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COMPUTATION OF POLARIZED METRIZED GRAPH

INVARIANTS BY USING DISCRETE LAPLACIAN MATRIX

ZUBEYIR CINKIR

Abstract. Several invariants of polarized metrized graphs and their applica-
tions in Arithmetic Geometry have been studied recently. In this paper, we
give fast algorithms to compute these invariants by expressing them in terms
of the discrete Laplacian matrix and its pseudo inverse. The algorithm we
give can be used for both symbolic and numerical computations. We present
various examples to illustrate the implementation of these algorithms.

1. Introduction

Let X be a geometrically connected curve of genus ḡ ≥ 2 over a field k. Suppose
k is either a number field or the function field of a smooth projective curve Y over
a field. Assume that X has a semistable model X over S, where S = SpecOk if k
is a number field and S = Y if k is a function field. Let N(v) be the local factor
related to the product formula for k (see [5] and [16]). In this context, ω2

X/S , the

self intersection of the relative dualizing sheaf ωX/S , is an important quantity both
in geometric and arithmetic cases. Lower and upper bounds to this quantity are of
interest in diophantine geometry (see [32], [33] and [35]).

In 1993, Zhang [35] expressed ω2
X/S in terms of ω2

a, the self intersection of the

admissible relative dualizing sheaf ωa associated to a minimal regular model of X:

ω2
X/S = ω2

a +
∑
v

ε(Xv) logN(v),(1)

where v runs over the set of non-archimedean places of k, and ε(Xv) is a certain
local invariant of the reduction graph R(Xv) associated to the completion of X at
a place v of k.

In 2010, Zhang [36, Corollary 1.3.2] expressed ω2
a in terms of 〈Δξ,Δξ〉, the

arithmetic self intersection (equal to the canonical height) of the Gross-Schoen
cycle Δξ ⊂ X ×X ×X:

ω2
a =

2ḡ − 2

2ḡ + 1
〈Δξ,Δξ〉+

2ḡ − 2

2ḡ + 1

∑
v

ϕ(Xv) logN(v),(2)

where v runs over the set of places of k, and ϕ(Xv) is a certain invariant computed
differently for archimedean and non-archimedean places [36, Section 1.3].
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On the other hand, we have the following equality for a semistable fibration
f : X −→ S by Nother’s formula:

ω2
X/S = 12deg f∗(ωX/S)−

∑
v

δ(Xv),(3)

where δ(Xv) is the total number of the singular points in the fiber over v. Moreover,
Zhang [36] showed that

deg f∗(ωX/S) =
ḡ − 1

6(2ḡ + 1)
〈Δξ,Δξ〉+

∑
v

λ(Xv) logN(v),(4)

where v runs over the set of places of k, and λ(Xv) is another local invariant
associated to the reduction graphs R(Xv). We refer [18] for other connections
between λ(Xv) and some invariants of complex moduli space of curves of genus
higher than 1.

Whenever v is a non-archimedean place, the local invariants ϕ(Xv), ε(Xv), λ(Xv)
are defined as the invariants of the corresponding polarized metrized graph. We
give a short description of a polarized metrized graph in §2. Note that the reduction
graph R(X) of any semistable curve X of genus ḡ over a discrete valuation ring is
a polarized metrized graph of genus ḡ.

We also have invariants Z(Γ), τ (Γ) and θ(Γ) (see §2 below) of a polarized
metrized graph Γ, which are closely related to the local invariants given above.

Explicit computations of these local invariants were done only for some curves of
genus less than or equal to 4 (see [21], [22], [14], [27], [28], [29], [17], [6]). Other than
some families of polarized metrized graphs of certain types, explicit computations
become a huge intricate task for a person to do by hand as soon as ḡ becomes
larger than 3. Thus, one needs a computer algorithm to do such computations. We
have such an algorithm to compute τ (Γ) (see [6] and [10]). Also, X. Faber gave an
algorithm to compute the invariants ε(Γ), ϕ(Γ), λ(Γ) and Z(Γ) (see [14] and [15]).

In this paper, we provide a fast computer algorithm that can be used for both
symbolic and numeric computations of each of the polarized metrized graph invari-
ants. This algorithm is faster, because it takes advantage of two important facts:
All of the effective resistance computations can be handled by just one matrix in-
version (see equation (11) and Lemma 3.2), and the computations of the invariants
ε(Γ), ϕ(Γ), λ(Γ) and Z(Γ) can be reduced to the computations of τ (Γ) and θ(Γ)
(see Theorem 2.3).

In §2, we give a short revision of a polarized metrized graph and definitions of
its invariants (see Lemma 2.1, equations (8) and (9)). Using Theorem 2.3, the
problem of computing the invariants ε(Γ), ϕ(Γ), λ(Γ) and Z(Γ) are reduced to the
computations of τ (Γ) and θ(Γ). Using these connections and our previous results
about τ (Γ) and θ(Γ), we explain how to deal with self loops and multiple edges, if
desired, as the initial step of the algorithm.

