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ABSTRACT 

 

MOLECULAR RECOGNITION OF PROTEIN-LIGAND 

COMPLEXES VIA CONVOLUTIONAL NEURAL 

NETWORKS 

 

 

Hüseyin GÜNER 

 

MSc. in Electrical and Computer Engineering 

Advisor: Assoc. Prof. Zafer AYDIN 

 

January 2022 

 

 

As a sub-discipline of Artificial Intelligence, deep neural networks have received 

enormous interest in research and industrial applications over the last decades owing to 

their highly successful performance in addressing and solving broad areas of problems. 

Hence, especially hitherto achievements in computer-aided drug design brought an extra 

impetus with the novel deep learning approaches in structure-based drug design etiology. 

Our group offers a novel convolutional neural network model, deepMLR, that casts 

insight into the molecular recognition of ligand molecules and a receptor protein 

molecule. Having compared our model and a few other existing models with a case study 

of a traditional approach, herein, we present the success story of a deep learning model 

straight. 
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ÖZET 

 

PROTEİN-LİGAND KOMPLEKSLERİNİN 

KONVOLÜSYENEL SİNİR AĞLARI İLE MOLEKÜLER 

TANINMASI 

 

Hüseyin GÜNER 

 

Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans 

Tez Yöneticisi:  Doç. Dr. Zafer AYDIN 

 

Ocak 2022 

 

 

Yapay Zeka'nın bir alt disiplini olarak derin sinir ağları, geniş spektrumdaki problem 

alanlarını ele alma ve çözmedeki son derece başarılı performansları nedeniyle, son on 

yılda (özellikle) araştırma ve endüstriyel uygulamalarda büyük bir ilgi görmeye başladı. 

Özellikle son zamanlardaki, bilgisayar destekli ilaç tasarımındaki başarıları nedeniyle, 

yapı tabanlı ilaç tasarımı etiyolojislerindeki yeni derin öğrenme yaklaşımlarına karşı 

ekstra bir ivme kazanmıştır. Grubumuz, ligand moleküllerinin ve bir reseptör protein 

molekülünün moleküler olarak tanınması hakkında bir fikir veren yeni bir konvolüsyonel 

sinir ağı modeli sunmaktadır. Diğer mevcut modellerle ve modelimizle geleneksel bir 

yaklaşımın örnek çalışmasıyla karşılaştırıldığında, burada derin bir öğrenme modelinin 

başarı hikayesini sunuyoruz. 
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Sinir Ağları, Protein-Ligand Bağlanma Tahmini, Yapı Tabanlı Sanal Tarama 
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Chapter 1 

 

Introduction  

 

        Even in prehistoric times, drugs -as a chemical substance- were primarily extracted 

from different plants and were used as therapeutics. Based on the archaeological remains, 

the first known medicines that were extracted from plants date back to 60,000 BC [1]. 

Those natural products were obtained and processed by traditional experts like shamans 

in certain regions of the world. The process of finding a potent small chemical can be 

simply described as drug discovery[2]. Instead of a shaman, scientists from different 

disciplines are trying to articulate newer methodologies to find the most suitable 

candidate for a certain target macromolecule, most of the time a protein of interest which 

is believed to be the biomarker of a certain disease.  

        Advancements in organic chemistry, genomics, proteomics, and crystallographic 

experiments started a new era of successful findings into the drug discovery process [2]. 

The biological importance of the target molecule’s molecular functions and its structure 

is becoming the main motive of investigating newer or alternative small chemicals. High 

throughput screening (HTS) [3]  experiments of hundreds of thousands of chemicals can 

be tested using biochemical assays set up to determine the biological activity of 

compounds of interest. It is estimated that the overall discovery process costs more than 

a billion dollars [4]. Nevertheless, those expensive and lengthy techniques can be 

complemented or replaced with a computational method of different types to reduce the 

time and the expenses. Computer-aided drug design (CADD) provides a cheaper and 

faster alternative in finding the leads and testing their performance before trying them 

clinically [5]. 

        Theoretical chemists and many other counterpart scientists from different research 

areas have designed highly successful molecular mechanics methodologies to describe 

the nature of interactions of all constituents of drug-target interactions (DTI). Their 

success in building the foundations of understanding the molecular interactions and the 
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dynamic systems fueled the computational scientists working in Artificial Intelligence 

(AI) to thrive into building models to tackle similar problems. From its early days of the 

fifties to our time, AI has been used in everyday applications and its success, especially 

in image processing, speech recognition and natural language processing, inspired 

everyone in the industry and research. After a long winter season of AI studies, newly 

invented algorithms, and rapid advancements in computer infrastructure and hardware 

strived the scientists and professionals of the industry to put more effort in solving all 

sorts of problems using AI and Computational Science [6], [7]. 

        In this thesis work, we aimed to introduce a few existing AI methods and compare 

them to a real case study to showcase how effective and successful their methodology is. 

We have additionally proposed a similar and extensive model using the same AI method 

they have used. Our model is based on an analogy with the structure-based drug 

design/discovery (SBDD) approach of different combinations of available in vitro, in vivo 

biochemical techniques and heavy computational analysis methods of molecular 

interactions. 

