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Abstract

Chemotherapy is the main strategy for the treatment of cancer. However, the main problem
limiting the success of chemotherapy is the development of multidrug resistance. The
resistance can be intrinsic or acquired. The resistance phenotype is associated with the tumor
cells that gain a cross-resistance to a large range of drugs that are structurally and functionally
different. Multidrug resistance arises via many unrelated mechanisms, such as overexpression
of energy-dependent efflux proteins, decrease in uptake of the agents, increase or alteration
in drug targets, modification of cell cycle checkpoints, inactivation of the agents, compart-
mentalization of the agents, inhibition of apoptosis and aberrant bioactive sphingolipid
metabolism. Exact elucidation of resistance mechanisms and molecular and biochemical
approaches to overcome multidrug resistance have been a major goal in cancer research.
This review comprises the mechanisms guiding multidrug resistance in cancer chemotherapy
and also touches on approaches for reversing the resistance.

Keywords

ABC transporters, apoptosis, bioactive
sphingolipids, cancer, cell cycle alteration,
multidrug resistance

History

Received 5 October 2013
Revised 20 December 2014
Accepted 21 December 2014
Published online 11 March 2015

Introduction

Anticancer drugs with different properties and targets are

effectively used in the treatment of cancer (Gottesman, 2002).

However, there is no fully effective cancer treatment strategy,

especially for certain cancers. A major cause of the treatment

failure in cancer patients includes the development of intrinsic

or acquired drug resistance against chemotherapeutic agents

(Gottesman, 2002; Larsen et al., 2000). Intrinsic resistance

could be already present at diagnosis and cancer cells do not

respond to standard chemotherapy drugs from the beginning

while acquired resistance could be observed after chemother-

apy (Giaccone & Pinedo, 1996). The resistance phenotype is

associated with the tumor cells gaining a cross-resistance to

large range of drugs with different cellular targets and

structures, which is called multiple drug resistance (MDR)

(Krishna & Mayer, 2000). MDR is especially problematic in

acquired drug resistance in which the use of high dose drugs

to overcome resistance is ineffective and toxic when MDR

develops, causing less effective chemotherapy (Liscovitch &

Lavie, 2002). On the other hand, it is also known that MDR

could be multifactorial with at least two different resistance

mechanisms against the same drug in the same tumor cell.

(Larsen & Skladanowski, 1998). Numerous mechanisms

have been described to explain MDR in mammalian cells

(Figure 1) and they have been grouped into cellular and non-

cellular mechanisms (Krishna & Mayer, 2000). Non-cellular

mechanisms are characterized by in vivo tumor growth and

typically found in solid tumors with unique extracellular

properties. (Demant et al., 1990) for instance, the acidic

environment due to lactic acid production by hypoxic tumor

cells has been thought to be responsible for resistance against

some drugs whose uptake is dependent on the pH gradient

across the membranes (Demant et al., 1990). Cellular

resistance mechanisms are defined by alterations in the

biochemistry of malignant cells and classified into non-

classical MDR phenotypes and transport-based classical

MDR phenotypes (Stavrovskaya, 2000). Non-classical MDR

describes non-transport based mechanisms and includes

altered activity of enzymes such as glutathione S-transferase

(GST) and topoisomerase that can decrease the cytotoxic

activity of drugs and changes in the balance of proteins

involved in apoptosis (Schisselbauer et al., 1990). Transport-

based classical MDR mechanisms are related to the ATP-

binding cassette (ABC) family of membrane transport

ATPases (Krishna & Mayer, 2000). These transporters can

be overexpressed in cancer cells and pump anticancer drugs

out of the cell, resulting in a lack of effective concentrations

of drugs for therapy (Choi, 2005). In conclusion, the ability of

cancer cells to become simultaneously resistant to different

drugs remains a significant obstacle to successful chemother-

apy although chemotherapeutics are the most effective

treatment agents for most types of cancer. Therefore, exact

elucidation of resistance mechanisms and various approaches

to overcome multidrug resistance have been a major goal in

cancer research. In this review, we describe multidrug
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resistance mechanisms and touch on the approaches for

reversing the resistance in cancer types.

Decreased drug accumulation in cancer cells

Expression of ATP-dependent efflux pumps are the most

common mechanisms for the development of resistance

against various drugs. ATP-dependent efflux pumps are the

member of ATP-binding cassette (ABC) transporters family

that have sequence and structural homology (Dean et al.,

2001). These efflux pumps decrease intracellular drug

concentrations and cause resistance. Vinca alkaloids, anthra-

cyclines, actinomycin-D and paclitaxel are the examples

of drugs that are affected by transporter-based MDR

(Ambudkar et al., 1999).

Pgp in anticancer drug resistance

Among the ABC transporters involved in MDR, P-glyco-

protein (Pgp) is the most common efflux pump in the

plasma membrane with the molecular weight of 170 kDa

(Riordan & Ling, 1979). Structurally, Pgp is a single

polypeptide including two homologous parts each having a

hydrophobic transmembrane domain (TMD) and a nucleo-

tide-binding domain (NBD). These parts are separated by an

intracellular linker region. Each TMD consists of six

membrane spanning helices. Transmembrane domains are

responsible for the specificity of substrate drugs by forming

channels whereas nucleotide-binding domains participate in

ATP binding and hydrolysis (Prajapati & Sangamwar, 2014).