In §3, we define discrete Laplacian matrices associated to polarized metrized
graphs. We express θ(Γ) in terms of the discrete Laplacian matrix L and its pseudo
inverse L+ (see Theorem 3.6). Then we use our previous result on τ (Γ) to express
the invariants ε(Γ), ϕ(Γ), λ(Γ) and Z(Γ) in terms of the entries of L and L+. This
gives us the main result in this paper. Namely, each of these invariants can be
symbolically or numerically computed with the algorithm we provide.

Finally, we give various examples to show the implementation of our algorithm
in §4.
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2. Polarized metrized graphs and their invariants

In this section, we first give brief descriptions of a metrized graph Γ, a polarized
metrized graph (Γ,q), invariants τ (Γ), θ(Γ), ε(Γ), ϕ(Γ), λ(Γ) and Z(Γ) associated
to (Γ,q).

A metrized graph Γ is a finite connected graph equipped with a distinguished
parametrization of each of its edges. A metrized graph Γ can have multiple edges
and self loops. For any given p ∈ Γ, the number υ(p) of directions emanating from
p will be called the valence of p. By definition, there can be only finitely many
p ∈ Γ with υ(p) �= 2.

For a metrized graph Γ, we will denote a vertex set for Γ by V (Γ). We require
that V (Γ) be finite and non-empty and that p ∈ V (Γ) for each p ∈ Γ if υ(p) �= 2.
For a given metrized graph Γ, it is possible to enlarge the vertex set V (Γ) by
considering additional valence 2 points as vertices.

For a given metrized graph Γ with vertex set V (Γ), the set of edges of Γ is the
set of closed line segments with end points in V (Γ). We will denote the set of edges
of Γ by E(Γ). However, if ei is an edge, by Γ− ei we mean the graph obtained by
deleting the interior of ei.

We define the genus of Γ to be the first Betti number g(Γ) := e − v + 1 of the
graph Γ, where e and v are the number of edges and vertices of Γ, respectively.

We denote the length of an edge ei ∈ E(Γ) by Li, which represents a positive real
number. The total length of Γ, which is denoted by 
(Γ), is given by 
(Γ) =

∑e
i=1 Li.

If a metrized graph Γ is viewed as a resistive electric circuit with terminals at
x and y, with the resistance in each edge given by its length, then r(x, y) is the
effective resistance between x and y when unit current enters at y and exits at x.

For any x, y in Γ, the resistance function r(x, y) on Γ is a symmetric function in
x and y, and it satisfies r(x, x) = 0. For each vertex set V (Γ), r(x, y) is continuous
on Γ as a function of two variables and r(x, y) ≥ 0 for all x, y in Γ. For proofs of
these facts and connections between the resistance function and the voltage function
on Γ, see articles [12], [2, sec. 1.5 and sec. 6], and [35, Appendix]. The resistance
function r(x, y) on a metrized graph was also studied in the articles [1] and [7]. Note
that on a graph, the resistance function having the domain in the set of vertices
of the graph has been extensively studied in the literature (e.g., see [25] and [26]),
and the facts stated above are well known for this case.

We will denote by Ri(Γ), or by Ri if there is no danger of confusion, the resistance
between the end points of an edge ei of a graph Γ when the interior of the edge ei
is deleted from Γ.

The tau constant τ (Γ) of a metrized graph Γ was initially defined by Baker and
Rumely. Its original definition as in [2, Section 14] requires the use of the canonical
measure given below and the voltage function on Γ. The following lemma gives a
description of the tau constant, and shows that it can be expressed in terms of the
resistance function. In particular, it implies that the tau constant is positive.

Lemma 2.1 ([2, Lemma 14.4]). For any fixed y in Γ, τ (Γ) = 1
4

∫
Γ

(
∂
∂xr(x, y)

)2
dx.

One can find more detailed information on τ (Γ) in articles [6], [7], [8] and [10].
On a metrized graph Γ, we have a canonical measure μcan first studied by Chin-

burg and Rumely [12]. See the articles [2] and [7] for several interpretations of μcan.
The following theorem gives an explicit description of μcan:
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Theorem 2.2 ([12, Theorem 2.11]). For a given metrized graph Γ, let Li and Ri

be defined as before. Then we have

μcan(x) =
∑

p∈V (Γ)

(1− 1

2
v (p)) δp(x) +

∑
ei∈E(Γ)

dx

Li +Ri
.

Let Γ be a metrized graph with a vertex set V (Γ) and let q : Γ → N be a function
supported on a finite set contained in V (Γ). That is, q(s) = 0 for all s ∈ Γ−V (Γ),
and whenever q(s) > 0 we must have s ∈ V (Γ).

A formal sum
∑

nipi where ai ∈ Z and pi ∈ Γ for every i is called a divisor on
Γ. A divisor

∑
nipi on Γ is called effective if ni ≥ 0 for all i.

The canonical divisor K of (Γ,q) is defined to be the following divisor on Γ:

K =
∑

p∈V (Γ)

(υ(p)− 2 + 2q(p))p and δK(x) =
∑

p∈V (Γ)

(υ(p)− 2 + 2q(p))δp(x).

