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ABSTRACT Most of the chaotic maps are not suitable for chaos-based cryptosystems due to their narrow
chaotic parameter range and lacking of strong unpredictability. This work presents a nonlinear transformation
approach for Lyapunov exponent enhancement and robust chaotification in discrete-time chaotic systems for
generating highly independent and uniformly distributed random chaotic sequences. The outcome of the new
chaotic systems can directly be used in random number and random bit generators without any post-processing
algorithms for various information technology applications. The proposed Lyapunov exponent enhancement
based chaotic maps are analyzed with Lyapunov exponents, bifurcation diagrams, entropy, correlation and
some other statistical tests. The results show that excellent random features can be accomplished even with
one-dimensional chaotic maps with the proposed approach.
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INTRODUCTION

Chaotic maps have a wide-range application areas in many dis-
ciplines including engineering, cryptography, statistics, physics,
biology, art and philosophy (El-Hameed et al. (2021); Benamara et al.
(2016); Strogatz (2015); Ruelle (1997); Banerjee et al. (2012)). Specifi-
cally, the need for highly secure cryptosystems is always increasing
because the information technologies are continuously developing
and reaching more and more people everyday in various platforms
(e.g., e-banking, IoT, e-purchasing, etc.). The chaos-based cryptog-
raphy is a great tool to produce secure and independent random
number sequences for information security. On the other hand,
only few number of chaotic maps are inherently suited for data
encryption since the majority of chaotic systems are not satisfying
the statistically independependent and unbiased uniform distri-
bution which are the main properties of random key generators.
Many chaotic maps have a limited key space due to their narrow
chaotic ranges, which causes security issues against intruders (Luo
et al. (2020)). In addition, the chaotic random number generators
must be sufficiently fast, and there should not be any collapsing
effect in long turn run.

To deal with the aforementioned issues, there is a great inter-
est in developing novel chaotic maps with highly mixing feature
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by making various modifications on the available chaotic maps.
The researchers have constructed some general frameworks to get
new chaotic maps with increased complexity and improved per-
formances in some applications, including mixing two 1D maps
(Garasym et al. (2016)), weakly or cross-coupling of 1D chaotic
maps (Ablay (2016)), parameter switching based combination
of multiple chaotic maps (Wang and Liu (2021)), mixing linear-
nonlinear coupled map lattices (Zhou et al. (2014)), sine transform
of chaotic maps (Hua et al. (2019a)), polynomial combination of
chaotic maps (Asgari-Chenaghlu et al. (2019)), beta-function-based
chaotification (Zahmoul et al. (2017)), modulo transform based
chaotification (Hu and Li (2021); Hua et al. (2020); Murillo-Escobar
et al. (2017); Zhou et al. (2014)), modulo operator based generalized
Newton complex map (Jafari Barani et al. (2020)), cosine transform
based chaotic maps (Hua et al. (2019b); Liu et al. (2016); Talhaoui
et al. (2021)), composition of chaotic maps with many parame-
ters (Parvaz and Zarebnia (2018)), multi-delayed Chebyshev map
(Liu et al. (2016)), improvement in chaotic maps with a perturbed
parameter (Xiang and Liu (2020)), combination of chaotic maps
with floor operator (Pak and Huang (2017)), and mixing three
maps with composition, addition and modulo operators (Lan et al.
(2018)). Most of these approaches cannot fit the uniform distribu-
tion which is the central feature of the random numbers. However,
the modulo operator based approaches are capable of producing
outputs in the uniform distribution range. In (Zhou et al. (2014)), a
1D chaotic system is proposed by summing two 1D chaotic maps
followed by a modulo operator. In (Murillo-Escobar et al. (2017)),
the modulo operator is applied to logistic map and an enhanced
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pseudo-random number generator algorithm is obtained. In (Hua
et al. (2020)), the modulo N operator is applied to the 2D chaotic
maps for getting a bounded transformation and improvement in
chaos complexity. In (Jafari Barani et al. (2020)), the modulo opera-
tor and complex folding functions are utilized to get a generalized
Newton complex map. In (Hu and Li (2021)), two 1D chaotic maps
are coupled by their control parameters for mixing the chaotic be-
haviors of the seed maps, and then the modulo operator is applied
to get an outcome in the range of standard uniform distribution. In
general, these chaotic frameworks as random number sources have
varying features affecting the throughput efficiency and complex-
ity of the post-processing steps. Most of these chaotic frameworks
use several parameters or functions that are not easy to adjust.
Some of these chaotic frameworks are completely dependent on
the seed chaotic map, and may not produce high quality outputs
for other maps.