Pgp is able to bind a large variety of hydrophobic drugs

including most commonly used anticancer drugs such as

doxorubicin, daunorubicin, vinblastine, vincristine and taxol,

as well as many commonly used pharmaceuticals like

antiarrhythmics and antihistamines (Bogman et al., 2001).

The most common hypothesis related to Pgp-mediated

transport suggests that the drug molecule binds to a specific

site of Pgp and one of the ATP-binding domains is activated.

Then, the hydrolysis of ATP causes a major change in the

shape of Pgp, which causes the release of the drug into the

extracellular space (Stavrovskaya, 2000). The MDR family

includes two genes in man and only the ABCB1 (also called

MDR1/Pgp) gene has been found to cause MDR.

(Stavrovskaya, 2000). Pgp-related MDR can occur due to

alteration of ABCB1 gene expression and amplification of

the ABCB1 gene (Borst, 1991). The stabilization of ABCB1

mRNA, regulation at the level of synthesis and alterations of

protein processing are other MDR mechanisms (Campos

et al., 1992). Pgp has been found to be widely expressed in

many human cancer types such as small and large intestine

cancers, liver cancer, pancreatic cancer, myeloma, lymph-

oma, leukemia, kidney, ovary, testicle, neuroblastoma and

fibrosarcoma (Goldstein et al., 1989) (Supplemental data 1

in Supplemental material).

One of the approaches to reverse MDR in cancer treatment

is the inhibition of Pgp. There are three generations of

Pgp inhibitors. The examples of first generation inhibitors

are verapamil, quinine and cyclosporine A. The second

generation agents include dexverapamil and PSC833, and

the inhibitors like XR9576 and LY335979 (Yan et al., 2012).

In addition to Pgp inhibitors, alternative approaches

including peptides and antibodies to overcome MDR were

also developed. Hydrophobic peptides such as reversins 121

and 205 are high-affinity Pgp substrates and inhibit Pgp

(Sharom et al., 1999). Such peptides were specifically

designed to target the transmembrane domain of Pgp and

they were thought to prevent the assembly or function of Pgp

(George et al., 2003). Recently, anti-Pgp monoclonal

antibodies have been believed to be an alternative approach.

One of these antibodies, such as UIC2, was designed to target

extracellular epitopes of Pgp and inhibited in vitro efflux of

drug substance (Mechetner & Roninson, 1992). Moreover, it

is known that the expression of the MDR gene is induced after

cytotoxic drug treatment in tumor cells. Therefore, if MDR

gene expression is inhibited by several approaches, MDR

could be reversed. Using more specific techniques such as

antisense oligonucleotides, hammerhead ribozymes and

short-interfering RNA may provide more specific ways to

cope with MDR (Liscovitch & Lavie, 2002; Pichler et al.,

Figure 1. The mechanisms of drug resistance
in cancer cells. These mechanisms include
removal of drugs by transporters, specific
drug metabolism or detoxification, intracel-
lular drug sequestration, changes in the
expression of genes involved in apoptosis,
altered cell cycle events and aberrant cer-
amide metabolism.
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2005). Hao et al. (Hao et al., 2012) displayed that the ABCB1

gene was downregulated via RNA interference in human renal

cell carcinoma and MDR resistance could be reversed.

Downregulation of ABCB1 gene via specific siRNA reversed

doxorubicin resistance in breast cancer cells and resulted in

accumulation of the drug in the nuclei (Dönmez & Gündüz,

2011). Recently, secondary metabolites such as phenolics,

terpenoids and alkaloids were found to be potential Pgp

inhibitors in colon and leukemia cells (Eid et al., 2013). In

paclitaxel-resistant ovarian cancer cells with Pgp overexpres-

sion, a natural polyphenol was shown to overcome resistance

by inhibiting the expression and function of Pgp through

down-regulation of NF-kB activity and MAPK/ERK pathway

(Zhao et al., 2013).

MRP family in anticancer drug resistance

Several studies have shown the presence of MDR in the

absence of Pgp overexpression and indicated the role of other

MDR related proteins. One of these proteins is encoded by

MDR associated protein 1 (MRP1/ABCC1) which was found

to be amplified in a non-P-gp MDR cells (Kruh & Belinsky,

2003). ABCC1 protein, with molecular weight �190 kDa,

includes three TMDs containing 17 membrane spanning

helices, two NBDs and an extra N-terminal domain (Ozben,

2006). Like Pgp, MRP belongs to the family of ABC

transporters and pumps toxic substances out of the cell in an

ATP-dependent manner (Stavrovskaya, 2000). The drugs

transported by ABCC1 are similar to Pgp substrates except

taxanes which are poor substrates for ABCC1. Unlike

ABCB1, ABCC1 can also export drugs modified by

glycosylation, sulfation and glutathione (Ozben, 2006;

Szakács et al., 2006). The other members of MRP family,

MRP2/ABCC2, MRP3/ABCC3, MRP6/ABCC6 and MRP7/

ABCC10 have been displayed to have roles in resistance to

anticancer agents (Borst et al., 2000). The transported drugs

by ABCC2 are similar to ABCC1 only with few exceptions.

