the mRNAs
from data Dgenes

2) Let Str ←∅ be the “Star” group for the miRNA
3) Compute Ii = I(genei, miRNA) of each mRNA genei in C.
4) Let gene*= maxi {Ii}, Select the gene with the highest value of

mutual information

2.4 Generating the miRNA-mRNA
Regulatory Modules/Groups
In order to detect the miRNA-mRNA regulatory modules, we
have used the RFCM3 approach suggested by (Paul and
Madhumita, 2020). The RFCM3 considers two types of -omics
data, the miRNA and mRNA expression profiles from the same
samples. Here, we will use the terms module and groups
interchangeably. miRNA-mRNA modules consist of a miRNA
and its related mRNA genes. As illustrated in the Step 5 of
Figure 4, we have generated the module called the star shaped
module, where it contains a single miRNA and multiple mRNAs/
genes. As suggested by (Paul and Madhumita, 2020), mRNAs for
such modules are selected in such a way that they are

TABLE 2 | A sample output of scoring component when applied on THCA data, downloaded from TCGA.

Group Accuracy Sensitivity Specificity FM Precision Cohen’s kappa

hsa-miR-101-3p 0.89 0.82 0.92 0.85 0.88 0.73
hsa-miR-200c-3p 0.95 0.92 0.97 0.92 0.94 0.89
hsa-miR-508-3p 0.98 0.93 1.00 0.96 1.00 0.94
hsa-miR-629-5p 0.99 0.97 1.00 0.98 0.99 0.97

Each miRNA ID represents a group, which is generated by the Grouping Component G. Groups are sorted according to the accuracy metric.

TABLE 3 | Pseudocode of component M, which calculates the performance.

For f = 1 to topf
genes_set = ∪f

j�1 {bioD_grp_sortedj}
X_train = sub_set of Ctrain that includes the genes from the genes_set
X_test = sub_set of Ctest that includes the genes from the genes_set
RF_Model < - train Random Forest (X_train)
Performances = test RF_Model (X_test)
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simultaneously and functionally similar to the corresponding
miRNA.

In creating these groups, we first identify the miRNA-mRNA
pair with the highest score. As shown in green in Step 5 of
Figure 4, we detect the center of the star (the miRNA that serves
as the group name). The mRNA in this pair is the starting point
for the addition of other mRNAs forming the star shape. The
relationship of the miRNA to other mRNAs is determined by
looking at the Mutual Information matrix. For mRNAs to be
included in the group, the mutual information score between
them and the relevant mRNA must exceed the threshold set by

the end user and this relationship is then considered to be
potentially important.

The 6th step corresponds to the scoring component S in the
general approach. In this step, the classification power of each
group is evaluated by calculating the scores, which indicate how
powerful a group is in terms of distinguishing the two classes (case/
control). At the end of this step a Scoring Table is produced
containing the miRNA in rows and the score of the corresponding
mRNA group in the columns. In the 7th step, a machine model is
trained using the top ranked groups. In other words, the machine
learning model which uses Random Forest is trained via only

FIGURE 4 | miRModuleNet flowchart.
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considering top f groups. This means that miRModuleNet is using
all of the genes within top f groups in a unifiedmanner. The default
value of f is set as 10 and miRModuleNet generates 10 different
machine learning models where each model is trained using a
different number of groups from 1 to 10. The user can also change
the value of the f. Classification strategy is explained more in detail
in the following section. Then the last step is the evaluation step
that uses the test part.

2.5 Classification Approach
In this study, the Random Forest algorithm (Breiman, 2001),
which is a supervised machine learning algorithm, was used to
solve the classification problem. This algorithm consists of two
stages. In the first stage, a forest is created by producing a large
number of decision trees. In the second stage, the classification
process is carried out through the feedback obtained from these
trees. As an advantage of this use, a model with better
generalization can be produced. On the one hand, a more
robust solution is obtained, on the other hand, overfitting is
potentially prevented.