In this work, a chaotic framework based on a nonlinear trans-
formation via a gain plus modulo-1 operator is proposed to ob-
tain highly complex chaotic behaviors with Lyapunov exponent
enhancements and to satisfy the standard uniform distribution
U(0, 1). The Lyapunov exponent of the chaotic maps and complex-
ity of modulo operator based methods are significantly improved
with a gain parameter in this work. The proposed method uses one-
or higher-dimensional chaotic maps as seeds and produces com-
pletely new chaotic sequences. The method eliminates the time-
consuming post-processing steps in chaos-based random num-
ber generators. The produced novel chaotic systems significantly
broaden the chaotic range of the seed discrete chaotic systems. In
addition, the approach removes the periodic windows of existing
chaotic systems, and produces robust chaos for practical applica-
tions. The uniformity and independence of the chaotic sequences
are assured with statistical analyses. The efficiency and feasibil-
ity of the proposed approach are illustrated with the random bit
generations and image encryption applications.

A GAIN PLUS UNIFORM DISTRIBUTION MODULO ONE
TRANSFORMATION IN CHAOTIC MAPS

There is a sea of chaotic maps available for statistical studies, mod-
eling, simulations, cryptography and some other technological ap-
plications. These chaotic maps or in general discrete-time chaotic
systems can be utilized to generate shaped chaotic algorithms
with nonlinear transformations for direct usage in applications
including information technologies. Therefore, two main goals
of this work are Lyapunov exponent enhancement and achieve-
ment of standard uniform distribution in chaotic maps. Consider
a discrete-time chaotic map described by

xk+1 = f (σ, xk) (1)

where f (·) represents a real function, f : R → R, and σ is a real-
valued parameter. The existence of chaos in any system is usually
shown with positive Lyapunov exponent (LE) calculations (Vallejo
and Sanjuán (2019)). LEs are computed to characterize the rate of
separation of infinitesimally close trajectories, and a positive LE is
a requirement for existence of chaos. The positive LE calculation
methods start with exponential divergence of nearby trajectories
when the trajectory is on the attractor (Awrejcewicz et al. (2018)).
An exponential separation of nearby phase-space trajectories is
given by

dk ≈ d0eλsk (2)

where λs is the LE, dk is the trajectory separation after k iterates,
and d0 is the initial trajectory separation. By taking the logarithm

of both sides and using the property dk = f k(x0 + d0)− f k(x0) for
an initial condition x0, the LE for chaotic map (1) can be given by

λs = lim
N→∞

1
N

N−1

∑
k=0

log | f ′(xk)| (3)

where f ′ = d f /dx and it defines the variational (linearized) map
as

uk+1 = f ′(xk)uk (4)

where u0 ̸= 0. A positive λs indicates the presence of chaos in
general. The positive LE is also used to measure unpredictabil-
ity of the chaotic dynamics in Kolmogorov-Sinai entropy (KSE)
calculations.

Definition 1 (Pesin’s theorem) (Dorfman (1999)): For an ergodic
map, the KSE is equal to the sum of the positive LEs and given by

hKSE = ∑n λ+
s (5)

Similarly, the Ruelle’s inequality (Ruelle (1997)) states that the KSE
is always less than or equal to the sum of the positive LEs, that is
hKSE ≤ ∑n λ+

s . This definition indicates that for chaotic maps, the
greater LE means the greater KSE and the higher randomness. This
gives an idea that if we can increase the values of positive LEs, then
more complex chaotic information can be obtained. It is possible
to enhance the value of positive LE by nonlinear transformation of
the chaotic map (1).

An LE-enhanced uniform distribution modulo one transforma-
tion of (1) with a gain α and mod 1 operator is proposed as

xk+1 = α f (σ, xk) mod 1 (6)

where α is a real-valued gain defined as α > 1, mod 1 denotes
keeping of the fractional part, f (·) represents the seed chaotic map
(1), and the new LE-enhanced chaotic map holds [0, 1] → [0, 1].
The first goal is the LE enhancement, which can be shown with LE
calculations.

Theorem 1: Let the LEs of seed map (1) and transformed map
(6) be λs and λ, respectively. Then, these LEs are related with
λ > λs for α > 1.

Proof: For the proposed chaotic map (6), since the linearization
slope is α f ′(xk), the LE is given by

λ = lim
N→∞

1
N

N−1

∑
k=0

log |α f ′(xk)| (7)

The equation (7) can be expanded as

λ = lim
N→∞

1
N

N−1

∑
k=0

log | f ′(xk)|+
1
N

N−1

∑
k=0

log α

= lim
N→∞

1
N

log |uN |+ 1
N

log αN

= λs + log α

(8)

where uN is computed from the variational map (4) and we have
λ > λs since α > 1.