For instance, cisplatin and camptothecin resistant cancer cells

had higher ABCC2 levels (Annereau et al., 2004; Liedert

et al., 2003). ABCC3 exports fewer substrates compared to

ABCC1 and ABCC2. In several cancer cells such as lung,

acute myeloid leukemia, bladder and ovarian cancers, ABCC3

expression has been observed (Kool et al., 1997). However,

the data obtained from the literature indicated that among

several members of MRP family, only ABCC1 has been

commonly thought to be responsible for clinical drug

resistance (Leonard et al., 2003). MRP-related resistance

could be reversed by most of the Pgp inhibitors such as

XR9576 (tariquidar), biricodar and isothiocyanates with the

similar mechanisms of action whereas effective inhibitors of

MRP members are also present. For example, genistein

inhibited the daunorubicin uptake in MRP overexpressing

cells but not in Pgp expressing cells (Sarkadi & Müller, 1997).

Lin et al. (Lin et al., 2013) displayed the drug reversal effects

of MAPK pathway inhibitors, such as Raf1 and MEK

inhibitors, in hepatocellular carcinoma and found that only

MEK inhibitors reduced ABCC1 and ABCC3 expression and

lead to increased drug accumulation in the cells.

ABCC1 is also expressed in a wide range of tumors and

cancer cell lines including leukemia, pancreatic cancer and

breast cancer (Szakács et al., 2004) (Supplemental data 2 in

Supplemental material).

BCRP in anticancer drug resistance

The other ABC transporter involved in MDR is breast cancer

resistance protein (BCRP/ABCG2) with molecular weight

�75 kDa which has the ability to transport methotrexate,

7-ethyl-10-hydroxycamptothecin or tyrosine kinase inhibitors

(Szakács et al., 2006). In contrast to Pgp and MRP1, it

contains only one NBD preceding one TMD with six

membrane spanning helices (Ni et al., 2010). BCRP has

been identified to have a potential impact on drug resistance

in hematologic malignancies like AML and CML due to its

frequent expression on malignant hematopoietic and lymph-

oid cells (Natarajan et al., 2012). Although several BCRP

substrates are transported out of the cell at low concentra-

tions, they are also inhibitors of BCRP at higher concentra-

tions. For instance, tyrosine kinase inhibitor, imatinib, inhibits

BCRP function at higher concentrations (Houghton et al.,

2004). Fumitremorgin C (FTC) analogues are specific

inhibitors of BCRP and poloxamines and acrylonitrile

derivatives have gained attention as potential inhibitors

(Cuestas et al. 2011; Rabindran et al., 2000).

LRP in anticancer drug resistance

Lung resistance related protein or major vault protein (LRP/

MVP) with a molecular weight of 110 kDa is not localized on

the cell membrane like MDR1 and MRP1. LRP is found in the

cytoplasm as a main component of multimeric vaults and

associated with cytoskeletal elements as well as nuclear

membrane, transporting drugs from nucleus to cytoplasm via

vesicular trafficking (Stavrovskaya, 2000). There are some

studies showing the relationship between drug resistance and

LRP expression in AML and ovarian cancer patients

(Chauhan et al., 2012; Zhao et al., 1999). In another study,

LRP expression was significantly higher in colon carcinoma

cells after sodium butyrate treatment and this caused resist-

ance against adriamycin. LRP-mediated drug resistance could

be reversed by a pyrimidine analog that could inhibit

adriamycin efflux from nuclei (Kitazono et al., 2001). In a

recent study, it has been found that magnetic Fe3O4

nanoparticles loaded with cisplatin could reverse cisplatin

resistance in cisplatin-resistant lung cancer cells both in vitro

and in vivo by decreasing the expression of LRP at both

gene and protein levels (Li et al., 2013). Src tyrosine

kinase inhibition in cisplatin-resistant lung cancer cells by

4-anilinoquirazoline was found to downregulate LRP expres-

sion and sensitize resistant cells to cisplantin (Lv & Tian,

2012). Major MDR pumps involved in MDR and their

significant properties mentioned in this part are summarized

in Table 1.

Decreased drug uptake

Decreased drug uptake is another way to decrease drug

accumulation in cancer cells. Drugs are transported into the

cells via several routes which include diffusion across the

plasma membrane, loading of the drugs on specific

receptors and either receptor mediated or non-specific
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endocytosis (Gottesman, 2002). Development of drug

resistance in some cancer cells could result from mutations

that modify or block the receptors (Supplemental data 3 in

Supplemental material). It is also known that endocytosis,

and generally receptor-mediated endoyctosis, plays import-

ant roles in the transport of certain drugs into the cells and

defective endocytic process causes drug resistance

(Gottesman, 2002) (Supplemental data 3 in Supplemental

material).

Alterations in drug targets

The cellular target of a particular cancer therapy could be

altered or even decreased or increased to a level at which it

may lose therapeutic potential. During anti-estrogen (e.g.

tamoxifen) therapy of breast cancer, patients become

resistant to endocrine therapy due to obvious loss of

estrogen receptors in the resistant tumor cells that were

believed not to be dependent on estrogen anymore for their

growth (Luqmani, 2005). Sometimes, resistant cancer cells

produce a mutated drug target that retains its activity in the

cell without being a target of that drug. Therefore, the target

is not inhibited by it (Supplemental data 4 in Supplemental

material). Gene amplification is a marker of genomic

instability in cancer cells and plays roles in the development

of acquired drug resistance (Supplemental data 4 in

Supplemental material).