While generating the model, 100 fold Monte Carlo Cross
Validation (MCCV) was used in the learning phase (Xu and

Liang, 2001). In order to evaluate the performance,
miRModuleNet repeats the process 100 times. In each
iteration, 90% of the data is selected for training and the
remaining 10% is selected for testing. In addition, an under
sampling method was used to solve the imbalanced class
problem encountered while training the model. This method
aims to provide the desired rate of data distribution by randomly
eliminating samples from the class with too many samples.
Hence, miRModuleNet randomly selects samples with a ratio
of 1:2 for under-sampling. Under-sampling was performed in
every iteration of cross validation. In each iteration, our approach
generates lists of miRNA modules/groups and their associated
genes that are slightly different. Hence, there is a need to apply a
prioritization approach on those lists. As utilized in miRcorrNet,
we have used rank aggregation methods. In this respect, we have
embedded the RobustRankAggreg R package, developed by
(Kolde et al., 2012) into miRModuleNet workflow. The
RobustRankAggreg assigns a p-Value to each element in the
aggregated list, which describes how good each element/entity
was ranked compared to the expected value.

2.6 Implementation of miRModuleNet
The KNIME Analytics platform is used for the implementation of
miRModuleNet (Berthold et al., 2008). The KNIME environment
is easy to use, it is an open source platform and it can be used for a
wide variety of operations and for a wide variety of data types. In
the KNIME environment, all operations work based on
workflows. miRModuleNet’s workflow is shown in Figure 5.

As it can be seen in Figure 5, KNIME workflows consist of
nodes, where each of these nodes perform a specific task. For
example, using the List Files node, the directory where the data is
located is specified. By using the Table Reader node, it is ensured
that the data is imported into the KNIME environment. By using
the Data Preparation metanode, above-mentioned preprocessing
operations are performed. miRModuleNet metanode is the node
of the main algorithm. In addition to these, within the
SetParameters node, two critical parameters of the workflow

FIGURE 5 | miRModuleNet workflow in KNIME.

TABLE 4 | An example performance table of miRModuleNet for top ranked 10
modules for BLCA dataset.

#Groups #Genes Accuracy Sensitivity Specificity AUC

10 1422.96 0.92 0.89 0.94 0.98
9 1254.76 0.92 0.88 0.93 0.98
8 1110.82 0.91 0.87 0.93 0.97
7 962.83 0.91 0.88 0.93 0.97
6 799.7 0.92 0.88 0.94 0.97
5 628.14 0.92 0.87 0.94 0.97
4 489.59 0.91 0.87 0.93 0.98
3 331.02 0.90 0.85 0.93 0.97
2 205.08 0.90 0.84 0.93 0.97
1 79.25 0.89 0.82 0.92 0.95
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can be entered by the end user. These parameters are the number
of iterations and the mutual information threshold.

Results are obtained after running the KNIME workflow,
which is shown in Figure 5. One of these results is the
comparison of the performances of the machine learning
models depending on the k (number of top groups)
parameter. An example of this comparison is shown in
Table 4. Table 4 presents an example performance table of
miRModuleNet for top ranked 10 modules for BLCA data.
The last row presents the performance of the top ranked
module/group (#Groups = 1). In other words, an accuracy of
89% is obtained using 79.25 genes on average. The row of
#Groups = 2 presents the performance metrics obtained for
the top 2 groups where the genes of the top ranked group and

the second highest scoring group are aggregated together. That is
to say that miRModuleNet reports the performance results for top
10 groups cumulatively.

3 RESULTS

3.1 Performance Evaluation Metrics
The performance of machine learning models can be evaluated
through several quantitative metrics. In this respect, statistical
metrics such as Accuracy, Sensitivity, Specificity and Precision
could be calculated by constructing the confusion matrix. For the
problems involving imbalanced data, it is essential to prove the
consistency of the results. In this regard, Area Under the Curve

FIGURE 6 |Comprehensive evaluation of different mutual information threshold values. The numbers following the underscore values correspond to the number of
groups.
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(AUC) metric is reported as an accurate metric in terms of
evaluating the performance results in such problems (Hand,
2004).