(5)

The pair (Γ,q) is called a polarized metrized graph (pm-graph for short) if K is an
effective divisor. Whenever q = 0, (Γ,q) is called a simple pm-graph. The genus
ḡ(Γ) of a pm-graph (Γ,q) is defined to be

ḡ(Γ) = 1 +
1

2
degK = g(Γ) +

∑
p∈V (Γ)

q(p).(6)

We will simply use ḡ instead of ḡ(Γ) when there is no danger of confusion.
Let μad(x) be the admissible measure associated to K (defined by Zhang [35,

Lemma 3.7]). We have

μad(x) =
1

ḡ

( ∑
p∈V (Γ)

q(p)δp(x) +
∑

ei∈E(Γ)

dx

Li +Ri

)
.

Then, if we use Theorem 2.2, we can relate μad(x) and μcan(x) as follows:

μad(x) =
1

2ḡ
(2μcan(x) + δK(x)).(7)

Moreover, δK(Γ) = deg(K) = 2ḡ − 2, and we have μcan(Γ) = 1 = μad(Γ).
On a pm-graph (Γ,q), we defined and studied ([6] and [9]) the invariant θ(Γ) as

follows:

θ(Γ) :=
∑

p, q∈V (Γ)

(υ(p)− 2 + 2q(p))(υ(q)− 2 + 2q(q))r(p, q).(8)

We have θ(Γ) ≥ 0 for any pm-graph Γ, since the canonical divisor K is effective.
Now, we can give definitions of the invariants ε(Γ), ϕ(Γ), λ(Γ) and Z(Γ) (cf.

[36, Section 4.1]) of Γ:
(9)

ε(Γ) =

∫∫
Γ×Γ

r(x, y)δK(x)μad(x), Z(Γ) =
1

2

∫∫
Γ×Γ

r(x, y)μad(x)μad(y),

ϕ(Γ) = 3ḡ · Z(Γ)− 1

4
(ε(Γ) + 
(Γ)), λ(Γ) =

ḡ − 1

6(2ḡ + 1)
ϕ(Γ) +

1

12
(ε(Γ) + 
(Γ)).

We can express invariants given in equation (9) in terms of τ (Γ) and θ(Γ) ([9,
Propositions 4.6, 4.7, 4.9 and Theorem 4.8]):
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Theorem 2.3. Let (Γ, q) be a pm-graph. Then we have

ϕ(Γ) =
(5ḡ − 2)τ (Γ)

ḡ
+

θ(Γ)

4ḡ
− 
(Γ)

4
, Z(Γ) =

(2ḡ − 1)τ (Γ)

ḡ2
+

θ(Γ)

8ḡ2
,

λ(Γ) =
(3ḡ − 3)τ (Γ)

4ḡ + 2
+

θ(Γ)

16ḡ + 8
+

(ḡ + 1)
(Γ)

16ḡ + 8
, ε(Γ) =

(4ḡ − 4)τ (Γ)

ḡ
+

θ(Γ)

2ḡ
.

Theorem 2.3 plays a crucial role in our algorithm (see Remark 3.7 below).

Remark 2.4. Given a pm-graph (Γ,q) with a vertex set V (Γ) suppose s ∈ Γ−V (Γ),
we have q(s) = 0 and υ(s) = 2. If we enlarge the vertex set by considering s as a
vertex, θ(Γ) does not change. We recall that this process also does not change the
value of τ (Γ) (the valence property of τ (Γ), see [7, Remark 2.10]). Conversely, if
q(s) = 0 and υ(s) = 2 for some s ∈ V (Γ) with V (Γ) has at least two elements, then
removing s from the vertex set of Γ does not change τ (Γ) and θ(Γ) (such vertices
are called eliminable vertices in [27, p. 152]). Using these observations along with
Theorem 2.3, we note that ε(Γ), Z(Γ), ϕ(Γ) and λ(Γ) do not change under this
process. That is, each of these invariants has the valence property.

Let (Γ,q) be a polarized metrized graph containing a self loop of length L at a
vertex p with υ(p) ≥ 3. Let β be a metrized graph obtained from Γ by deleting
this self loop. We still have p ∈ V (β) but its valence is reduced by 2. Now, we
consider a function q̄ : β → N given by q̄(p) = q(p) + 1 and q̄(x) = q(x) for every
x ∈ β − {p}. Note that (β, q̄) is a polarized metrized graph, and that ḡ(Γ) = ḡ(β),

(Γ) = 
(β)+L, θ(Γ) = θ(β) and τ (Γ) = τ (β)+ L

12 by the additive property of τ (Γ)

[7, p. 15] and by the fact that a self loop of length L has the tau constant value L
12 .

Using these facts along with Theorem 2.3, we obtain the following equalities:

(10)

ϕ(Γ) = ϕ(β) +
ḡ − 1

6ḡ
L, Z(Γ) = Z(β) +

2ḡ − 1

12ḡ2
L,

λ(Γ) = λ(β) +
ḡ

8ḡ + 4
L, ε(Γ) = ε(β) +

ḡ − 1

3ḡ
L.