Altered cell cycle events

An important feature of cancer cells is that uncontrolled cell

proliferation arises from defects throughout the cell cycle

progression at G1, G2, S and mitotic phases. Cell cycle

checkpoints, including a network of protein kinase signaling

pathways, protect the cells from DNA damage induced by

chemotherapeutic agents and provide the cells appropriate

time to repair the damages (Sancar et al., 2004). Therefore,

defects in cell cycle checkpoints could cause carcinogenesis

and the development of drug resistance. Arrest of cell cycle

progression at G2 phase generally gives the cells an oppor-

tunity to protect their viability after drug treatment and this

arrest requires the activation of DNA damage checkpoint

components such as Chk1, which is major checkpoint kinase

(Hapke et al., 2001; Xiao et al., 2003). It was demonstrated

that activation of the Chk1 kinase pathway could not only

delay mitotic entry but also increase the potential of the cells

to survive and lack of Chk1 in the cells could result in

hypersensitivity to DNA damage inducing drugs (Walworth &

Bernards, 1996) (Supplemental data 5 in Supplemental

material). Cell cycle-related drug resistance is most

Table 1. Major MDR associated pumps: structure, localization, transported substrates, representative inhibitors and cancer types.

Common name Structure Localization
Representative
substrates

Representative
inhibitors

Cancer types
expressing pump

P-gp/MDR1/ABCB1 A single polypeptide with
two parts: each having a
hydrophobic TMD con-
taining 6 transmembrane
helices and a NBD: 12
transmembrane helices
and two NBDs.

Cell
membrane

Doxorubicin
Daunorubicin

Vinblastine
Vincristine
Taxol Antiarrhythmics

Antihistamines

Verapamil
Quinine
Cyclosporine A
Dexverapamil
PSC833
XR9576
LY335979
Hydrophobic

peptides
Anti-Pgp monoclo-

nal antibodies
siRNA
Ribozymes
Secondary

metabolites

Small and large
intestine

Liver
Pancreas
Myeloma
Lymphoma
Leukemia
Kidney
Ovary
Testicle
Neuroblastoma
Fibrosarcoma

MRP1/ABCC1 A single polypeptide with
three parts: 3 TMDs (2
of them with 6 trans-
membrane helices and 1
with 5 transmembrane
helices), 2 NBDs and
extracellular N-terminal
domain: 17 transmem-
brane helices and two
NBDs.

Cell
membrane

Doxorubicin
Daunorubicin
Vincristine
Modified drugs by gly-

cosylation, sulfation
and glutathione

XR9576 (tariquidar)
Biricodar

Isothiocyanates
Genistein
MAPK inhibitors

Leukemia
Pancreas
Breast
Hepatocellular

carcinoma

BCRP/ABCG2 1 TMD with 6 membrane
spanning helices and 1
NBD.

Cell
membrane

Methotrexate
7-ethyl-10-hydroxy-

camptothecin
Tyrosine kinase
inhibitors

Imatinib
Fumitremorgin C

(FTC) analogues
Poloxamines
Acrylonitrile

derivatives

AML
CML
Breast cancer

LRP/MVP Component of a hollow
barrel-like structure
(Vaults)

Cytoplasm Adriamycin
Cisplatin

Pyrimidine analogs
4-Anilinoquirazoline

AML
Ovarian cancer
Colon cancer
Lung cancer
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common in combination therapies in which the firstly given

drug could affect the cell cycle and therefore, the next agent

becomes less effective (Shah & Schwartz, 2001)

(Supplemental data 5 in Supplemental material).

Compartmentalization

Sequestration of the drugs in cellular compartments is an

important mechanism for anticancer drug resistance.

Although little is known about intracellular drug localization,

an anticancer drug can whether pass through the cell

membrane or not is an important fact in the localization in

the cell. If a molecule cannot pass through the membrane, it is

endocytosed and its localization is limited to lysosomes. This

molecule can also be translocated into the cell by transporter

molecules. As cellular compartments have different activities,

they are organized with different features: each has a different

pH in the lumen, different composition of lipids and also

different proteins. All of these factors influence the localiza-

tion of drugs in different cellular compartments (Saito et al.,

2003). The susceptibility of a weak acid to a basic environ-

ment, or of a weak base to an acidic environment, known as

pH partition, plays a key role in localization of a drug in

different compartments. This partition results in the gener-

ation of an electrical charge and a decline in membrane

permeability, and also results in drug accumulation (Duvvuri

& Krise, 2005).

Since drugs used in cancer therapy generally target

molecules in the nucleus such as topoisomerases and

DNA, and also the molecules in the other cellular organelles,

the localization of an anticancer drug in the cell plays an

important role in the effectivity of the drug (Hu & Kavanagh,

2003) (Supplemental data 6 in Supplemental material).

In order to overcome this type of resistance, appropriate

drugs should be produced, but there are a few studies on this

area due to the difficulties in visualization of drug delivery in

cultured cells (Duvvuri & Krise, 2005).