This means that the Lyapunov exponent of (6) takes higher
values than the seed chaotic map (1) so that a more complex chaotic
behavior can be obtained. High-dimensional maps can be obtained
by weakly-coupling or cross-coupling of the one-dimensional (1D)
chaotic maps (Ablay (2016)). For example, the same or different
1D chaotic maps can be used to create the weakly-coupled (WC)
maps as given below

xk+1 = f1(σ, xk) + pyk

yk+1 = f2(σ, yk)− pxk
(9)
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where f1(·) and f2(·) represent 1D chaotic maps, and p is a small
coupling coefficient. The maximal one-dimensional LE of this map
is given by (Pikovsky and Politi (2016))

λc = lim
N→∞

1
N

N−1

∑
k=0

log ∥F′(xk, yk)∥ (10)

and F′ denotes the Jacobian matrix and it defines the variational
(linearized) map as

uk+1

vk+1

 = F′(xk, yk)

uk

vk

 (11)

where u0, v0 ̸= 0. An LE-enhanced uniform distribution modulo
one transformation of coupled-chaotic map (9) is proposed as

xk+1 = α( f1(σ, xk) + pyk) mod 1

yk+1 = α( f2(σ, yk)− pxk) mod 1
(12)

where α > 1 is a real-valued gain, mod1 denotes keeping of the
fractional part, and the new chaotic map holds [0, 1] → [0, 1]. It
can be shown with LE calculations that the maximum LE of (12) is
larger than the seed map (9).

Theorem 2: Let the maximum LEs of seed map (9) and trans-
formed map (12) be λc and λ, respectively. Then, these maximum
LEs are related with λ > λc for α > 1.

Proof: For the proposed chaotic map (12), since the Jacobian
matrix of the map is αF′(xk, yk), the maximum LE is given by

λ = lim
N→∞

1
N

N−1

∑
k=0

log ∥αF′(xk, yk)∥ (13)

By using the entry-wise matrix norm, the maximal one-
dimensional LE can be written as

λ = lim
N→∞

1
N

N−1

∑
k=0

log ∥F′(xk, yk)∥+
1
N

N−1

∑
k=0

log α

= lim
N→∞

1
N

log (|uN |+ |vN |) + 1
N

log αN

= λc + log α

(14)

where uN and vN are computed from the variational map (11) and
it is obvious that λ > λc since α > 1.

Theorem 2 can be applied to any high-dimensional chaotic
maps in order to increase the complexity of chaotic systems.

The second main goal is to ensure that the probability density
function of the generated random numbers fits the standard uni-
form distribution U(0, 1), because the U(0, 1) is at the center of
random variable generation. The applications of this distribution
include hypothesis testing, random sampling, finance, etc. How-
ever, it is important to note that in any application, there is the
unchanging assumption that the probability of falling in an inter-
val of fixed length is constant (Dekking et al. (2005)). The proposed
LE-enhanced chaotic maps have the features of standard uniform
distribution, and this will be demonstrated with histograms, statis-
tical property calculations, entropy and correlation evaluations.

Seed chaotic map examples
Practically all chaotic maps can be considered as a seed map.
Three different chaotic maps, cubic, signum and sinh maps (Ablay
(2016)), are considered in this work. The cubic map is given by

xk+1 = σxk − x3
k (15)

There are three fixed points, xe = (0,±
√

σ − 1) for σ > 1, and the
origin is unstable. A chaotic behavior exists for 2.25 < σ < 3 as
seen in Fig. 1a. The signum map is defined by

xk+1 = −σxk + sign(xk) (16)

where the sign(·) is defined as sign(x) = x/|x| if x ̸= 0 and
sign(x) = 0 if x = 0. There are three fixed points with unstable
origin, xe = (0,±1/(σ + 1)) for σ > 0. The map is chaotic for
1 < σ < 2 as seen in Fig. 2a. The hyperbolic-sine (sinh) map is
defined by

xk+1 = σxk − sinh(xk) (17)

The map has three fixed points at xe = (0,±γ) for σ > 1, where
(σ − 1)γ − sinh γ = 0. Again the origin is unstable and a symmet-
ric chaotic behavior is available for 3.1 < σ < 3.5 as illustrated in
Fig. 4a. In the following sections, the given 1D chaotic maps (15),
(16) and (17) will serve as seed maps for developing LE-enhanced
chaotic maps.

Performance analysis of LE-enhanced chaotic maps
Many 1D and coupled chaotic maps are able to produce complex
chaotic outputs, but not able to generate uniformly distributed
random numbers. The LE-enhanced chaotic maps (6) can solve
this problem by increasing the complexity and by producing uni-
formly distributed numbers. In this section, the performances of
the LE-enhanced chaotic maps will be analyzed in terms of the
Lyapunov exponents, bifurcation diagrams, histograms, entropies
and correlation coefficients.

Lyapunov exponents: LEs of the seed and LE-enhanced chaotic
maps are shown in Fig. 1. The seed chaotic maps consist of 1D
seed maps (1), i.e., cubic map (15), signum map (16), sinh map (17),
and weakly coupled (WC) maps (9). LE-cubic, LE-signum and
LE-sinh denote the LE-enhanced maps (6); LEWC-cubic, LEWC-
signum and LEWC-sinh maps denote LE-enhanced weakly cou-
pled (LEWC) maps (12). The numerical results are obtained for
initial values x0 = 0.1234, y0 = 0.1234 and p = 0.01 for the 1D and
WC chaotic maps. The gain parameter is taken as α = 1 × 105 for
LE-cubic and LEWC-cubic maps and α = 1 × 102 for LE-signum,
LE-sinh, LEWC-signum and LEWC-sinh maps. The LEs of en-
hanced chaotic maps (blue), compared with the LEs of seed chaotic
maps (red), have a broad range of positive LE values. As explained
and proved above, the LE enhanced chaotic maps have larger posi-
tive LE values than the seed maps, and thus they can exhibit much
more complex chaotic behavior. The LE spectrum results given in
Fig. 1 are compatible with the bifurcation diagrams (see Fig. 4).