Successive application of the process above gives a pm-graph β that is either a
graph with one vertex and a self loop at this vertex or a graph without self loops.
For the first case, we can use the following proposition (part of which is nothing
but [36, Proposition 4.4.3]. Here we give a new proof.):

Proposition 2.5. Let (Γ, q) be a pm-graph with one vertex and e ≥ 1 self loops at
its vertex. Then

ϕ(Γ) =
ḡ − 1

6ḡ

(Γ), Z(Γ) =

2ḡ − 1

12ḡ2

(Γ),

λ(Γ) =
ḡ

8ḡ + 4

(Γ), ε(Γ) =

ḡ − 1

3ḡ

(Γ).

Proof. If Γ has just one self loop, then τ (Γ) = �(Γ)
12 and θ(Γ) = 0. Thus, the

result follows from Theorem 2.3 in this case. Applying the procedure given in
equation (10), one can show that the result still holds if Γ has more than one self
loop. �

Removing a loop at a point and increasing the value of q at that point is a way
to remember degenerations. As we explained above, this gives a method to get rid
of self loops in order to use matrix manipulations in our computations as shown in
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the next section. Alternatively, one can get rid of a self loop by enlarging the vertex
set by considering a point in the interior of the self loop as a vertex. Note that
this process does not change the invariants we consider because of their valence
property by Remark 2.4. However, this second method of getting rid of self loops
is computationally more costly. Because, it increases the number of vertices.

In short, our discussion above shows that we can focus on pm-graphs with no
self loop.

3. The algorithm based on the use of discrete Laplacian

In this section, we first describe the discrete Laplacian matrix of a finite weighted
graph with no self loops and multiple edges. Then following [10], we define discrete
Laplacian matrices associated to a metrized graph Γ and a pm-graph (Γ,q). Then
we express invariants of a pm-graph in terms of the associated discrete Laplacian
matrices, their pseudo inverse and values of q. This enables us to achieve our main
goal in this paper. Namely, we derive a feasible algorithm for both numeric and
symbolic computations of pm-graph invariants.

To have a well-defined discrete Laplacian matrix L for a metrized graph Γ, we
first choose a vertex set V (Γ) for Γ in such a way that there are no self loops, and
no multiple edges connecting any two vertices. This can be done by enlarging the
vertex set by considering additional valence two points as vertices whenever needed.
We call such a vertex set V (Γ) adequate. If distinct vertices p and q are the end
points of an edge, we call them adjacent vertices.

Let Γ be a metrized graph with e edges and an adequate vertex set V (Γ) con-
taining v vertices. Fix an ordering of the vertices in V (Γ). Let {L1, L2, · · · , Le} be
a labeling of the edge lengths. The matrix A = (apq)v×v given by

apq =

{
0, if p = q, or p and q are not adjacent,
1
Lk

, if p �= q, and an edge of length Lk connects p and q,

is called the adjacency matrix of Γ. Let D = diag(dpp) be the v×v diagonal matrix
given by dpp =

∑
s∈V (Γ) aps. Then L := D − A is called the discrete Laplacian

matrix of Γ. That is, L = (lpq)v×v where

lpq =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if p �= q, and p and q are not adjacent,

− 1
Lk

, if p �= q, and p and q are connected by an edge

of length Lk,

−
∑

s∈V (Γ)−{p} lps, if p = q.

We define the discrete Laplacian matrix corresponding to pm-graph (Γ,q) as the
discrete Laplacian L corresponding to the metrized graph Γ. The important thing
is that if the vertex set of (Γ,q) needs to be enlarged to make it an adequate vertex
set we set q to value 0 for those new vertices added because of self loops or multiple
edges.

Although L is not invertible, it has generalized inverses. In particular, it has
the pseudo inverse L+, also known as the Moore-Penrose generalized inverse. The
pseudo inverse L+ is uniquely determined by the following properties:

i) LL+L = L, iii) (LL+)T = LL+,

ii) L+LL+ = L+, iv) (L+L)T = L+L.
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For a discrete Laplacian matrix L of size v× v, the following formula for L+ (see
[24, ch. 10]) is an important part of our computations:

(11) L+ =
(
L− 1

v
J
)−1

+
1

v
J,

where J is of size v × v and has all entries 1.
L and L+ are symmetric matrices.

Remark 3.1. We have
∑

p∈V (Γ) lpq = 0 =
∑

p∈V (Γ) l
+
pq, for each q ∈ V (Γ).

The following lemma shows that effective resistance on a metrized graph can be
computed via any generalized inverse of L and so via L+.

Lemma 3.2 ([3], [4], [19, Theorem A]). Suppose Γ is a graph with the discrete
Laplacian L and the resistance function r(x, y). Let H = (hij) be a generalized
inverse of L (i.e., LHL = L). Then we have

r(p, q) = hpp − hpq − hqp + hqq, for any p, q ∈ V (Γ).

In particular, for the pseudo inverse L+ we have

r(p, q) = l+pp − 2l+pq + l+qq, for any p, q ∈ V (Γ).

In our algorithm, we prefer to use L+ rather than other generalized inverses. In
this way, we obtain much simpler formulas for τ (Γ), θ(Γ) and also for the other
pm-graph invariants. This is to obtain a faster algorithm. However, one can use
any generalized inverse of L to derive similar formulas and algorithms.