        In chapter 2, we will scrutinize the conceptual framework of SBDD, starting with 

molecular recognition. We have hesitated to recount the theory and applications of SBDD 

and merely focused on the field's core concepts to build a solid theoretical basis for our 

computational tool. It will be out of the scope of our work to deliver the theoretical 

chemist's agenda to our readers. We have included an overview of structure-based virtual 

screening (SBVS) as a subsection in that chapter. The next chapter outlines the structure 

of the AI method in detail and explains the ingredients of model construction and outputs 

of the procedure. Chapter 4 is dedicated to presenting a showcase of selected models and 

our model and included the traditional CADD elaboration for a case study and compared 

all of them on that specific example work. In the final chapter, we discussed the prospects 

and use and benefit of our model in detail.  
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Chapter 2 

 

Structure Based Drug Discovery 

 

        Structural biology was introduced as a direct method in drug discovery as early as 

the seventies, and the first successful applications appeared at the beginning of the 

nineties [2]. Even in industry and the research environments, structural biology and 

SBDD became essential operational tools in drug discovery. As depicted in Fig. 1, SBDD 

can be utilized at different stages of the discovery process, and it can be used as a 

benchmark for other steps [7]. HTS is performed in-vitro, whereas virtual screening (VS) 

is an in-silico operation to screen large chemical libraries [8]. 

        When the target in question has a known three-dimensional structure, VS is called 

structure-based VS (SBVS). The output of HTS experiments yielded a massive 

accumulation of structure-activity relationship (SAR) datasets [9], [10]. Therefore, as a 

direct result of the collected data, the protein-ligand docking became the most frequently 

applied methodology of SBVS to predict the poses and strength of binding affinity for a 

predetermined binding pocket. The results of docking experiments can be employed to 

evaluate further and rank the potential drug candidates for selectivity and potency [11]. 

Indeed, the predicative compound can have off-target effects and may undoubtedly 

interact with other macromolecules. Thus, it leads to unwanted side effects.  

        The total number of possible drug-like small chemicals is estimated to be between 

1030−1060 [12]. The discovery of novel biologically active compounds will flourish our 

understanding of biological processes and improve therapeutic methods. Expanding the 

size of the chemical spaces to be screened is also becoming a significant issue in SBVS. 

A cycle of design-make-test-analyze (DMTA) includes many consecutive syntheses of 

ligands and the construction of biological assays [13]. 

        The biological activity of a potent drug could be measured by the extent of its 

molecular interaction strength with a known target macromolecule, mostly a protein, and 

it is the primary mediator of interruption of a disease mechanism. Indinavir is a recently 
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found protease inhibitor, blocking the enzyme's biological function that is sold in the 

market to treat AIDS/HIV patients [14]. It was approved last decade and identified before 

preclinical tests by employing SBDD using CADD mainly. Hence, there are a growing 

number of successful cases accomplished by computational approaches in drug discovery.        

 

Figure 2.1 Schema of structure-based drug discovery 
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2.1 Molecular Recognition 

        Advancements in protein purification methods and crystallography techniques have 

caused the vast availability of target molecules to be determined structurally. Ideally, the 

availability of protein structures provides an excellent opportunity to elaborate on 

quantitative and qualitative aspects of protein-ligand complexes [15]. 

 

         Recent studies show that the formation of such complexes is a direct product of a 

somewhat complex process of thermodynamic equilibrium [16]. The ligand and protein 

molecules are solvated into several 

conformers of their own and coexist in 

equilibrium. Water molecules, as a 

solvent residing at the binding site, are 

forced to be displaced from their 

position by the ligand to yield an 

ultimate solvated complex. A stable 

complex will be formed if the 

individual interaction strengths of both 

protein and ligand with solvent are 

smaller than that of the complex and the 

solvation medium. Thermodynamics 

evaluations do not foresee a complex 

formation favorable due to the 

vanishing conformational degrees of freedom. Moreover, spatial degrees of freedom of 

rotation and translations will be exterminated after a complex formation. To overcome 

the drawbacks of a formation, specific contacts between the ligand and protein should 

compensate for the net effect. Fig 2.2 provides the steps of the formation of the complex 

itself [16].  

 

        Crystallographic structure determinations of a vast variety of protein-ligand 

complexes can help elucidate the qualitative features of molecular recognition of complex 

formation. Nevertheless, the resolution of structural determination is not yet at the atomic 

scale, and the exact positions of atoms cannot be determined. Different types of non-

covalent bonding between the host and guest molecule could represent molecular 

Figure 2.2 Formation of a complex 
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recognition. For example, hydrogen bonding, weak van der Walls forces, strong π-π 

interactions, hydrophobic forces and metal coordination forces can be accounted as non-

covalent interactions [17]. In addition, the solvent molecules also have an indirect 

contribution to seizing the complementarity of complex molecular interactions between 

the host and guest. Recent developments in the Physics of molecular recognition boosted 

the computational approaches to handle the plethora of available experimental data at 

hand. Now, we have a better picture of a microscopic and dynamic snapshot of the 

experimental phenomena. 

2.1.1 Thermodynamic Entities 

 

A statistical ensemble’s probabilistic nature of microstates can be closely associated 

with the amount of free energy in the thermodynamic system [16].  