For comparison purposes, the LEs of various models are pro-
vided in Fig. 2. The proposed LE-enhanced approach is com-
pared with the unit transform based models given in Refs. (Hu
and Li (2021); Zhou et al. (2014)), the sine transform based model
given in Ref. (Hua et al. (2019a)) and the cosine transform based
model given in Ref. (Hua et al. (2019b)). In the LE computa-
tions, summation of two different seed chaotic map functions,
f1(σ1, xk) + f2(σ2, xk) (i.e., cubic + signum, cubic + sinh, and
signum + sinh map functions), are utilized to obtain seed chaotic
maps, because the given reference studies use this form. Namely,
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Figure 1 Lyapunov exponents (λ vs σ); (a) cubic maps, (b) weakly-coupled cubic maps; (c) signum maps, (d) weakly-coupled signum maps; (e)
sinh maps, (f) weakly-coupled sinh maps.

by considering the LE-enhanced map (6) two different map func-
tions are integrated with the addition operator as

xk+1 = α( f1(σ1, xk) + f2(σ2, xk)) mod 1 (18)

where the functions f1 and f2 represent different seed chaotic map
functions defined in right hand-sides of (15), (16) and (17). It is seen
from Fig. 2 that the proposed LE-enhanced chaotification approach
provides positive LE values in all parameter ranges of the seed
maps. On the other hand, the models provided in Refs. (Hu and
Li (2021); Hua et al. (2019b,a); Zhou et al. (2014)) have seed map
dependent efficiency such that Fig. 2c shows that these methods
are not valid when the signum + sinh map is the seed map. The
efficiency of unit transform (modulo operator) based method is
significantly improved with a gain operator in this work, and it
is obvious that the proposed method has the best performance
among the given methods.

The effect of gain operator α can be illustrated on the cubic
map. Figure 3 shows the LEs and bifurcation diagrams of the cubic
map (15), LE-enhanced cubic map (6) for α = 1 and LE-enhanced
cubic map (6) for α = 1 × 105. When the gain is α = 1, then only
mod 1 operator is implemented, and compared with Fig. 3a, it is
clear from Fig. 3b that the modulo operator transforms the data to
x ∈ [0, 1], but slightly improves the chaotic features or randomness
of data. On the other hand, when the gain is α = 1 × 105, then
the gain plus mod 1 operator is implemented, and the chaotic
and randomness features of the map are significantly improved
because LE is always positive and there are no periodic windows
in the bifurcation diagram as seen in Fig. 3c.

Bifurcation diagrams: Bifurcation diagrams of the seed maps (1)
and (9) and LE-enhanced chaotic maps (6) and (12) are illustrated
in Fig. 4. For σ ∈ [1.5, 3], the cubic (15) and WC-cubic (12) maps
exhibit a period-doubling route to chaos (Figs. 4a and 4c), but the
LE-cubic (6) and LEWC-cubic (12) maps exhibit chaotic behavior
within the whole parameter ranges (Figs. 4b and 4d). Besides, the

outputs of LE-enhanced chaotic maps fit the range of standard uni-
form distribution (i.e., xk ∈ [0, 1]). The signum map for σ ∈ [0.5, 2]
and hyperbolic-sine map for σ ∈ [2.5, 3.5] also exhibit similar
behaviors as seen in Figs. 4e-4l. It is seen that the WC-chaotic
maps increase complexity of the maps, but still we can observe
non-uniform distributions and periodic windows. However, the
LE-enhanced chaotic maps (6) and (12) provide excellent chaotic
features compared with the seed chaotic maps (1) and (9). Note
that, the LEWC-chaotic maps (12) provide more complex chaos
compared with the 1D LE-chaotic maps (6). For example, the LE-
signum map (Fig. 4f) encounters collapse (trajectory approaches
to fixed point in long-term run) at σ = 1, but the LEWC-signum
map (Fig. 4h) has no collapse.

Phase diagrams: Phase diagrams of the seed and LE enhanced
chaotic maps are illustrated in Fig. 5. The 1D chaotic maps have the
data points that are spread evenly across the symmetric lines. The
weakly-coupled (WC) chaotic maps increase complexity (random-
ness) of the chaotic data, but have non-uniform distributions (Figs.
5b,f,j). On the other hand, the phase diagrams of LE-enhanced
chaotic maps have completely random data distribution and have
quite complex and uniformly distributed chaotic properties.

Entropy and correlation coefficients: The splitting of the outcome
space converts the chaotic map into an ergodic information source.
Therefore, it is quite convenient to utilize the information theory
for analyzing this source. The average level of randomness in the
outcome of a variable is determined by the entropy in information
theory.