It is important that τ (Γ) can be expressed in terms of the discrete Laplacian
matrix and its pseudo inverse:

Theorem 3.3 ([10, Theorem 4.10]). Let L be the discrete Laplacian matrix of size
v × v for a metrized graph Γ, and let L+ be its Moore-Penrose pseudo inverse.
Suppose pi and qi are end points of ei ∈ E(Γ). Then we have

τ (Γ) = − 1

12

∑
ei∈E(Γ)

lpiqi

( 1

lpiqi

+ l+pipi
− 2l+piqi

+ l+qiqi
)2

+
1

4

∑
q, s∈V (Γ)

lqsl
+
qql

+
ss +

1

v
tr(L+).

Moreover,
∑

q, s∈V (Γ) lqsl
+
qql

+
ss = −

∑
ei∈E(Γ) lpiqi

(
l+pipi

− l+qiqi
)2
.

Similarly, one can express μcan in terms of the discrete Laplacian matrix and its
pseudo inverse:

Proposition 3.4 ([10, Prop. 4.12]). For a given metrized graph Γ, let L be its
discrete Laplacian, and let L+ be the corresponding pseudo inverse. Suppose pi and
qi are end points of ei ∈ E(Γ). Then we have

μcan(x) =
∑

p∈V (Γ)

(1− 1

2
v (p)) δp(x)−

∑
ei∈E(Γ)

(
lpiqi + l2piqi(l

+
pipi

− 2l+piqi + l+qiqi)
)
dx.

Using equation (7) and Proposition 3.4, we express μad(x) in terms of the entries
of L and L+:
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Proposition 3.5. For a given pm-graph (Γ, q), let L be its discrete Laplacian, and
let L+ be the corresponding pseudo inverse. Suppose pi and qi are end points of
ei ∈ E(Γ). Then we have

μad(x) =
1

ḡ

∑
p∈V (Γ)

q(p) δp(x)−
1

ḡ

∑
ei∈E(Γ)

(
lpiqi + l2piqi(l

+
pipi

− 2l+piqi + l+qiqi)
)
dx.

We already know by definition of θ(Γ) that it is a finite sum involving effective
resistance values. Therefore, if we use Lemma 3.2, we can compute θ(Γ) via finitely
many matrix manipulations. This observation is used in the following important
theorem, which states that θ(Γ) can be expressed in terms of L and L+:

Theorem 3.6. Let (Γ, q) be a pm-graph. Then

θ(Γ) = 2(2ḡ−2)
∑

p∈V (Γ)

(υ(p)−2+2q(p))l+pp−2
∑

p, q∈ V (Γ)

(υ(p)+2q(p))(υ(q)+2q(q))l+pq.

Proof. Since deg(K) = 2ḡ−2,
∑

s∈V (Γ)(υ(s)−2+2q(s)) = 2ḡ−2. Then the result

follows from equation (8), Lemma 3.2 and Remark 3.1. �

Remark 3.7. τ (Γ) and θ(Γ) can be computed algorithmically via matrix manipu-
lations by Theorem 3.3 and Theorem 3.6, respectively. Therefore, if we use The-
orem 2.3 we can compute ϕ(Γ), Z(Γ), λ(Γ) and ε(Γ) algorithmically via matrix
manipulations.

Whenever q = 0 on Γ, i.e. Γ is a simple graph, we have ḡ = g = e− v + 1 and

(12) θ(Γ) = 2(2g − 2)
∑

p∈V (Γ)

(υ(p)− 2)l+pp − 2
∑

p, q∈V (Γ)

υ(p)υ(q)l+pq.

Moreover, if Γ is both simple and r-regular, we have e = r
2v, ḡ = r−2

2 v + 1 and we
have

(13) θ(Γ) = 2v(r − 2)2tr(L+),

since
∑

p∈V (Γ) l
+
pq = 0.

As we explained in §2, we can assume that Γ has no self loops. We can apply
the valence property (see Remark 2.4) to reduce the number of vertices if possible.
Then we can choose an adequate vertex set V (Γ) so that there will be no multiple
edges. Now for such a pm-graph (Γ,q), we can use the discrete Laplacian matrix
L and the values of q to compute the invariants ε(Γ), ϕ(Γ), λ(Γ) and Z(Γ). We
describe the pseudo code of this algorithm in Algorithm 3.1 below.

Note that the most costly part of this algorithm is to obtain L+ from L. In our
algorithm, we use equation (11) to compute L+. This requires the computation of
the inverse of a square matrix. One can use various methods to compute pseudo
inverse L+ (e.g., see [11]). Time needed to compute pseudo inverse is roughly the
matrix multiplication time or the matrix inversion time. Inverting an n×n matrix
requires O(n3) operations if we use Gaussian elimination method. If we use the
Strassen algorithm [31], we need O(n2.807) operations. This is not optimal, and one
needs O(n2.376) operations if the algorithm due to D. Coppersmith and S. Winograd
[13] is used. Even better algorithms are given independently by A. Stothers [30]
and later by V. V. Williams [34] as their algorithms require less than O(n2.374) and
O(n2.3729) operations, respectively.
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One can see that the computational complexity of Algorithm 3.1 is O(n2.3729);
in particular, we note that it is less than O(n3).