Let’s take a system of N particles residing inside a volume of V, at temperature T, 

the system’s free energy F can be defined as  

 

    𝐹𝑁𝑉𝑇 =  (𝑁! 𝑏3𝑁)−1 ∬ 𝑒−ℋ(𝒓,𝒑)/𝑘𝐵𝑇 𝑑 𝒑𝑑𝒓  ,                                             (2.1) 

 

where the factorial of N is disregarded if we take the particles as indistinguishable, and b 

stands for Planck’s constant. The system’s free energy can be calculated by taking the 

integral over all particle coordinates r and momenta p. The Boltzmann factor  of the 

system Hamiltonian becomes           

 

                                   ℋ(𝒓, 𝒑) =  𝒱(𝒓; 𝒔) + 𝒦(𝒓, 𝒑),                                                   (2.2) 

 

the direct sum of potential 𝒱(𝒓; 𝒔), and kinetic energy 𝒦(𝒓, 𝒑) of the whole system. The 

potential energy can be estimated from empirical force fields and depends on a parameter 

set s yet is independent of the momenta. 

 

        It will become a necessity to express the standard relationship of free energy as, 

 

                                        𝐹 = 𝑈 − 𝑇. 𝑆                                                                      (2.3) 
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where U is energy or H enthalpy, and S is entropy. One can calculate the change in free 

energy of the whole ensemble after complex formation at a constant temperature as, 

                         Δ𝐹 = Δ𝑈 − 𝑇. Δ𝑆                                                                   (2.4) 

         

        The information provided by Eq. (2.4) is used as a thermodynamic signature of the 

molecular recognition process of interest. Identifying the terms of the equation is often 

regarded as an enthalpy-entropy compensation issue [18].  

2.2 Ligand-Protein Affinity Scoring Functions 

        To quantitatively assess the affinity of the ligand and receptor molecules, a multitude 

of scoring functions (SF) have been created and implemented for the SBDD paradigm. 

Indeed, the prime objective of using SFs is to obtain a quick evaluation of binding affinity; 

they are not designed to ultimately reveal the physics of the interaction. In essence, they 

create a key balance between the overall efficiency and accuracy of the SBDD process 

[19]. 

         

       The current SFs are classified as force-field or physics-based, empirical, or 

regression-based, potential of mean force or knowledge-based, and descriptor or 

machine-learning based, depending on the source of derivation. [19]. In the early 

seventies, a group of scientists had brought in the concept of computing the interactions 

between a ligand and a receptor by the known force fields. Force-field contains non-

covalent energy terms, and they are the key elements used in this specific SF [20].  

 

       The second type of SF was first introduced by Böhm [21], and other well-known 

examples were also developed by others, like X-Score, Glide-Score, and Chemcore [22]–

[24]. Empirical SF is a sum of individual contributions by different energy terms of 

simpler non-functional forms, fitted to available empirical data. On the contrary, the 

physics-based SF comprises sophisticated functional forms of each energetic addition 

with some parameters of interest. Empirical SF is limited to the capacity of available 

experimental training data sets, and their experimental values are mostly inconsistent 

[25]. 
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        In 1996, SMoG, a drug design software, offered the first known implementation of 

a knowledge-based SF.[26]. This SF is defined to be the summation of pairwise statistical 

potential between the contact atoms of protein and ligand molecules. Known examples of 

protein-ligand complexes from the PDB database make up the training set to construct 

the contact-distance potentials based on the knowledge of frequency of occurrence of 

each pair of atoms in the same dataset [27]. 

 

        The final type of SF is based on a machine learning model that generates features 

from chemical descriptors of protein and ligand molecules using a well-established 

method known as quantitative structure-activity/property relationship (QSAR) analysis. 

The most well-known examples are the RF-Score, NNScore, and SFScore [28]–[30]. 

             

2.3 Molecular Dynamics Simulations 

        Even though molecular dynamics simulation (MD) is a computationally expensive 

method for assessing the strength of protein-ligand interactions in SBVS experiments, it 

is a widely utilized technique to supplement and validate early docking results in an 

SBDD campaign. As a novel successor to Monte Carlo simulations, which was originated 

back in the 18th century, MD entered the realm of research at the beginning of the 1950s 

[31]. Fermi and his colleagues’ work were executed on a special analog computer at Las 

Alamos lab, MANIAC I, aimed to solve the dynamics of the time evolution of a many-

body ensemble under many different force fields, and their work was named as Fermi-

Pasta-Ulam-Tsingou problem [32]. In a nutshell, their study explained the behavior of a 

nonlinear physical system where the nonlinearity was a product of a small perturbation 

onto an initially linear system of interest. Since there were no direct analytic solutions to 

solve the equations, a heuristic-based numerical analysis was performed on that computer. 

 

        After its successful elaborations in theoretical physics, MD attracted other 

researchers from materials science. Moreover, first applications of MD in biochemistry 

and biophysics started at the early seventies. To simulate the motion of biological 

macromolecules, MD was applied, and it conveyed the mechanisms of their interactions 

with other molecules of interest. MD experimental runs has several limitations of initial 

settings and inadequacies in representing the entropic energy contributions. Nevertheless, 
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it is a superior technique to all available quick snapshots, and most importantly, owing to 

the improvements in force-fields and computing hardware. 

 

2.3.1 Force fields in protein-ligand complexes 

 

        An MD run is governed by an initial selection of a certain type of force field buried 

with various empirical parameters related to the atom types, types of chemical bonds, 

dihedral angular movements etc. which basically describes the interaction of particles at 

and near atomic scale. There are plenty of review articles overviewing the available force 

fields especially designed for biological macromolecules [33]. A specific type of water 

model is also assigned before starting an MD simulation [34]. 