3.2 Performance Results
3.2.1 Optimization of Mutual Information Threshold
miRModuleNet tool uses (MI) to detect the relationships between
miRNAs and mRNAs. In order to identify the optimal value of
the MI threshold, we experimented with three different values
(0.15, 0.25, 0.5). As stated above, we selected 0.25 as the optimal
threshold. In our comparison, the AUC value versus the number
of genes is taken into account. Such a comparison on THCA data
is demonstrated in Figure 6. As illustrated in Figure 6, when the
MI threshold value was set to 0.15, the AUC value was in the
range of 0.98–0.99, and the number of genes increased from 18 to
146 as the number of groups (star shaped modules) increased.
Using the MI threshold value as 0.25, AUC values in the range of
0.97–0.99 were obtained, and the number of genes increased from
6 to 22. When the MI threshold value was set to 0.5, the AUC
value was in the range of 0.92–0.99, and the number of genes
increased from 1 to 10. Such comparisons were made for all
cancer types. As a result of these comparative evaluations, we
have decided to set the MI threshold as 0.25.

In this study, we have tested miRModuleNet using 11 different
cancer datasets presented in Table 1. Our machine learning
models generate the most important group as an output; and
the performance evaluation metrics were obtained by using the
identified most important group. As presented in Table 5, the
average number of selected genes for the most important groups
was 38.27 for 11 tested cancer types. Likewise, the average of

obtained AUC values using the top group was 0.98. All
performance results reported in this study were obtained by
calculating the mean of the 100-fold Monte Carlo Cross
Validation (MCCV).

In addition, in terms of performance, miRModuleNet has been
compared with other existing tools i.e., SVM-RFE, maTE and
miRcorrNet. These tools differ in terms of the data they use and the
way they produce results. While miRcorrNet and miRModuleNet
both use miRNA and mRNA expression profiles, SVM-RFE and
maTE tools use only mRNA data. In addition, while miRcorrNet,
miRcorrNet and maTE give the results on group level, the SVM-
RFE tool gives the results directly at the gene level. In other words,
miRcorrNet, maTE and miRModuleNet tools give their results by
building a Random Forest model over the top 1 to 10 cumulative
groups of genes. On the other hand, SVM-RFE tool gives its results
using different levels of genes, i.e., 1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100,
125, 250, 500 and 1,000 genes. In order to make a fair comparison
of the existing methods involving different approaches, it has
become necessary to determine benchmarks at both the group
level and the gene level. The comparison level for miRcorrNet,
miRModuleNet and maTE, which produced results at the group
level, was determined as two according to the number of genes
criterion. When these three tools used two as the group level, the
lowest number of genes was found to be 7.48, and the highest used
number of genes was found to be 141.26. Therefore, it was decided
to use gene levels 8 and 125 to be able to include the SVM-RFE tool
in the comparison. In Table 6, the performance evaluation of all
these tools are presented. The calculated performance metrics are
number of genes, accuracy, sensitivity, specificity, F-Measure, AUC
and Precision. Table 6 indicates that miRModuleNet achieved a
similar performance by using nearly half of the genes compared to
another newly developed tool called miRcorrNet. Although there
are no serious differences in results, the increase in the AUCmetric
is considered to be very important and noteworthy. Additionally,
the close performances of the tools show that the developed tool
miRModuleNet is a consistent and robust tool.

3.3 Functional Enrichment Analysis Results
In order to better understand the disrupted mechanisms of the
disease at the molecular level, functional enrichment analysis was
carried out. Hence, we investigated whether the obtained results
have biological meaning. For this purpose, GeneCodis (Tabas-
Madrid et al., 2012) and DAVID (Huang et al., 2009a; Huang
et al., 2009b), which have been widely used in literature, are
utilized. For each disease, all enriched KEGG pathways were
found separately. Overrepresented KEGG pathways of our

TABLE 5 | Performance results of miRModuleNet over the top-ranked group.