Definition 2 (Shannon entropy) (Karmeshu and Pal (2003)):
Entropy Hm of the ensemble (X1, p1), . . . , (Xm, pm) is given by the
expression

Hm(p) = −
m

∑
i=1

pi log(pi) (19)

where pi denotes the probability mass associated with the variable
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Figure 2 Comparison of Lyapunov exponents (λ vs σ) of different models; (a) cubic+signum, (b) cubic+sinh, and (c) signum+sinh map func-
tions. (Ref.A: Hua et al. (2019b), Ref.B: Hu and Li (2021), Ref.C: Zhou et al. (2014), Ref.D: Hua et al. (2019a))

(a) (b) (c)

Figure 3 Lyapunov exponents (red) and bifurcation diagrams (blue); (a) cubic seed map, (b) LE-enhanced cubic map with α = 1 and (c) LE-
enhanced cubic map with α = 1 × 105.
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Figure 4 Bifurcation diagrams (xk vs σ); (a) cubic seed map, (b) LE enhanced cubic map, (c) weakly-coupled cubic map, (d) LE enhanced
weakly-coupled cubic map; (e) signum seed map, (f) LE enhanced signum map, (g) weakly-coupled signum map, (h) LE enhanced weakly-
coupled signum map; (i) sinh seed map, (j) LE enhanced sinh map, (k) weakly-coupled sinh map, and (l) LE enhanced weakly-coupled sinh
map.
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Figure 5 Phase diagrams; (a) cubic map, (b) weakly-coupled cubic map; (c) LE enhanced cubic map, (d) LE enhanced weakly-coupled cubic
map, (e) signum map, (f) weakly-coupled sign map; (g) LE enhanced signum map, (h) LE enhanced weakly-coupled signum map, (i) sinh map,
(j) weakly-coupled sinh map; (k) LE enhanced sinh map, (l) LE enhanced weakly-coupled sinh map.
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Xi such that ∑ pi = 1, and the maximum entropy value is given
by Hmax = log2 m. This definition of the Shannon entropy has a
relation with KSE in terms of its supremum as (Falniowski (2014))

hKSE = sup
X

lim
m→∞

1
m

Hm(p) (20)

The KSE can be interpreted as a generalization of Shannon entropy.
Both entropies measure the unpredictability of a deterministic
system, and the higher the entropy means the higher the unpre-
dictability. Deciding if generated chaotic sequences are statistically
independent can be tested with many statistical test methods. The
correlation coefficient is one of these methods that must be satisfied
by the chaotic random number generators.

Definition 3 (Correlation coefficient) (James (2006)): For two
random variables (x, y) with n observations, the correlation coeffi-
cient is defined as

R(x, y) =
1

n − 1

n

∑
i=1

(
xi − µx

σx
)(

yi − µy

σy
) (21)

where µx and µy are the means, and σx and σy are the standard
deviations of x and y. The correlation coefficient of two random
variables is a measure of their linear independence, and it can
be positive, negative or zero. The maximum value of correlation
coefficient is |R| = 1. Hence, the absolute value of correlation
coefficient should be around zero for high random outcomes.

Table 1 shows the calculated entropy and correlation coefficient
values. In the probability mass calculations, 1000 subintervals
are taken into account, and thus the maximum entropy value is
Hmax = 9.9658. As seen in Table 1, the entropies of all chaotic
maps are very high, but the LE-enhanced chaotic maps provide
almost the maximimum entropy value. The correlation coefficient
is calculated for very small initial value differences. The initial
conditions are taken as x0 = 0.123400 and y0 = 0.123401 for all
chaotic maps. It is seen from Table 1 that all the chaotic maps have
almost no correlation since the correlation coefficient is |R| ≈ 0 for
the selected parameter values.

Histograms: The histogram allows measuring the initial condition
insensitivity which is related to the splitting of the output space
into a number of subintervals, and analyzing the evolution in these
regions. Consider a set of equally distributed m subintervals such
that

X = X1, . . . , Xm, Xi ∩ Xj = ∅, for i ̸= j (22)

Then the randomness in deterministic chaos can be specified
through the probabilities. Histogram describes the distribution
of the numerical data in each subinterval. The height of each
histogram subinterval (or bin) represents the average frequency
density for the interval. If the total number of observations are n,
the number of subintervals can be calculated from the square-root
choice as m =

√
n. The histograms of the chaotic maps are shown

in Fig. 6. The total number of observations for each chaotic map
are taken as n = 1 × 106, so the number of bins can be calculated
from the square-root choice as m = 1000. Figure 6 displays the
histograms of seed cubic, WC cubic, LE-enhanced cubic and LE-
enhanced WC cubic maps. The cubic and WC cubic maps have
completely non-uniform distributions (Figs. 6a and 6c), while the
WC cubic map has a better distribution than the 1D cubic map. On
the other hand, the histograms of LE enhanced 1D and WC cubic
maps (Figs. 6b and 6d) have a random pattern without any peri-
odic, upward or downward trends. Existence of some significant
outliers is an indication of problems in the random number gener-
ators. It is clear that there are no obvious outliers in the histograms

of LE-enhanced chaotic maps, i.e., data points are spreaded evenly
which is a good indication of uniformity. The histograms verify
that the data follows the features of standard uniform distribution
such that there is almost the same number of observations in each
subinterval. Similarly, the histograms of signum, WC signum, sinh
and WC sinh maps have non-uniform distributions (Figs. 6e,g,i,k),
but their LE-enhanced counterparts have uniformly distributed
histograms (Figs. 6f,h,j,l).