 

        The optimized potential for liquid simulations (OPLS) with an all-atom (OPLS-AA) 

is a favorable force field for the description of the dynamics of proteins and their 

interactions with other molecules, since proteins and organic liquids have common 

functional groups [35]. 

 

2.4 The MM/PBSA and MM/GBSA methods 

        Implicit/continuum solvation methods are also applied in and after MD simulations 

as an alternative to force-field based ones [36]. It is used to determine free energy of 

solute-solvent interactions in molecular recognition of protein-ligand complex 

formation(s). The Molecular Mechanics/Poisson−Boltzmann Surface Area (MM/PBSA) 

and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods are 

both applied vastly in most of the SBDD campaigns  [37], [38]. 

 

       Using solvent accessible surface area, continuum electrostatics calculations, or 

combinations of other entities, one can design different implicit solvent models. The 

accessible surface area of the solute molecule and the free energy transferred are linked 

linearly. The solvation mechanism plays a crucial role in this method. On the other hand, 

the mechanistic continuum approach is based on the enthalpy of free energy. 
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       The energy change of a solvated molecule can be calculated by summing the solvent-

accessible surface area of every atom multiplied with an empirical parameter of solvation. 

The measure of penetration of every atom into the solvent molecules is dependent on the 

Born radius. The Generalized Born model is equipped with solvent accessible surface 

area, and it is the most widely used method in implicit solvent approaches. 

 

 

Figure 2.3 Accessible surface depiction 
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Chapter 3 

Deep Learning Methods 

3.1 Artificial Intelligence in Drug Discovery 

       Pioneering work by Alan Turing exemplified the possibility of a machine’s ability to 

think or perform tasks done by human-like intelligence. His groundbreaking paper 

published in the philosophy journal “Mind” offers the idea of programming an electronic 

device to act like an intelligent being and provides the depiction of his famous “imitation 

game” that we call as Turing’s Test [39]. His work is devoted to mathematical logic and 

philosophical assertations of what an AI would look like.  

 

        Pioneers from other disciplines, claimed novel ideas giving birth to the realm of AI 

[40]. To name a few, we present the following works. Wiener worked on cybernetics, 

which covers feedback and control. McCulloch asserted neural networks’ resemblance to 

nervous system of simpler organisms. Newell and Simon studied the experimental 

psychology and many others contributed to the fields of communication theory, 

linguistics, game theory and statistical learning theories to shape the fundamentals of AI. 

 

        The approval process of a new drug is becoming more and more hectic, and the cost 

of discovering novel therapeutics is increasing at the same time. Failures in clinical trials 

can be overcome if we can employ better preclinical tests to check the efficacy and 

toxicity of drug candidates more effectively. The cost of discovery will be reduced 

substantially. Drug discovery has been revolutionized by the eminent changes in AI for 

the last decade.  
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        The most common applications that AI took part in include VS, reaction prediction, 

de novo drug/protein design, and others. Here we can categorize those recent innovative 

approaches into generative and predictive AI tasks. A broad selection of AI methods and 

models derived from old school machine learning (ML) frameworks to artificial neural 

networks (ANN) were used to accomplish listed tasks. For example, convolutional neural 

networks (CNN), recurrent neural networks (RNN), graph neural networks (GNN) are the 

most applied ANN models in drug discovery. Nevertheless, our main interest is to provide 

a complete account of CNNs, and the rest of the ANN models and traditional ML methods 

is out of the scope of our work.  

 

3.1.1 Feed-forward neural networks 

       Deep learning (DL) is a subclass of machine learning algorithms based on ANN with 

representation learning. DL has now matured into a highly successful framework for 

supervised learning algorithms. As a result, DL covers various application fields like drug 

design, bioinformatics, computer vision, health informatics, text processing but is not 

Figure 3.1 Cost, time, and quality factors. Adopted from [7] 



   

 

13 

 

limited to these areas. Indeed, in almost all these fields, DL outperformed the human 

opponents drastically.  

 

        With DL, any supervised, semi-supervised or unsupervised learning method can be 

successfully applied. In unsupervised learning DL distinct patterns inside the training 

dataset can be identified without any external reference, unlike the supervised version 

requires a preprocessing of the dataset to classify it into the known patterns. 

 

Figure 3.2 Schema of AI world 

 

        Initially ANNs were inspired from theories of neuroscience [41], but further 

advancements owe much to algorithmic improvements on the stochastic gradient descent 

(SGD) optimization method [42]. Interconnected nets of artificial neurons, like the 

neurons in an animal's nervous system, send information through each connection in the 

same way that synapses transmit signals. Many neurons are cast into layers that are 

assigned with transforming the initial input signal and traversing it to different layers. 

Neurons in the same layer are not dependent on one other but have a direct relationship 

to neurons in other layers of various types via largely non-linear transformations. 

  

        An ordinary ANN, sometimes called vanilla, contains input and output layers and at 

least one hidden layer, and all layers’ neurons are connected fully. Unlike a recurrent one, 

a feed-forward neural network or multilayer perceptron (MLP) is built on an acyclic 

graph-like structure with input and output nodes connected only in one direction. Each 
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node passes a computation to all nodes in the next layer starting from the input to the final 

output layer without any loops. The feedback connections which bring the outputs of the 

network back to the input layer is missing in vanilla networks. If we add feedback  

 

 

 

connections to the model it becomes a recurrent neural network (RNN).  