Algorithm 3.1: PMGraphInvariants(L, Q)

comment: The matrix L of size v×v is the discrete Laplacian of a metrized graph Γ. The
vector Q represents the values of a non-negative function q so that (L,q) is
the corresponding pm-graph with an adequate vertex set V (Γ). In particular,
Q = {q(1), q(2), · · · , q(v)}, where q(i) is the value of the function q at the
vertex i corresponding to i-th row of L. Here, Γ is assumed to have no self
loops and no multiple edges.

local v, J,L+, e, �(Γ), τ1(Γ), τ2(Γ), τ(Γ),Val,Vec, θ1(Γ), θ2(Γ), θ(Γ), ϕ(Γ), λ(Γ), ε(Γ), Z(Γ)
v = The number of rows of L
comment: v is the number of vertices in Γ.

J = The matrix of size v × v with all entries 1

L+ = (L− 1
v
J)−1 + 1

v
J

comment:Here L+, the pseudo inverse of L, is obtained by using equation (11).

e = 0, �(Γ) = 0, τ1(Γ) = 0, τ2(Γ) = 0,
comment: e is the number of non-zero entries above the diagonal of L, i.e., the number

of edges in Γ. �(Γ) is the total length of Γ. �(Γ) is the negative of the sum of
the reciprocals of non-zero entries above the diagonal of L.

for p = 1 to v

do

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

for q = p+ 1 to v

do

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

if lpq �= 0

then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(Γ) = �(Γ)− 1
lpq

e = e+ 1

τ1(Γ) = τ1(Γ)− lpq
(

1
lpq

+ l+pp − 2l+pq + l+qq
)2

τ2(Γ) = τ2(Γ)− lpq
(
l+pp − l+qq

)2
τ(Γ) = 1

12
τ1(Γ) +

1
4
τ2(Γ) +

1
v
tr(L+)

comment:We compute τ(Γ) by using Theorem 3.3.

Val = Vector of length v with each entry 0
for p = 1 to v

do

⎧⎨
⎩
for q = 1 to v

do

{
if lpq < 0
then Valp = Valp +1

comment: We set i-th component Vali of the vector Val to be the valence of the i-th
vertex, i.e., υ(i). It is the number of non-zero off diagonal entries in the i-th
row of L.

ḡ = e− v + 1 +
∑v

i=1 Qi

comment:We compute ḡ by using equation (6).

Vec = Val+2Q, θ1(Γ) = 0, θ2(Γ) = 0
for p = 1 to v

do

⎧⎨
⎩
θ1(Γ) = θ1(Γ) + (Vecp −2)l+pp
for q = 1 to v

do θ2(Γ) = θ2(Γ) + Vecp Vecq l
+
pq

θ(Γ) = 2(2ḡ − 2)θ1(Γ)− 2θ2(Γ)
comment:We compute θ(Γ) by using Theorem 3.6.

ϕ(Γ) = 5ḡ−2
ḡ

τ(Γ) + 1
4ḡ

θ(Γ)− 1
4
�(Γ), λ(Γ) = 3ḡ−3

4ḡ+2
τ(Γ) + 1

16ḡ+8
θ(Γ) + ḡ+1

16ḡ+8
�(Γ)

ε(Γ) = 4ḡ−4
ḡ

τ(Γ) + 1
2ḡ

θ(Γ), Z(Γ) = 2ḡ−1
ḡ2 τ(Γ) + 1

8ḡ2 θ(Γ)

comment:We compute ϕ(Γ), λ(Γ), ε(Γ) and Z(Γ) by using Theorem 2.3.

return (�(Γ), τ(Γ), θ(Γ), ϕ(Γ), λ(Γ), ε(Γ), Z(Γ))
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p

q

s

t
1

c

1

b

1

e

1

a

1

d

1

f

Figure 1. Complete graph with vertices {p, q, s, t} and edges of
lengths { 1

a ,
1
b ,

1
c ,

1
d ,

1
e ,

1
f }.

4. Examples

In this section, we give various examples illustrating the implementation of the
algorithm described in the previous section. A symbolic computation is exemplified
as follows:

Example 1. Let Γ be a simple pm-graph as illustrated in Figure 1. In this case, we
have 
(Γ) = 1

a +
1
b +

1
c +

1
d +

1
e +

1
f , and the discrete Laplacian matrix corresponding

to Γ is given as follows:

L =

⎡
⎢⎢⎣

a+ b+ c −a −b −c
−a a+ d+ e −d −e
−b −d b+ d+ f −f
−c −e −f c+ e+ f

⎤
⎥⎥⎦ .

We first compute L+ by using equation (11), then use the algorithms given above
to derive the following results:

τ (Γ) =
1

12

(Γ)− A+ 2B

6C
, θ(Γ) =

6A+ 8B

C
,

ϕ(Γ) =
1

9

(Γ)− 2A+ 7B

9C
, λ(Γ) =

3

28

(Γ) +

A

28C
,

Z(Γ) =
5

108

(Γ)− A+ 8B

108C
, ε(Γ) =

2

9

(Γ) +

5A+ 4B

9C
,

where A = ab+ac+bc+ad+bd+ae+ce+de+bf+cf+df+ef , B = cd+be+af , C =
abc+acd+bcd+abe+bce+ade+bde+cde+abf+acf+adf+bdf+cdf+aef+bef+cef .