Disease #Genes ACC SEN SPE FM AUC Precision

BLCA 79 0.89 0.82 0.92 0.85 0.95 0.88
BRCA 22 0.95 0.92 0.97 0.92 0.98 0.94
KICH 40 0.98 0.93 1.00 0.96 0.99 1.00
KIRC 64 0.99 0.97 1.00 0.98 0.99 0.99
KIRP 41 1.00 0.99 1.00 0.99 1.00 1.00
LUAD 4 0.94 0.90 0.96 0.90 0.98 0.93
LUSC 12 0.98 0.99 0.98 0.98 1.00 0.97
PRAD 5 0.86 0.76 0.91 0.77 0.92 0.82
STAD 115 0.90 0.81 0.95 0.85 0.97 0.92
THCA 6 0.93 0.90 0.95 0.90 0.98 0.92
UCEC 33 0.94 0.89 0.96 0.89 0.99 0.94

ACC stands for Accuracy, SEN stands for Sensitivity, SPE stands for Specificity, FM
stands for F-Measure, AUC stands for Area Under the ROC curve.

TABLE 6 | Comparative evaluation of existing tools using 11 cancer datasets.

Method #Genes Accuracy Sensitivity Specificity AUC SD

miRModuleNet 78.31 0.96 0.91 0.98 0.99 0.04 ± 0.02
miRcorrNet 141.26 0.96 0.94 0.97 0.98 0.05 ± 0.05
maTE 7.48 0.96 0.94 0.96 0.98 0.034 ± 0.02
SVM-RFE 8 0.84 0.85 0.85 0.91 0.07 ± 0.04
SVM-RFE 125 0.96 0.97 0.95 0.98 0.05 ± 0.03

AUC column refers to the area under the curve values. All the presented values are average values over 100MCCV for the level of top 2 groups for miRModuleNet, maTE andmiRcorrNet; 8
and 125 genes for SVM-RFE. Standard Deviation (SD) values are given for AUC.
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identified set of genes in BLCA and BRCA datasets are presented
in Figure 7.

It can be observed from Figure 7 that for both BLCA and
BRCA, the overrepresented pathways are directly related to the
specific cancer types. We also felt that it was important to
determine the pathways affecting different cancers and, we
carried out additional procedures to better understand the
molecular level relational networks of cancer. Using DAVID,
we found that 55 pathways were commonly enriched in all the
cancers tested. For these 55 pathways, a pathway - pathway

interaction network was generated using the method that was
developed in (Goy et al., 2019). A pathway network was obtained
by examining the commonalities among the genes of the
overrepresented pathways. Kappa statistics were used as
distance metric. In order to construct a pathway - pathway
interaction network, 3,025 pairwise relationships were analyzed
for 55 commonly overrepresented pathways for 11 cancer types.
To be able to find biologically relevant pairs, we used a Kappa
score threshold. In this way, we aimed to keep only the interaction
pairs, which are considered to be statistically important in terms

FIGURE 7 | Functional enrichment results for BLCA andBRCA usingGeneCodis. The p Values of the enriched KEGG pathways refer to the normalized values using
mean normalization. SPRPSC stands for Signaling Pathways Regulating Pluripotency of Stem Cells, EGFR-TKIR stands for EGFR Tyrosine Kinease Inhibitor Resistance,
CML stands for Chronic Myleoid Leukemia, NAFLD stands for Non-Alcoholic fatty Liver Disease, ARSPDC stands for AGE-RAGE Signaling Pathway in Diabetic
Complications.
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of understanding the mechanisms of diseases at the molecular
level. When this threshold was set as 0.15, the number of pathway
pairs decreased to 403. The cytoHubba plugin (Chin et al., 2014)
in the Cytoscape (Shannon et al., 2003) was used to detect the
most important nodes in this pathway-pathway interaction
network and Matthews Correlation Coefficient (MCC) values
of each node (pathway) were calculated. We observed that 30 of
the 55 pathways had very high MCC scores (between E14 and

E30). The constructed pathway-pathway interaction network is
presented in Figure 8.

3.4 Validation of miRModuleNet’s Results
Using External Data
In order to check the robustness and reliability of
miRModuleNet, an external dataset was considered. In this

FIGURE 8 | Interactions of the commonly overrepresented pathways in all datasets.

TABLE 7 | Performance results on the external validation data.