Throughout this paper, the system parameters are chosen as
follows: x0 = 0.1234 and y0 = 0.1234 for all maps, σ = 2.82 for
cubic maps, σ = 1.8 for signum maps, σ = 3.4 for sinh maps,
α = 1 × 105 for LE-enhanced cubic maps, α = 1 × 102 for LE-
enhanced signum and sinh maps, p = 0.01 for all weakly-coupled
(WC) maps.

In practice, the probability density function (pdf) estimations
and histograms are closely related. The distribution of the nu-
merical data in each subinterval of the histogram can directly be
used to obtain pdf with normalization. Hence, the histograms
provide a visual assessment on the pdf estimations. Besides, the
statistical properties of the chaotic maps must match the proper-
ties of the related distributions. Since the physical origin based
random numbers (e.g., radioactive particle emissions) follow the
uniform distribution, the LE-enhanced chaotic map should also fol-
low this distribution. The statistical properties of the standard uni-
form distribution U(0, 1) are given by mean = 0.5, median = 0.5,
variance = 0.0833, skewness = 0, kurtosis = 1.8, pd f = 1 and
cd f = x for x ∈ [0, 1]. The probability of falling in the interval of
fixed length [0, 1] is constant in the uniform distribution. Table 1
shows the statistical properties of chaotic maps for total number of
observations n = 1 × 106. It is seen that the LE-enhanced chaotic
maps successfully follow the statistical properties of standard uni-
form distribution U(0, 1). Note that the parameters α and σ of
LE-enhanced chaotic maps ((6) and (12)) have significant effects
on the randomness features of chaotic sequences, so they should
be selected suitably in practical applications.

APPLICATIONS

LE-enhanced chaotic maps as random bit generators
Random bit generators are significant for many applications in
statistical physics, stochastic modeling, numerical simulations,
and cryptography. A random bit generator must provide sta-
tistically independent and unbiased bits (namely, fully unpre-
dictable bits). The ranges of sequences produced from most of
the chaotic systems do not match the random bit generator re-
quirements, so many authors have proposed chaotic map specific
post-processing algorithms (Pulido-Luna et al. (2021); Jafari Barani
et al. (2020); Hamza (2017)). On the other hand, since the proposed
LE-enhanced chaotic maps produce uniformly distributed random
numbers, a binary converter algorithm can directly be used to
generate random bits, such as a comparator is defined by

bk =

1 if xk ≥ 0.5

0 otherwise
(23)

where bk represents random bits, bk ∈ {0, 1}, and the threshold is
selected as the mean value of the LE-enhanced chaotic maps (6). If
a chaotic system is not providing uncorrelated and unbiased bits,
the de-skewing techniques (Stallings (2006)) (e.g., Von Neumann
technique) can be used to remove possible correlations and biases
in the binary sequences. However, the proposed LE-enhanced
chaotic maps (6) are able to produce high quality random numbers
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6 Histograms (counts vs xk): (a) cubic seed map, (b) LE-enhanced cubic map, (c) weakly-coupled cubic map, (d) LE-enhanced weakly-
coupled cubic map; (e) signum seed map, (f) LE-enhanced signum map, (g) weakly-coupled signum map, (h) LE-enhanced weakly-coupled
signum map; (i) sinh seed map, (j) LE-enhanced sinh map, (k) weakly-coupled sinh map, and (l) LE-enhanced weakly-coupled sinh map.

■ Table 1 Randomness test results for the LE-enhanced chaotic maps.

Property Cubic
Map

Sign
Map

Sinh
Map

WC
Cubic
Map

WC
Sign
Map

WC
Sinh
Map

LE
Cubic
Map

LE Sign
Map

LE Sinh
Map

LEWC
Cubic
Map

LEWC
Sign
Map

LEWC
Sinh
Map

Mean 0 0 0.002 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5

Median 0 0 0.005 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5

Variance 0.4784 0.278 4.500 0.4844 0.2771 4.345 0.0837 0.0834 0.0834 0.0834 0.0833 0.0833

Skewness 0.001 0.001 0.002 0.001 0.002 0.001 0.003 0.001 0.003 0.000 0.000 0.001

Kurtosis 1.751 1.947 1.609 1.718 1.948 1.664 1.796 1.799 1.798 1.799 1.799 1.799

Range (-2,2) [-1,1] (-4,3) (-2,2) [-1,1] (-4,4) [0,1] [0,1] [0,1] [0,1] [0,1] [0,1]

Correlation0.0018 0.0009 0.0013 0.0013 0.0012 0.0003 0.0008 0.0011 0.0008 0.0015 0.0011 0.0005

Entropy 9.7400 9.9334 9.7000 9.8540 9.9363 9.8645 9.9604 9.9650 9.9651 9.9651 9.9651 9.9650
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as proved in the previous section, which can eliminate the use of
a de-skewing algorithm. This is an important advantage because
the post-processing steps are eliminated. This is an advantage in
terms of less time consuming and short algorithm developments,
for instance, the random bit generation can easily be implemented
with in-line codes rather than function calls. More importantly, the
usage of a de-skewing technique provides less than 25% efficiency
with respect to the random bit throughput, but the proposed LE-
enhanced approach has 100% efficiency.