Alterations in membrane lipids

In many types of cancer cells, there are differences in lipid

profiles as compared to healthy cells (Leach, 1996). It was

reported that in healthy and cancerous breast cells, phospha-

tidylserine, sphingomyelin, phosphatidylcholine, phosphati-

dylethanolamine and phosphatidylinositol levels are different

(Merchant et al., 1991). Similarly, these phospholipids are

found in distinctive levels in healthy and cancerous esophagus

cells (Merchant et al., 1993). Merchant et al. also reported

that cholesterol is found in different levels in the cells at

different phases of colon cancer (Merchant et al., 1995).

Interestingly, there was no difference in the phospholipid

composition of healthy and cancerous liver cells, but chol-

esterol levels are found to be significantly lower in cancerous

cells. By these changes in membrane lipid compositions,

cancer cells make their membrane systems less permeable.

Alterations in membrane lipids are important factors for

acquiring multidrug resistance (Supplemental data 7 in

Supplemental material).

In order to overcome this type of drug resistance, lipophilic

cationic agents connecting with phospholipids found in the

cell membrane could be used. By this way, membrane

permeability could be increased. In a study, it was reported

that calmodulin antagonists such as clomipramine and

thioridazine, calcium channel blocker such as verapamil,

beta adrenergic receptor blocker, propranolol and also

antiparasitic agents like quinine are very effective whereas

steroids and antineoplastic agents are not effective in

influencing the membrane permeability (Castaing et al.,

2000). Furthermore, bioactive sphingolipid levels are also

altered in anticancer drug-resistant cancer cells (Ogretmen &

Hannun, 2004). The relation between the alterations in

bioactive sphingolipid levels and the anticancer drug resist-

ance will be discussed in the following sections.

Sphingosine 1-phosphate in anticancer drug
resistance

Many studies indicated that increased ceramide levels lead

to apoptosis whereas increased levels of sphingosine 1-

phosphate (S1P) inhibit apoptosis (Radin, 2002). In addition,

this effect of S1P on cancer cells is a significant factor for

developing anticancer drug resistance. In paclitaxel-resistant

human ovarian cancer cells, paclitaxel treatment does not

increase intracellular levels of ceramide, and instead,

cellular GM3 ganglioside levels increase significantly as

compared to sensitive cells (Prinetti et al., 2006).

Furthermore, sphingosine kinase-1 (SK1-1), which is respon-

sible for the synthesis of S1P, was reported to decrease the

apoptotic effects of anticancer drugs in prostate adenocar-

cinoma cells (Pchejetski et al., 2005). In camptothecin-

resistant PC-3 prostate cancer cells, SK-1 expression levels

were higher, and when this expression is suppressed, PC-3

cells became sensitive to camptothecin (Bektas et al., 2005).

In addition, contributions of SK-1 to generation of drug

resistance were also reported in many other types of cancer

including kidney, breast, lung, uterus and colon (Visentin

et al., 2006). Use of SK-1 inhibitor and S1P receptor

antagonists could overcome anticancer drug resistance in

these types of cancer cells (Ponnusamy et al., 2010)

(Supplemental data 8 in Supplemental material).

Glucosylceramide in anticancer drug resistance

Glucosylceramide, which is synthesized from ceramide by the

activity of glucosylceramide synthase (GCS), is also found to

be increased in drug resistant cancer cells. In breast cancer

cells, it was reported that suppression of GCS activity results

in a decrease in MDR1 expression levels, and this reverses

anticancer drug resistance (Gouazé et al., 2005). GCS and

P-gp activity are known to be related in the generation of

multidrug resistance phenotype in cancer cells (Ponnusamy

et al., 2010).

Drug resistance arising from the overexpression of GCS

can be reversed by inhibiting GCS activity, and also by

increasing intracellular ceramide levels (Maurer et al., 2000).

However, a study reported that suppression of GCS activity

does not affect the sensitivity of melanoma cells against

different types of anticancer agents (Veldman et al., 2003).

Our studies also showed the effects of alterations in ceramide

metabolism on drug resistance (Adan-Gokbulut et al. 2013;

Kartal-Yandim et al., 2013) (Supplemental data 9 in

Supplemental material).
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Drug inactivation

In this type of anticancer drug resistance mechanism, drugs

become detoxified by the enzymatic activities of GST.

Glutathione (GSH), a crucial antioxidant, prevents oxidative

stress, and keeps redox homeostasis stable in cells

(Gawryluk et al., 2011). In drug metabolism, GSH is used

as a cofactor by GST enzyme system providing the

formation of GSH-drug conjugates. In the cells resistant to

alkylating agents such as cyclophosphamide, doxorubicin,

melphalan and chlorambucil, it was found that GSH levels

are higher than that of sensitive counterparts. In these cells,

GSH forms conjugates with alkylating agents by the activity

of GST, and this results in detoxification of alkylating

agents, which causes drug resistance in cells (O’Brien &

Tew, 1996). Although the exact mechanism is not known

yet, GSH synthesizing enzymes could also be important in

the development of drug resistance. In addition, multidrug

resistance in the cells overexpressing P-gp could also be

related to the GSH system (Supplemental data 10 in

Supplemental material).