Experiments using different
gene levels (1–5–30–50)

Sensitivity Specificity Accuracy F-measure

Random 1 gene 0.43 0.58 0.51 0.44
Top 1 gene of mirModuleNet 0.84 0.88 0.87 0.85
Random 5 genes 0.46 0.61 0.55 0.48
Top 5 genes of mirModuleNet 0.94 0.81 0.88 0.87
Random 30 genes 0.57 0.91 0.76 0.68
Top 30 genes of mirModuleNet 0.94 0.92 0.93 0.92
Random 50 genes 0.76 0.94 0.86 0.83
Top 50 genes of mirModuleNet 0.94 0.97 0.95 0.94

In all experiments, the model is trained on TCGA- LUSC data and tested on external data, which is LUSC_E.
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context, the GSE40419 dataset (Seo et al., 2012) was downloaded
from the Gene Expression Omnibus database (Barrett & Edgar,
2006). The GSE40419 dataset was derived from 87 lung
carcinoma cases and 77 normal people not having the
disease. In this study, we refer to this dataset as LUSC_E. In
our validation experiments, while the TCGA LUSC data is used
as a train set, the LUSC_E dataset is used as a test set. To this
end, we have used another KNIME workflow, which is
developed for this type of tests. This workflow has also been
added as a supplementary material.

Testing was carried out as follows. All genes for specific
diseases in the train data and significant genes obtained by
miRModuleNet are kept in separate files. To make a fair
comparison, the number of random and significant genes
was determined as 1, 5, 30, and 50. Subsequently, using the
test KNIME workflow, the results were obtained both using
these random genes and using the significant genes found by
miRModuleNet. While the accuracy obtained using only 1
random gene was 51%, the accuracy reached 87% when the
most important 1 gene found by miRModuleNet was used.
Likewise, when comparing 50 genes, accuracy increased by
approximately 11% with miRModuleNet, and reached 95%.
Summary of these results are shown in Table 7. It can be
concluded from Table 7 that miRModuleNet is robust,
reliable and noteworthy. Moreover, the performance for the
training data (TCGA LUSC) is also presented as a
supplementary file.

4 DISCUSSIONS

4.1 Biological Interpretation of the Results
In bioinformatics problems, the biological value that the tool is
providing is as important as the comparative performance
evaluation with existing tools. In this section, we explore those
features and provide a biological validation of our tool.

4.2 Validation of miRModuleNet’s Results
on miRNA-Disease Association Databases
miRModuleNet produces multiple files as an output. One of
these output files is the list of significant miRNA groups that are
predicted to have a relationship with the disease and the genes
targeted by these miRNAs. In the output file, these miRNAs are
sorted according to their p-Values, which are assigned by the
RobustRankAggreg method. In order to show the biological
relevance of our findings, we refer to the miRNA - Disease
association databases that are widely used in the literature.
These databases are HMDD (Huang et al., 2019),
miR2Disease (Jiang et al., 2009), miRcancer (Xie et al., 2013),
dbDEMC (Yang et al., 2010) and PhenomiR (Ruepp et al., 2010).
For each disease, miRNAs which were scored high in
miRModuleNet and have p-Value less than 0.05 were
checked in these databases to see whether there was a known
relationship with the disease under study. Table 8 presents the
comparison of the miRNAs identified for Lung squamous cell

TABLE 8 | Biological validation of the identified miRNAs for LUSC data by miRModuleNet, against five disease databases, i.e., dbDEMC, miRcancer, miR2Disease,
PhenomiR, HMDD.

miRNA Score (p-value) Source(s)

hsa-miR-181a-5p 4.83E-58 dbDEMC, miRcancer, PhenomiR
hsa-miR-126-5p 2.79E-57 dbDEMC, miRcancer, miR2Disease, PhenomiR, HMDD
hsa-miR-140-3p 5.9E-55 dbDEMC, miRcancer, miR2Disease, PhenomiR, HMDD
hsa-miR-708-5p 5.9E-55 dbDEMC, miRcancer
hsa-miR-195-5p 5.9E-55 dbDEMC, miRcancer, miR2Disease, PhenomiR, HMDD
hsa-miR-30d-5p 7.76E-53 dbDEMC, miRcancer, PhenomiR,HMDD
hsa-miR-30a-5p 7,76E-53 dbDEMC, miRcancer, miR2Disease, PhenomiR, HMDD

TABLE 9 | Summary of the comparison against the databases of miRNA–disease associations.