The commonly used statistical testing methods for random-
ness analysis of binary values are provided in NIST SP 800-22 test
suite (Bassham et al. (2010)). The output file containing 5120000
random bits are generated to be tested with the NIST statistical
test suite. The test results are given in Table 2. The LE-enhanced
chaotic maps successfully pass the statistical tests, implying that
these maps can be used in cryptosystems. Clearly, the statistical
tests may not determine the quality of the produced random bits
alone, but some conclusions can be drawn about it. In practice, the
quality of applications must be checked with application specific
randomness analysis tests. In addition, since chaotic systems have
high sensitivity to initial conditions, for the unpredictability of
chaotic random bit generators an efficient approach can be con-
necting the initial condition of chaotic maps with an input device
of the application environment, e.g., thermal noise, port value and
mouse movement.

LE-enhanced chaotic maps based Image encryption
The proposed chaotic random bit generators are applied to an
image encryption scheme in this section. Today, almost all im-
age encryption schemes use different chaotic systems with many
different sophisticated encryption algorithms (Khan and Kayhan
(2021); Wang and Liu (2021); Talhaoui et al. (2021)). Here, for image
encryption and decryption, the key bits are generated from the
LE-enhanced sinh map, and the symmetric-key encryption method
is implemented. The grayscale image of size KL pixels is converted
into one-dimensional array of pixels Mi, i = 1, 2, .., KL, and then
each Mi pixel is represented with 8-bit blocks (i.e., 256 shades per
pixel). Hence, the bit length of binary sequence for the given figure
is equal to K × L × 8 bits. The same number of random bits are
generated from the LE-enhanced sinh map and represented with
8-bit blocks for using in the pixel-by-pixel encryption scheme. The
XORing operator is implemented between the key and image bit
sequences for encryption. For decryption of the image, the XORing
operator is implemented between the key and decrypted image bit
sequences.

Histogram analysis: Histogram of a digital image displays the dis-
tribution of grayscale values of all the pixels. For an 8-bit grayscale
image there are 28 = 256 different possible intensities, which are vi-
sualized by the histograms. Four grayscale images, their encrypted
images and corresponding histograms are illustrated in Fig. 7. The
histograms of plain-text images are one of the most common cryp-
tosystem attacks (Farajallah et al. (2016)), because they exhibit the
characteristic properties of the images as seen in Figs. 7b,f,j,n. On
the other hand, all the plain-text images become indistinguishable
noise-like ciphers after encryption as seen in Figs. 7c,g,k,o. The
histograms of four cipher-text images just show indistinguishable
and identical properties (see Figs. 7d,h,l,p). All 256 gray levels
appear with almost the same probability in encrypted images, and
the histograms are not leaking any significant information to the
statistical attacks.

The chi-square goodness-of-fit test can be used to determine
whether the histogram data sample fits the uniform probability

distribution (James (2006)). By taking into account the histogram
data, the chi-square test statistic can be calculated as

χ2 =
256

∑
i=1

(Oi − Ee)
2/Ee (24)

where Oi is the observed counts of gray level i in an image, and
Ee = KL/256 represents the expected counts for grayscale image
of size KL pixels. The test statistic has an approximate chi-square
distribution of 256 degrees of freedom, and the hypothesis at the
5% significance level can be accepted if χ2 < χ2

0.05(256) = 320,
otherwise it can be rejected. The χ2-test statistics of images shown
in Fig. 7 (both plain-text and cipher-text images) are listed in Table
3. It is seen from Table 3 that the statistics of the cipher-text images
are small and satisfy the hypothesis, while the plaintext images
have much larger values and are not satisfying the hypothesis. This
means that the histograms of cipher-text images are approximately
uniformly distributed.

Correlation analysis: The correlation between adjacent pixels of
an image data is high due to natural image properties. Hence, an
image encryption algorithm must eliminate this high correlation
and provide an adequate resistance against statistical attacks. To
test correlation dimensions of images, 30000 pairs of adjacent pix-
els from vertical and horizontal directions in plain-text images and
cipher-text images are randomly selected, and the corresponding
correlation coefficients are calculated using (21) and listed in Table
3. It is seen that the plain-text images have high correlation (around
1) in vertical and horizontal directions. On the other hand, the cor-
relation coefficients of the cipher-text images are approximately
zero, indicating that there are almost no correlations between ad-
jacent pixels. That is, the proposed LE-enhanced chaotic maps
produce highly random bits.