       

        Each single neuron in an ANN does compute the weighted sum of the inputs from 

the previous nodes and subsequently triggers a non-linear transformation to yield its   

output value. Assume that aj is the output of jth neuron and wi,j is the sum of weights from 

neuron i to j ; thereby we will get, 

   

𝑎𝑗 =  𝑔𝑗( ∑ 𝑤𝑖,𝑗𝑎𝑖𝑖 ) ≡  𝑔𝑗( 𝑖𝑛𝑗)                                      (3.1) 

 

where gj is the activation function which guarantees non-linearity of our model. If we 

want to write the equation (3.1) in vector form: 

 

𝑎𝑗 =  𝑔𝑗( 𝒘𝑻𝒙)                                                    (3.2)  

 

Figure 3.3 Standard CNN 
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where w is the vector of  all weights fed-forward and x is the vector of inputs. The most 

frequently used non-linear activation function is ReLU (Rectified Linear Unit) function,  

and GELU (Gaussian Error Linear Unit) is also becoming popular because of its 

surpassing effect on the vanishing gradient terms in the back-propagation algorithm: 

 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)                                                (3.3) 

 

𝐺𝐸𝐿𝑈(𝑥) = x Φ(x)                                                      (3.4) 

 

where Φ(x) is distribution function of a gaussian distribution.  

 

 

 

Figure 3.4 ReLU and GELU activation functions 
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       Training is the process of learning the best parameters of the network and has been 

made possible by the back-propagation technique of calculating the derivatives of 

computational graphs in an automated fashion [43]. The partial derivatives of the cost 

function with respect to weights and biases of each unit needs to be calculated. The chain 

rule of a derivative is applied orderly from the output layer to the hidden layer(s). 

 

        We do not favor back-propagation only because of its superior speed in the learning 

process. Indeed, it provides a handful of insights on inter-dependencies of a minor change 

in the weights and/or biases of neurons and the whole network. Optimization of 

parameters and weights of each unit is achieved by a mini-batch stochastic gradient 

descent algorithm more efficiently.  

 

        The essential ingredients of training an ANN with a supervised learning scheme 

should have a data set of inputs with its targets, a definite architecture of the network, a 

non-linear activation function, a loss function, a computational technique to handle 

derivatives and an optimizer to control the overall procedure.  

3.1.2 Convolutional Neural Networks 

        Convolutional neural network (CNN, ConvNet), inspired from neuroscience, is the 

most widely used ANN technique. At its earlier times, CNNs were initially constructed 

from their resemblance to a set of biological processes (BP) of the visual part of the animal 

cerebral cortex [44]. More specifically, Hubel and Wiesel’s work by recording the 

electrical activity of neurons in the visual cortex of cat brain, showed that neurons at 

different layers detects varying complexity of visual images. The neurons on the first 

layer receives primitive features of the images and the second layer of neurons captures 

more advanced forms shaped by the combination of previous layer. As they have pointed 

out in their experimental work, more sophisticated features can be obtained by combining 

the simpler features at first hand.  

 

       Scaling, translation, and rotational invariance of the spatial data is a needy feature in 

designing a model’s architecture. For the same token, a set of features of having local 

receptive fields of convolutional operations, sharing the weights between the units of the 

same layer, and sub-sampling through the layers are inherent to the convolutional neural 
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networks. To train and learn to recognize handwritten character images, a CNN 

architecture, a LeNet-5 as shown in Fig 3.4, was successfully adopted. Fully connected 

MLP could have been safely applied. However, the parameter overload and requirement 

for additional feature identifications were the main reasons for choosing a CNN for such 

an image recognition task. In addition, overall learning accuracy is superior in the case of 

a CNN application than that of a vanilla ANN. 

 

        

 

Figure 3.5  LenNet-5 Model Architecture [45] 

 

        The LeNet-5 model structure is built on seven layers, three of which is convolutional, 

and there exist two average pooling layers. Two dense layers are added on top of feature 

generating convolutional layers with a final SoftMax activated output layer. Input images 

of handwritten and typewritten characters with a grey colour channel have the input size 

of 32x32, and the convolutional layer of feature maps of size 28x28 are obtained by 

applying six kernels of size 5x5. The layer of sub-sampling S2 contains six additional 

feature maps of size 14x14, a product of average downsampling. Convolution layer C3 is 

constructed with sixteen filters of size 5x5 and generates a higher level of feature 

mappings of size 10x10. The size of layer C3 is dropped to its halve, and a new set of 

sixteen feature maps of size 5x5 is created after average pooling.  The final convolution 

layer contains 120 units of size 1x1 and comprises convolution filters of size 5x5 from 

S4.  Even though C5 and S4 are fully connected for that provided input size, C5 will be 

sparsely connected and serve its role for a more extensive network. Hidden layers are 

activated by tanh function [45]. 

 

        From its early designs of simpler structures to today's novel CNN architectural 

designs, each model's representational learning power has been strengthened with every 

type of enhancement or advancement. Fig 3.5. shows a rich list of models designed in the 

history of CNN. Based on their architectural similarities, an evolutionary tree is 

constructed to present the urging developments in the architecture of CNN models. Each 
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design element is shown as a different branch, and the tree's stems are the initiators of 

innovative approaches [46].  

         

        Table 3.1 lists the available DL frameworks where CNN architectures can be 

implemented and perform the data representational learning tasks of all sorts. Tensorflow 

, which is developed by Google, has the best user ratings from Github visitors and 

developers and it is easier to use and develop.  