Disease Number of miRNA-disease
associations identified by

miRModuleNet

Number of databases containing the specific miRNA—disease association

1 2 3 4 5

BLCA 62 21 17 9 6 2
BRCA 51 4 15 19 11 —

KICH 61 34 15 — — —

KIRC 46 27 9 5 — —

KIRP 87 44 19 4 — —

LUAD 91 11 26 31 15 8
LUSC 54 2 6 10 15 20
PRAD 53 9 11 14 13 4
STAD 35 8 14 6 4 2
THCA 55 28 9 8 2 4
UCEC 87 46 20 — — —

The numbers in the table indicate the number of identified miRNA–disease associations included in 1, 2, 3, 4, or 5 different databases.
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carcinoma (LUSC) against these five databases. This table
displays the identified miRNA, its p-Value and the databases
in which the miRNA is known to be associated with the relevant
disease. For 11 different cancer datasets, a total of 682 miRNAs
were found to be important by miRModuleNet. Among these
selected miRNAs, approximately 34% of them were found in
only one database, 23% were present in 2 databases, 15% in 3
databases, 10% in 4 databases, and 6% in 5 databases and 75 of
the identified miRNAs were not listed in any of the databases.
The details are presented in Table 9.

It is very difficult to develop a sound machine learning model
for diseases such as cancer, which have complex molecular
mechanisms. In order to overcome this challenge, it is crucial
to integrate different types of -omics data. Hence, effective machine
learning models that provide reliable results need to be developed.
To this end, in this study we aimed to develop a robust machine
learning model that can classify the samples as cancer patients and
controls via integrating miRNA and mRNA expression profiles. A
variety of studies have been reported that use either mRNA or
miRNA data alone or in combined fashion. Some studies are only
presented as methods and others as publicly available tools.
However, most of the existing tools are limited in use and, to
the best of our knowledge, are web based and R based. MMIA
(Nam et al., 2009), MAGIA (Sales et al., 2010), miRConnX (Huang
et al., 2011) originally offered as web servers and are currently not
available. anamiR (Wang et al., 2019) and miRComb (Vila-
Casadesús et al., 2016) which are offered as R packages, cannot
be used with the latest versions of R.

In comparison, the miRModuleNet has a user-friendly
structure and is evaluated on 11 different cancer datasets. In
addition, although we focused on a biological problem in
miRModuleNet, the same approach can be adapted to any
classification problem including two dimensional data. This is
not the case with most of the models listed above. miRModuleNet
KNIME workflow generates different output files. These outputs
provide information about identified mRNAs, miRNAs and their
groupings. The mRNAs, miRNAs and mRNA-miRNA groups
that were considered to be potentially important were identified
and all results were validated using the following two methods.
The first is a literature based validation of the miRNA - disease
relationships that were predicted by themiRModuleNet using five
widely used databases, i.e., dbDEMC, miRcancer, miR2Disease,
PhenomiR, HMDD. The second method is validation using an
independent external dataset that was not included in training.
Such experiments evaluate whether the generated model can be

utilized on a totally independent cohort. Our findings using four
different levels (1, 5, 30 and 50 genes) imply that miRModuleNet
maintains good performance metrics when applied to new
independent data.

5 CONCLUSION

Exploring the biological functions of differentially expressed
genes through the integration of different types of -omics data
such as miRNA and mRNA expression profiles remains an
important research topic. However, the problems associated
with how to best assess the repression effect on target genes
using integrated miRNA/mRNA expression profiles are not
fully resolved. To address this problem, we have proposed a
novel tool, miRModuleNet, which conducts a machine learning-
based integration of two-omics datasets to detect miRNA-
mRNA modules that are most significant to the classification
task. The tool detects the miRNA/mRNA groups, which are later
subjected to Rank procedure. The strength of miRModuleNet is
that the identified set of genes that are represented in groups are
guaranteed to distinguish two classes (cases vs. controls) and
may serve as a biomarker for the specific disease under
investigation.
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