Mean square error analysis: The difference between original and
encrypted image pixels (each pixel has 256 shades of gray) is mea-
sured with the mean square error (MSE). The MSE can be defined
as

MSE =
1

KL

K

∑
i=1

L

∑
j=1

(Oij − Eij)
2 (25)

where Oij is the original image pixel, Eij is the encrypted image
pixel, and K and L represent the pixel size of the original or en-
crypted image. The MSE result is equal to zero if the images are the
same, but it should be as high as possible if the compared images
are different. A higher MSE value means the cipher-text image is
more immune to attacks. The calculated MSE values for different
cipher-text images are tabulated in Table 3. The MSE values are
much higher than zero (MSE ≫ 0), and thus the LE-enhanced
chaotic map based encryption provides highly satisfactory results.

Entropy analysis: In the probability mass calculations, 256 subin-
tervals are taken into account, and thus the maximum entropy
value is Hmax = log2 256 = 8. The formula (19) is used to calculate
entropy of cipher-text images. Table 3 shows that the entropy val-
ues of the cipher-text images are practically equal to the maximum
entropy value (around 8), indicating that the unpredictability level
of the cipher-text images is maximum.
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■ Table 2 Randomness (NIST) test results for the LE-enhanced chaotic maps.

Test Name LE
Cubic Map

LE
Sign Map

LE
Sinh Map

LEWC
Cubic Map

LEWC
Sign Map

LEWC
Sinh Map

Frequency 10/10 10/10 10/10 10/10 10/10 10/10

Block frequency 10/10 10/10 10/10 9/10 10/10 10/10

Cumulative sums
Forward

10/10 10/10 8/10 10/10 10/10 9/10

Cumulative sums
Reverse

10/10 10/10 9/10 10/10 10/10 10/10

Runs 10/10 9/10 10/10 10/10 10/10 10/10

Longest run 10/10 9/10 10/10 10/10 10/10 10/10

Rank 10/10 10/10 10/10 10/10 9/10 10/10

FFT 10/10 10/10 10/10 10/10 10/10 10/10

Non-overlapping
template

10/10 10/10 10/10 10/10 10/10 10/10

Overlapping tem-
plate

10/10 10/10 10/10 10/10 10/10 10/10

Universal 9/10 9/10 10/10 9/10 10/10 10/10

Approximate en-
tropy

10/10 10/10 9/10 10/10 9/10 10/10

Random excur-
sions

4/4 4/4 2/2 4/4 3/3 5/5

Random excur-
sions variant

4/4 4/4 2/2 4/4 3/3 5/5

Serial 9/10 10/10 10/10 10/10 10/10 10/10

Linear complexity 10/10 10/10 10/10 10/10 10/10 10/10

■ Table 3 Statistical analysis results of the encrypted images.

Images Correlation
plain-image
(vertical)

Correlation
cipher-
image
(vertical)

Correlation
plain-image
(horizontal)

Correlation
cipher-
image
(horizontal)

χ2

plain-image
χ2

cipher-
image

MSE Entropy

coins.png 0.9726 0.0047 0.9676 0.0066 3 × 105 306 21519 7.9969

peppers.png 0.9917 0.0051 0.9860 0.0021 4 × 105 267 21674 7.9990

corn.tif 0.9662 0.0071 0.0514 0.0067 4 × 104 251 21627 7.9986

moon.tif 0.9949 0.0011 0.0282 0.0005 3 × 106 312 21577 7.9988

football.jpg 0.9437 0.0018 0.9347 0.0022 2 × 105 237 21474 7.9979
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7 Histogram analysis: (a) peppers; (b) histogram of (a); (c) encrypted peppers; (d) histogram of (c); (e) corn; (f) histogram of (e); (g)
encrypted corn (c); (h) histogram of (g); (i) football; (j) histogram of (i); (k) encrypted football; (l) Histogram of (k); (m) moon; (n) histogram of
(m); (o) encrypted moon; (p) histogram of (o).
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CONCLUSION

The uniformity and statistically independence are two key features
that a chaotic random number generator must satisfy for crypto-
graphic and scientific applications. A gain plus modulo-1 operator
based chaotic framework is proposed in this work to enhance the
Lyapunov exponent of the seed chaotic maps and to assure that
the chaotic outcomes follow the standard uniform distribution
U(0, 1) with highly random chaotic sequences. It is shown that
the gain plus modulo-1 operator based approach greatly broadens
the chaotic range of seed chaotic maps and generates robust chaos.
The proposed approach produces chaotic sequences that are repli-
cable, fast, portable and closely approximate the ideal statistical
properties of uniformity and independence. The proposed chaotic
framework successfully passes the fundamental statistical and vi-
sual tests. The approach can eliminate the use of post-processing
approaches (e.g., de-skewing) and provide 100% efficiency with
respect to the random bit throughput. The efficiency and feasibility
of the approach are verified with an image encryption application.
The proposed method has a high potential in science, technology
and cryptography applications.
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