The following example has mostly numeric computations and some symbolic
computations because of non-zero q.

Example 2. Let Γ be a pm-graph (Γ,q) such that Γ is the complete graph on 4
vertices {p, q, s, t} as in Figure 1. Suppose that each edge of Γ has length 1

6 and
that q(p) = q(q) = q(s) = q(t) = k for some non-negative integer k. In this case,
we have 
(Γ) = 1, the following discrete Laplacian matrix and its pseudo inverse:

L =

⎡
⎢⎢⎣

18 −6 −6 −6
−6 18 −6 −6
−6 −6 18 −6
−6 −6 −6 18

⎤
⎥⎥⎦ , L+ =

⎡
⎢⎢⎢⎢⎣

1
32

−1
96

−1
96

−1
96

−1
96

1
32

−1
96

−1
96

−1
96

−1
96

1
32

−1
96

−1
96

−1
96

−1
96

1
32

⎤
⎥⎥⎥⎥⎦ .
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3 a a
a

a
b b b

II IIII

0 0

0

0
0

2 c c c c c

3 3 3

2 2 2
5 5

d

e

d � ed � e

6

Figure 2. A pm-graph with a self loop, non-zero q and two mul-
tiple edges.

Then we obtain these results:

τ (Γ) =
5

96
, θ(Γ) = (1 + 2k)2, ϕ(Γ) =

96k2 + 100k + 17

96(4k + 3)
,

λ(Γ) =
16k2 + 42k + 25

32(8k + 7)
, Z(Γ) =

48k2 + 88k + 37

96(4k + 3)2
, ε(Γ) =

(12k + 11)(2k + 1)

12(4k + 3)
.

In particular, if k = 0, θ(Γ) = 1, ϕ(Γ) = 17
288 , λ(Γ) = 25

224 , Z(Γ) = 37
864 and

ε(Γ) = 11
36 .

Sometimes we are given pm-graphs containing self loops or multiple edges. We
exemplify our strategy for such cases in detail as follows:

Example 3. In this example, we consider a pm-graph (Γ,q) as the graph I in
Figure 2, where the edge lengths and the values of q are illustrated. In this case, Γ
has a self loop and two multiple edges. We first ignore the vertex with q value 0 and
valence 2. To avoid having multiple edges, we add a vertex to one of the multiple
edges such that the added vertex has q value 0. We can deal with the self loop by
either applying equation (10) or considering two additional vertex with q value 0
on the self loop. These cases are illustrated by graphs II and III in Figure 2. Thus,
we can compute polarized metrized graph invariants of Γ in two different ways, and
the results are as follows:

τ (Γ) =

(Γ)

12
+

A

6
, θ(Γ) =

480bc

b+ 2c
+ 170A,

ϕ(Γ) =
11
(Γ)

72
+

10bc

b+ 2c
+

313A

72
, λ(Γ) =

3
(Γ)

25
+

12bc

5(b+ 2c)
+

24A

25
,

ε(Γ) =
11
(Γ)

36
+

20bc

b+ 2c
+

277A

36
, Z(Γ) =

23
(Γ)

1728
+

5bc

12(b+ 2c)
+

301A

1728
,

where A = d+ e, 
(Γ) = 3a+ b+ 2c+ d+ e, g(Γ) = 2 and ḡ(Γ) = 12.
The following example is about the computation of invariants of a class of simple

pm-graphs. It is given to show both symbolic computations and different aspects
of numerical computations which would be critical during the implementation of
our algorithm.

Example 4. A ladder graph Ln(a, b) is a planar graph that looks like a ladder
with n rungs. It has 2n vertices and 3n − 2 edges. Edges looking like rungs
are of lengths b, and each of the remaining 2(n − 1) edges has length a. Thus,

(Ln(a, b)) = 2(n− 1)a+ nb and g(Γ) = n− 1. Figure 3 shows an example. Using
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a

a

a

a

b

b

b

Figure 3. Ladder graph L3(a, b).

Table 1. Number of edges, vertices, genus and length of Ln(a, b)
for n ∈ {2, 3, 4, 5}.

n e v g(Ln(a, b)) 
(Ln(a, b))
2 4 4 1 2(a+ b)
3 7 6 2 4a+ 3b
4 10 8 3 2(3a+ 2b)
5 13 10 4 8a+ 5b

Table 2. For pm-graph Γ = Ln(a, b), τ (Γ) and θ(Γ) for n ∈ {2, 3, 4, 5}.

n τ(Γ)
�(Γ)

θ(Γ)
�(Γ))

2 1
12 0

3 8a2+14ab+7b2

12(2a+3b)(4a+3b)
2b(2a+b)

(2a+3b)(4a+3b)

4 12a4+36a3b+38a2b2+18ab3+3b4

24(a+b)(3a+2b)(2a2+4ab+b2)
4a4+20a3b+26a2b2+10ab3+b4

(a+b)(3a+2b)(2a2+4ab+b2)