 

 

 

  

 

Figure 3.6 Evolutionary tree of known CNN architectures [46] 
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Table 3.1 Popular Frameworks of CNN 

Brand Copyright Implemented in Released 

TensorFlow Open Source Python and C++ 2015 

Keras Open Source Python 2015 

Caffe Open Source C++ 2015 

MatConvNet Oxford MATLAB 2014 

MXNet Open Source C++ 2015 

CNTK Open Source C++ 2016 

Theano Open Source Python 2008 

Torch Open Source C and Lua 2002 

DL4j Open Source Java 2014 
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Chapter 4 

 

Experimental Results 
 

 

 

4.1 Computational Resources  

        Experiments were carried out on a bare-metal high-performance cluster (HPC) with 

one monitoring and four compute nodes. The operating system, scientific computation 

software(s), and DL framework(s) were all installed from scratch. Each computational 

node is built on four Tesla K60 GPUs, 28 CPUs, and 256 GB RAM. 

4.2 Conventional/Traditional SBDD Campaign 

        We have employed a full spectrum SBDD campaign on a selected protein, Tyrosine-

protein phosphatase non-receptor type 11, which is coded by the gene PTPN11 of Homo 

Sapiens organism, screening against the approved and about to be approved drugs and 

substances. We are going to present the bare minimum of the outline of VS and MD, and 

free energy experiments conducted and the selected significant results only.  

 

4.2.1 Structural Data Files and Preparation for 

Docking Experiments 

       We selected PDB entry of 2SHP as the target molecule’s X-Ray crystallography 

model file. The Broad Institute’s drug repurposing hub provides a list of chemicals to 

screen potential drugs. Their repository contains a collection of FDA-approved drugs, 

drugs at clinical trials and pre-clinical compounds, making a complete list of 13,553 
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substances of 6798 unique compounds. We have downloaded the structure files of 

matching items of selected compounds from PubChem. We also retrieved a similar drug 

repurposing list of 5811 substances from the Zinc15 repository by browsing the in-trials 

subset collection. All the available structure files were downloaded accordingly. 

 

    Because the three-dimensional structural files for some of the ligands were not 

available, they were processed using RDKIT. After adding hydrogens and minimizing the 

3D structure of each ligand in the screening library, it was ready to dock. The receptor 

was also prepared for docking using PDBFixer. We have cleaned the receptor from 

existing water molecules, added missing residues and hydrogens.  

 

        The Fpocket tool was used to inspect and identify potentially druggable pockets. 

Pocket 15 is chosen as a potential protein-ligand binding site. We used Pymol to visually 

inspect the druggable pockets and identify the binding area encompassing the biologically 

essential binding domain, N-SH2. 

 

Figure 4.1 2SHP_fixed and pocket 15 at N-SH2 domain 
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4.2.2 Docking experiments 

        We used Smina [47], a variant of Autodock Vina [48], as our docking scoring utility. 

We selected the grid box of a rectangular parallelogram with the coordinates (-2.5, -38.8, 

39.3) and axis sizes (14.0, 14.6,19.3) plus 4 Angstrom (Å) on each axis as the search 

space for the best binding poses. The exhaustiveness parameter, number of MonteCarlo 

chains was set as 16, and the seed was selected as 43. We ran docking experiments against 

both chemical spaces prepared and saved the resulting ligands with the best nine 

conformers’ structure file. 

 

         We selected the best ranking 

chemicals with a minimum Smina score of 

-8.00. They were tabulated and selected 

only those without any biological activity 

with targets of any kinase enzymes for 

further analysis. Table 4.1 shows the list of 

compounds selected as the lead molecules 

of interest.  

Figure 4.2 Closer view of ligand binding site of pocket 15 and a representative 

ligand in the form of sticks and spheres 

Figure 4.3 Grid box of search space 
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Table 4.1 Lead molecules 

ZINC PubChem Name Affinity 

ZINC01612996 60838 Irinotecan -9.3 

ZINC68267814 51049968 Rimegepant -9.2 

ZINC252670820 12940973 
 

-9.1 

ZINC11679756 135449332 Eltrombopag -9.1 

ZINC53073961 68723 Antrafenine -8.9 

ZINC100378061 54732242 Naldemedine -8.8 

ZINC100054519 3082214 4-Cis-Hydroxycyclohexyl Glyburide -8.8 

ZINC208938373 73774610 
 

-8.7 

ZINC40165257 151223 Estriol 3-sulfate 16-glucuronide -8.7 

ZINC85552271 21252309 Cholic acid glucuronide -8.7 

ZINC113459996 53340771 Glpg-0187 -8.7 

       

 

Figure 4.4 Lead molecule with 

PubChem id 54732242, best docking 

pose and 2D ligand interactions with 

residues of the receptor 
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4.2.3 MD Experiments 

         To test the stability of each complex formed with the leading drug candidates, MD 

simulations were carried out using Gromacs ver. 2021.03 [49]. Protein structure was 

cleaned and prepared for running simulations processing the script provided by the 

Chimera package.  We selected the OPLS-AA [50]as the force field and SPC216 as the 

explicit water models to describe the ensemble. Ligand topologies and their force field 

parameter files for the force field selected were calculated by LigParGen [51] command-

line tool. We exerted a dodecahedral unit cell, and the complex was subject to solvate 

inside it. If necessary, we have added ions to neutralize the whole system.  