To overcome this type of resistance, GST inhibitors and

substrates for GSH conjugation are used. GSH conjugation

substrates such as phorone and diethylmaleate immediately

decrease the levels of GSH in many types of tissues in vivo

(Mulder & Ouwerkerk-Mahadevan, 1997). Buthionine sulfox-

imine (BSO) is also an effective and irreversible inhibitor for

the synthesis of GSH. BSO, used in clinical studies in cancer,

reverses resistance against alkylating agents via decreasing

the levels of GSH in cells (Tew, 1994). In vitro studies

indicated that BSO overcomes drug resistance arisen through

MRP activity (Grant et al., 1994). Ethacrynic acid is also used

in both in vitro and clinical trials in order to prevent GSH

conjugation (Grant et al., 1994).

Prevention of apoptosis

Induction of apoptosis is known as an ultimate aim of

anticancer agents. In apoptosis, DNA fragmentation, chromo-

some condensation and nuclear cleavage and finally cellular

shrinkage occur, respectively. A network of genes and

proteins are involved in the organization of apoptotic events

or the maintenance of cell survival.

p53 in anticancer drug resistance

p53 is an important transcription factor with tumor suppressor

functions (Wang et al., 2003). Except of the stress conditions,

cells have inactive p53 protein with a short half-life at

low levels. When the cell undergoes stress conditions such

as DNA damage, hypoxia, nitric oxide exposure, decrease in

ribonucleotides and oncogenic signaling, p53 becomes

activated and intracellular levels of p53 proteins are increased

(Pluquet & Hainaut, 2001). After the activation, p53 prevents

cellular proliferation via arresting cell cycle at G1 or G2

phase or via triggering apoptotic signals. In case of any

damage on DNA, p53 induces cell cycle arrest and provides

the cell an appropriate time needed for repairing the DNA

(Smith & Seo, 2002). When the damage is serious that cannot

be repaired, p53, in turn, makes the cells undergo apoptosis

(Wang et al., 2003).

Activation and inactivation of p53 is regulated by phos-

phorylation, ubiquitinylation, acetylation and interactions with

other proteins (Bode & Dong, 2004). Murine double minute 2

(Mdm2) is the protein that majorly regulates p53 activity via

protecting it from interacting with the transcription proteins

through binding to the transcriptional activation domain of

p53, and also via providing the ubiquitin ligase-mediated

degradation of p53 (Honda et al., 1997).

In more than 60% of cancer types, abnormalities in p53

function were reported (Pirollo et al., 2000). These abnorm-

alities lead to uncontrolled cell proliferation as DNA cannot

be repaired and cell cycle cannot be arrested in the cells

having mutated p53. Consequently, these abnormal p53

functions lead to development of anticancer drug resistance

in cancer cells (Chang et al., 2000) (Supplemental data 11 in

Supplemental material).

Drug resistance arisen from p53 function can be overcome

by targeting p53 expression via chemoradiation for wild-type

p53 activity, adenoviruses expressing mutant p53 for killing

tumor cells, and also via using small molecules for wild type

p53 activity. In addition, in order to activate p53, Mdm2 can

also be targeted via using small molecules altering the binding

of Mdm2 and p53 such as nutlins, benzodiazepinediones and

inhibitors of Mdm2 (MI) made of spiro-oxindole, or via using

inhibitors for E3 ubiquitin ligase activity of Mdm2 (Wang &

Sun, 2010). Nutlin-3 is a very specific antagonist for Mdm2-

p53 interaction. In retinoblastoma, osteosarcoma, breast

cancer and colon cancer cells, p53 activity has been reported

to be increased in response to nutlin-3 treatment (Laurie et al.,

2006). However, nutlin-3 is a substrate for MRP1 and P-gp,

which makes its use limited. It was reported that the application

of nutlin-3 and curcumin in nanoparticles results in the

modulation of efflux proteins by curcumin, and thus results in

an increase in nutlin-3 function. The outcome of these events

reverses multidrug resistance in Y79 human retinoblastoma

cell lines (Das & Sahoo, 2012). Benzodiazepinedione (BDA) is

also a powerful molecule in recognizing the p53-binding

domain of Mdm2 (Grasberger et al., 2005). It was reported that

BDA treatment triggers p53 activity, suppresses cellular

proliferation and also increases anticancer effects of doxorubi-

cin synergistically both in vivo and in vitro (Koblish et al.,

2006). Mdm2 inhibitors composed of spiro-oxindole com-

pounds are the other molecules that bind to Mdm2. A type of

these inhibitors reversed the etoposide resistance in A549 lung

cancer cells, and led to apoptosis in response to the treatment

(Sun et al., 2008).

Bcl-2 family genes in anticancer drug resistance

Bcl-2 is an oncogene which enhances cancer cell proliferation

and suppresses apoptosis. In various types of cancer, Bcl-2 is

expressed in an uncontrolled manner. The family of Bcl-2 also

comprises the genes encoding proapoptotic Bax, Bad, Bim

and antiapoptotic Bcl-XL and Bcl-2 proteins (Reed, 1995).