5 128a5+496a4b+704a3b2+476a2b3+160ab4+19b5

12(8a+5b)(4a2+6ab+b2)(4a2+10ab+5b2)
2(128a5+656a4b+1104a3b2+716a2b3+160ab4+9b5)

(8a+5b)(4a2+6ab+b2)(4a2+10ab+5b2)

Table 3. For pm-graph Γ = Ln(a, b), ϕ(Γ) and λ(Γ) for n ∈ {2, 3, 4, 5}.

n ϕ(Γ)
�(Γ)

λ(Γ)
�(Γ)

2 0 1
12

3 2a2+2ab+b2

3(2a+3b)(4a+3b)
1
10

4 72a4+192a3b+164a2b2+60ab3+9b4

72(a+b)(3a+2b)(2a2+4ab+b2)
5a+3b

14(3a+2b)

5 (2a+b)(16a4+52a3b+51a2b2+16ab3+2b4)
(8a+5b)(4a2+6ab+b2)(4a2+10ab+5b2)

5(2a+b)
9(8a+5b)

the same notation for the corresponding simple pm-graph, we obtain the results
given in the tables below:

We used Mathematica [23] to do the symbolic computations given in Tables 2, 3
and 4. As the number of vertices gets larger the expressions in the results become
more complicated, so we listed the results only for small values of n. Again we
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Table 4. For pm-graph Γ = Ln(a, b), ε(Γ) and Z(Γ) for n ∈ {2, 3, 4, 5}.

n ε(Γ)
�(Γ)

Z(Γ)
�(Γ)

2 0 1
12

3 4a2+10ab+5b2

3(2a+3b)(4a+3b)
(a+b)2

2(2a+3b)(4a+3b)

4 36a4+132a3b+154a2b2+66ab3+9b4

18(a+b)(3a+2b)(2a2+4ab+b2)
36a4+120a3b+134a2b2+60ab3+9b4

108(a+b)(3a+2b)(2a2+4ab+b2)

5 64a5+288a4b+452a3b2+298a2b3+80ab4+7b5

(8a+5b)(4a2+6ab+b2)(4a2+10ab+5b2)
5(2a+b)(16a4+60a3b+73a2b2+32ab3+4b4)
24(8a+5b)(4a2+6ab+b2)(4a2+10ab+5b2)

Table 5. For pm-graph Γ = Ln(1, 1), computations of τ (Γ), θ(Γ),
ϕ(Γ), λ(Γ), ε(Γ) and Z(Γ) when n ∈ {5, 10, 15, 20}.

n τ(Γ)
�(Γ)

θ(Γ)
�(Γ)

ϕ(Γ)
�(Γ)

λ(Γ)
�(Γ)

ε(Γ)
�(Γ)

Z(Γ)
�(Γ)

5 661
10868

5546
2717

411
2717

5
39

1189
2717

925
21736

10 2107
37829

554308
37829

30329
71676

15
76

344578
340461

210215
6128298

15 3061011619
56529128700

180955287578
4710760725

2384321993
3411240525

665
2494

155613041207
98925975225

2950668709
92330910210

20 105284865781
1971566979888

6020905705851
82148624162

12183994532757
12486590872624

380
1131

6652614900537
3121647718156

10979128575725
355867839869784

Table 6. For pm-graph Γ = Ln(1, 1), computations of τ (Γ), θ(Γ),
ϕ(Γ), λ(Γ), ε(Γ) and Z(Γ) when n ∈ {500, 1000, 10000, 15000,
20000, 25000}.

n τ(Γ)
�(Γ)

θ(Γ)
�(Γ)

ϕ(Γ)
�(Γ)

λ(Γ)
�(Γ)

ε(Γ)
�(Γ)

Z(Γ)
�(Γ)

500 0.051341 55155.801 27.6397 7.0023 55.4713 0.0278941

1000 0.051299 221422.325 55.4174 13.946 111.027 0.0278359

5000 0.051266 5551550.777 277.639 69.502 555.471 0.0277894

10000 0.051262 22214198.121 555.417 138.94 1111.03 0.0277836

15000 0.051261 49987945.991 833.194 208.39 1666.58 0.0277816

20000 0.051260 88872829.563 1110.97 277.83 2222.14 0.0277807

25000 0.051259 138868444.360 1388.75 347.27 2777.69 0.02778

used Mathematica [23] to do exact computations given in Table 5.
Finally, we used Matlab [20], which does machine arithmetic, to obtain the results

in Table 6. Note that when n = 25000 in Table 6, Ln(1, 1) has 50000 vertices and
75000− 2 edges. As such computations would be possible on a computer with high
memory and processing speed, we used Mac Pro with processor 2×2.93 GHz 6-core
Intel Xeon (24 hyper-threading in total) and memory 32 GB 1333 MHz DDR3 to
obtain these results.

Symbolic computations are clearly the most costly computations. Among the
numerical computations, we can have exact arithmetic (arithmetic with numbers
having an infinite number of significant figures, i.e, with numbers having infinite
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precision), precision arithmetic (which involves the numbers with precision more
than 18) and arithmetic with machine numbers.
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