 

        We ran a 50,000 step of the steepest descent minimization of the complex formed 

between the crystal structure of the protein and the initial docking confirmation of 

selected ligand. The minimization is required to keep the system free of steric clashes and  

 

inappropriate geometries of molecule groups. The NVT equilibration of position 

restrained molecules with a reference temperature of 300 K was applied to the system to 

Figure 4.4 MM./PBSA free energy scores 
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stabilize the ensemble thermally. An NPT equilibration with a reference pressure of 1 bar 

was also employed to achieve an isobaric ensemble stabilization.  

 

        After completion of two equilibration runs, we conducted position restrains free MD 

runs of 100ns with the complexes formed with 10 selected ligands. After a quick 

evaluation of the resulting MM/PBSA [52] total binding energies of the complexes we 

have eliminated five of them. An extension of 150ns long MD runs was processed for the 

selected five successful candidates, shown in bottom panels of Fig 4.5.  

 

Table 4.2 MM/PBSA scores 

Pubchem IDs Binding energy kcal/mol (0-100ns) 

60838 -29.39 

68723 -32.79 

151223 -10.17 

12940973 -19.06 

21252309 -16.06 

51049968 -23.70 

53340771 -11.82 

54732242 -10.86 

73774610 -16.92 

135449332 -24.07 

 

4.3 A 3D CNN model by Pafnucy 

        Pafnucy [53] is selected as one of the representative 3D CNN models build to 

compare with ours. Their model uses the information of 3D cartesian coordinates of the 

ligand and receptor molecules forming a complex, and a list of chemical descriptors of 

them. Their spatial data is obtained from a 20 Angstrom cube of volume centered on the 

geometric center of the ligand encapsulationg the neighboring residue atoms of the 

receptor. Only the 3D positions of  heavy atoms 1 A apart was selected as data-points  

There are 19 additional features resembling the color channels of image data.As shown 
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in Fig 4.6, 4D tensor  of input data has an initial shape of 21x21x21x19. Additional 

descriptive features can be checked at their publication. [54] 

 

 

Figure 4.5 Representative depiction of input data 

 

4.3.1 Datasets  

        The latest available version of PDBbind database [55], version 2020, is downloaded 

and split into 4 different datasets, namely, training, validation, test and core2013. The 

database contains 19,443 protein-ligand complexes in total. The binding affinity of 

ligand-protein complexes is expressed as the values of pKa, calculated as minus value of 

the logarithm of the dissociation or inhibition constants. Each entry of the complex is 

curated and processed from their original references and the structure files of the complex 

and binding pockets as the interaction regions of the molecules is provided separately. 

We have used the same datasets for our model training and testing as well. 
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4.3.2 Architecture of the network   

       Their model designed to predict the binding affinity score of complexes. The final 

dense layer contains a single unit to create the output of prediction. Initial part of the 

model is situated with 3 layers of convolutional networks that serves as machinery of 

feature generation. A subsequent block of three dense layers is added to process the new 

features obtained to yield the final output. 

 

 

        

         The spatial data with 19 attributes is introduced as a 4D tensor and transformed 

through a block of convolutional layers of 64, 128 and 256 kernels. Subsampling is 

applied after each convolutional layer with a max pooling operation of a cubic filter from 

5-A to 2-A. Flattening of the last layer in the convolutional block will provide an input to 

the next layer of fully connected units. There are 1000, 500, and 200 units at each layer 

in this block. Dropout operation with a rate of 0.5 is applied to each dense layer to increase 

the generalization power of the model. All layers in both convolutional and dense block 

is transformed non-linearly by a ReLU activation. 

4.3.3 Training with Back-propagation   

        Weight initialization for the convolutional block was applied using a truncated 

normal distribution with a zero mean and 0.01 standard deviation. All the biases were set 

as 0.1. Similarly, the initialization of weights for the dense layers was employed using the 

same method with a zero mean and the standard deviation with a value of inverse of the 

Figure 4.6 Architecture of Pafnucy 



   

 

28 

 

square-root of the total number of incoming neurons. Finally, all the biases have the same 

value for the dense block also.  

 

Adam optimizer with a learning rate of 10-5 was the method of optimization used instead 

of a regular SGD. Mini-batch size was set as 5. The dropout and L2 regularization with a 

rate of 0.001 was applied to reduce the overfitting in training process. To overcome the 

rotational variance of the selected grid-box of the input data, 24 different orientations 

were augmented to increase the prediction rate. 

4.3.4 Results and metrics of back-propagation 

      Only the first rotational orientation was selected for calculation of the errors, RMSE, 

in the training and validation sets. As can be seen in Fig 4.7, at epoch number 18 the 

model yields the best results and selected as the best weights for testing the model. Both 

metrics of RMSE and MAE was calculated and the R value of Pearson’s correlation 

between the predicted and experimental values was also computed. As proposed in CASF 

[55], standard deviation (SD) in the approximation line was also measured for each 

prediction.  

 

Figure 4.7 Evaluation metrics 
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       The training dataset outcomes the lowest errors in both RMSE and MAE methods. 

The untrained sets yielded the accuracies of 0.70 in core2013 and 0.75 in test set prepared 

from PDBbind ver.2020.  