Formation of homodimers and heterodimers between the

members of this family determines the effect of these proteins

on apoptosis. Heterodimers of Bcl-2 and Bax, and homo-

dimers of bax trigger apoptosis whereas homodimers of Bcl-2

inhibit apoptosis (Reed, 1995) (Supplemental data 12 in

Supplemental material).
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In order to overcome this type of resistance, agents

targeting Bcl-2 family members for altering their expression

levels are used commonly. It was shown that overexpression

of miR-181b and miR-497 downregulate Bcl-2 and reverse

drug resistance and induces apoptosis in vincristine-resistant

SGC7901 human gastric cancer and cisplatin-resistant A549

human lung cancer cells (Zhu et al., 2010; Zhu et al., 2012).

It was also demonstrated that targeting Bcl-2 by antisense

peptide nucleic acid (PNA) conjugate decreases resistance

and cellular proliferation in Mec-1 human non-Hodgkin’s

lymphoma cells (Balkin et al., 2011). In adriamycin-resistant

H69AR human small cell lung cancer cells infected with

Bcl-2 interfering RNA, there were decreases in the levels of

Bcl-XL and MRP1, in addition to Bcl-2, and also these cells

were more sensitive to daunomycin treatment than that of

sensitive counterparts (Palaniyandi et al., 2011). Moreover,

inhibition of Bcl-2, Bcl-XL, XIAP and survivin via siRNAs

reverses resistance against mitomycin C and cisplatin in EJ28

and J82 human bladder cancer cell lines (Kunze et al., 2012).

There are also chemotherapeutic agents such as monocarbox-

ylate transporter inhibitor a-cyano-4-hydroxycinnamate

(aCHC), cannabinoid receptor agonists, mebendazole

(MBZ) and ABT-737 which act via decreasing intracellular

Bcl-2 levels, and by this way resistant cancer cells become

sensitized and undergo apoptosis (Doudican et al., 2013;

Kumar et al., 2013; Rooswinkel et al. 2012; Xian et al., 2013).

PTEN in anticancer drug resistance

The phosphatase and tensin homolog, PTEN, is a tumor

suppressor which has phosphatase activity preventing PI3K/

Akt signaling pathway, known as an important cancer-

promoting pathway (Stambolic et al., 1998). In brain,

endometrium, prostate and skin cancers, PTEN is generally

found mutated, and also this mutated PTEN causes the

development of anticancer drug resistance due to increased

activation of PI3K/Akt signaling pathway (Ali et al., 1999).

The drug resistance arisen by PTEN mutation could be

overcome via targeting PI3K/Akt signaling, and also via

increasing intracellular levels of PTEN. In trastuzumab-

resistant SKBR3/R human breast cancer cell lines, the

proteasome inhibitor PS341 treatment results in an increase

in PTEN expression and induction of apoptosis due to

increased chemosensitivity (Fujita et al., 2006). In BGC-823

human gastric cancer cell lines, PTEN upregulation via

PEAK8-PTEN transfection sensitizes the cells against etopo-

side and doxorubicin treatment. In addition, use of a PI3K

inhibitor, wortmannin, on BGC-823 and SGC-7901 human

gastric cancer cell lines results in increased chemosensitiza-

tion of the cells against etoposide and doxorubicin (Yu et al.,

2008). Furthermore, PTEN transfection of PTEN-deficient

PC3 human prostate cancer cell lines results in chemosensi-

tization of the cells to doxorubicin and vinblastine through

inhibiting the PI3K/Akt/mTOR signaling pathway

(Sherbakova et al., 2008). In addition, recent studies have

reported that suppression of autophagy could also sensitize

PTEN-deficient PC3 human prostate cancer cells against Akt

inhibitors like AZD5363 (Lamoureux et al., 2013). Another

recent study has reported that microRNA-19 a/b plays

important roles in the regulation of drug resistance via

targeting PTEN activity in gastric cancer cells (Wang et al.,

2013).

Clinical trials targeting MDR pathways

We summarized selected phase studies of inhibitors/drug/

agents targeting reviewed MDR pathways in Table 2. Clinical

trials of various first, second and third generation inhibitors,

Table 2. Selected phase studies of inhibitors/drug/agents targeting MDR pathways.

Inhibitor/Drug/Agent Mechanism/MDR target Clinical phase Result

Verapamil Pgp Phase I in small and non-small cell
lung cancer

Negative: Unacceptable toxicity and lack
of efficacy

Quinine Pgp Phase II/III in non-Hodgkin lymph-
oma and AML, respectively

Negative: No major toxicity, but lack of
efficacy

Valspodar (PSC833) Pgp Phase I/II in AML Phase III in
multiple myeloma

Negative: Lack of efficacy in
AML Negative: Increased toxicity in
multiple myeloma

Dofequidar (MS209) Pgp, MRP1 Phase III in breast cancer Negative: Lack of efficacy
Zosuquidar (LY335979) Pgp Phase III in AML Negative: Lack of efficacy
Tariquidar (XR9576) Pgp, MRP1, BCRP Phase II in breast cancer Negative: Low benefit-risk ratio, toxicity
Tesmilifene (BMS-217380-01) Pgp Phase III in breast cancer Negative: Lack of efficacy
CBT-1 Pgp Phase III in and non-small cell lung

cancer
Negative: Terminated due to slow accrual

rate
Flavopiridol CDK inhibitor Phase I in Bcr-Abl+

malignancies Phase II in ovarian
cancer

Positive: Tolerable and significant clinical
activity

UCN-01 CDK inhibitor Phase II in breast cancer Negative: inefficient activity
Tesetaxel (DJ-927) Pgp Phase I in solid tumors Positive: Promising for future studies
BMS-184476 Pgp, tubulin mutations Phase I/II in non-small-cell lung

cancer
Positive: Tolerable and effective antitu-

mor activity, promising for future
studies

Trabectedin-ET-743 DNA double breaks Phase II in prostate cancer Phase III
in ovarian cancer

Positive: Considerable antitumoral activ-
ity, promising for future studies

Buthionine sulfoximine (BSO) GSH biosynthesis inhibitor Phase I in several tumor types
including melanoma and ovarian
cancer

Positive: Promising for future studies

Ethacrynic acid GST inhibitor Phase I in solid tumors Positive: Promising for future studies
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newly designed inhibitors targeting MDR transporters, agents

targeting cell cycle regulators, GSH and GST and agents

overcoming MDR by causing mutations and DNA double

breaks were discussed in detail (see Supplemental data 13

in Supplemental material).

Major obstacles to success in reversing clinical MDR

Many MDR inhibitors have been entered into clinical trials,

however they caused limited therapeutic success in the clinic

due to the presence of several barriers. A common reason for

early termination or clinical failure of MDR modulators is

their non-specific toxicity to cancer patients. This situation

is particularly true for first generation Pgp inhibitors that

cause unacceptable toxicity at doses required for P-gp

inhibition (Millward et al., 1993). While these effects are

less for second and third generation inhibitors, they inhibit

ABC transporters in normal tissues as well, which can lead to

toxicity (Yu et al., 2013). Another common obstacle is the

unexpected and undesired pharmacokinetic interactions

between the modulators and the anti-cancer drugs used for

the treatment of patients, which results in reducing doses of

anticancer drugs and so inefficient benefit (Patel & Mitra,

2001). The multifactorial nature of MDR is another obstacle,

causing inefficient therapy of patients. As some reasons for

MDR could not be related to ABC transporters or different

transporters could be responsible for removal of an anticancer

drug (Li et al., 2009).

Recently, the probability of drug-transporter meeting has

been defined as a significant limiting factor in MDR. As

dictated in MDR definition, the cells are resistant to many

drugs that are not necessarily chemically related. This

situation is not only related to specificity between a drug

and a transporter, but also related to increased drug-

transporter meeting by changing the spatial organization of

membrane (Panagiotopoulou et al., 2010). The increased

affinity between drug and transporter in MDR can be

explained physically by the mechanical interaction among

the drug size (MW), membrane endocytosis and drug

transporter surface density and functionality. For instance,

the MW of drugs is involved in their residency time in

membrane and function of the membrane physical proper-

ties. Moreover, the understanding of drug pumping kinetics

will allow researchers to consider that a drug can meet a

transporter, but this transporter is in an occupied state while

pumping another drug. To overcome MDR, new therapeutic

strategies could be designed based on this knowledge

(Daniel et al., 2013). In MDR cells, cytosolic pH becomes

alkalic by the activity of the proton pump vacuolar-type

ATPase and the proton transporters, which somehow affects

the packing of lipids, thereby influencing the transverse

movement of drugs. One hypothesis explains that alkalic pH

can affect negatively charged lipids in the inner leaflet of the

membrane, affecting repulsion between lipids. This alkaline

pH results in the failure of the accumulation of chemother-

apeutic agents together with increased drug efflux (Simon

et al., 1994). Thus, MDR could be prevented by targeting

both pH changes and transporters. Several properties of

membrane such as the fluidity and lipid density are also

interested in MDR. For instance, an excess of packing of

lipid in the inner membrane of MDR cells is responsible for

blocking drugs (Rauch, 2009). Resistant cells also have

faster endocytosis as compared to sensitive counterparts,

which is related to higher levels of endogenous compression

of the inner leaflet of the membrane (driving force for

endocytosis) (Rauch & Pluen, 2007). In conclusion, the

introduction of pH concept in MDR and the understanding

of physical properties of membrane will lead to development

of ‘‘new synthetic theories’’ to understand MDR as a whole

and to develop future treatment strategies for MDR.

Conclusion and future perspectives

Studies aiming to investigate the molecular mechanisms of

multidrug resistance obviously show that there are many

factors leading to anticancer drug resistance. We have

described most effective mechanisms in this review.

Targeting vital genes encoding membrane transporters or

the other proteins that have important contributions to the

generation of multidrug resistance phenotype by knockdown

approaches or using chemical agents has a significant

potential in clinic. These approaches would provide the

reversal of the resistance, and cancer patients could be

completely cured. We have also discussed clinical phase

studies of described agents and their conclusions in this

review. However, clinical approaches need more in vivo

research studies, and also more extensive clinical phase trials

on cancer patients. More importantly, inventions of new

effective drug targeting and delivery systems that cause

minimal adverse effects are needed. By these approaches,

only multidrug resistant cancer cells rather than healthy cells

could be targeted and also eradicated.
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