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-3 Scores of evaluations 

Data Set Size RMSE MAE R SD 

Training 18082 1.205 0.946 0.76 1.848 

Validation 1000 1.359 1.071 0.71 1.906 

Test 266 1.437 1.146 0.75 2.156 

Core2013 195 1.618 1.261 0.70 2.154 

Figure 4.8 Correlations between the predictions made by Pafnucy and the 

experimental data 
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4.3.5 Binding affinity of 2SHP with the leads 

        Results of the binding affinity scores of predicted by the model is shown in the Table 

4.5. Three of the lead molecules, which were prioritized after MD simulations and 

MM/PBSA free energy calculation results, has also ranked the same order, and got the 

best results. 

Table 4.4 Predictions made by Pafnucy 

Pubchem IDs Binding Affinity Predicted by Pafnucy 

12940973 6.305908 

135449332 6.588825 

151223 6.551441 

21252309 6.439477 

51049968 6.950965 

53340771 6.91218 

54732242 6.675267 

60838 6.902526 

68723 7.04899 

73774610 6.045316 

 

4.4 Our Model deepMLR 

        First version of our model has been built and designed as a 1D CNN. Instead of 

atoms’ exact positional 3D coordinates, we have used both binding pocket and ligand 

molecules’ every atom’s total area of solvent accessible surface. We have used RDKIT 

[56]to generate features of related physiochemical attributes of selected heavy atoms from 

both the ligand molecule and the pocket region.  Cheminformatics feature generation 

failed for some of the entries in our datasets and they were excluded from training 

procedure. We obtained 13342 entries for training, 697 for validation and 225 for the test 

sets. RDKIT provides a library, rdkit.Chem.rdFreeSASA , to calculate solvent accessible 

surface area of each atomic element. Their library provides a method to generate our 

primary feature of interest to describe the interaction of interacting atoms of both partners. 

The list of features generated is presented in Table 4.7. 



   

 

31 

 

 

Figure 4.9 Solvent accessible surface area of the lead 54732242 

 

 

 
Figure 4.10 SASA depiction of the lead 68723 and its binding pocket on 2SHP 



   

 

32 

 

Table 4.5 Cheminformatics feature set 

Position Feature Name 

0 SASA Value 

1 SASA Class 

2 Gasteiger Charge 

3 Explicit Valence 

4 - 12 Atom Types 

13 - 15 Chiral Tags 

16 - 19  Hybridization types 

20 Degree 

21 Aromatic 

22 Ring 

23 Neighbors 

24 Explicit H's 

25 Implicit H's 

26 Radical Electrons 

27 Residue 

28 Hetero Atom 

 

4.4.1 Architecture of DeepMLR 

     Cheminformatics feature matrices of ligand and pocket molecules were both 

introduced to an embedding layer. Input layers of our model, DeepMLR, have a cutoff 

dimension representing the total number of atoms in both ligands and pocket molecules. 

We set 750 for the number of pocket atoms and 175 for the ligand atoms, respectively, to 

represent their interactions. The output of the input layer was subjected to a 

transpositional transformation before feeding into the next hidden layers of convolutional 

nets. We have designed our model to generate new features by adding three successive 

1D convolutional layers with a GELU nonlinear activation and batch normalization at 

each step and a final down-sampling operation via an adaptive max-pooling. Each layer 

has a convolution filter value of 3 with a stride value of 1 and an increasing number of 

channels of three consecutive values of 32, 64 and 128. After down-sampling, generated 

feature maps were subjected to a concatenation operation. We augmented vanilla layers 

with three fully connected nets to process the newly found features by convolutional 

operations to predict the last output value of our model. The trainable parameters of the 

model add up to 136,257 and a typical training of 40 epochs lasted around 15 minutes on 

a single GPU and 7 cores of CPU accommodated by our HPC. 
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Table 4.6 Model architecture and the number of parameters of DeepMLR 

Layer (type) Input Shape # of Param. 

Linear-1 [N, 175, 29] 3,840 

Conv1d-2 [N, 128, 175] 12,320 

BatchNorm1d-3 [N, 32, 173] 64 

GELU-4 [N, 32, 173] 0 

Conv1d-5 [N, 32, 173] 6,208 

BatchNorm1d-6 [N, 64, 171] 128 

GELU-7 [N, 64, 171] 0 

Conv1d-8 [N, 64, 171] 24,704 

BatchNorm1d-9 [N, 128, 169] 256 

GELU-10 [N, 128, 169] 0 

AdaptiveMaxPool1d-11 [N, 128, 169] 0 

Squeeze-12 [N, 128, 1] 0 

Linear-13 [N, 750, 29] 3,840 

Conv1d-14 [N, 128, 750] 12,320 

BatchNorm1d-15 [N, 32, 748] 64 

GELU-16 [N, 32, 748] 0 

Conv1d-17 [N, 32, 748] 6,208 

BatchNorm1d-18 [N, 64, 746] 128 

GELU-19 [N, 64, 746] 0 

Conv1d-20 [N, 64, 746] 24,704 

BatchNorm1d-21 [N, 128, 744] 256 

GELU-22 [N, 128, 744] 0 

AdaptiveMaxPool1d-23 [N, 128, 744] 0 

Squeeze-24 [N, 128, 1] 0 

Dropout-25 [N, 256] 0 

Linear-26 [N, 256] 32,896 

Dropout-27 [N, 128] 0 

GELU-28 [N, 128] 0 

Linear-29 [N, 128] 8,256 

Dropout-30 [N, 64] 0 

GELU-31 [N, 64] 0 

Linear-32 [N, 64] 65 

GELU-33 [N, 1] 0 

   

 Total params: 136,257 
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4.4.2 Training and evaluation of DeepMLR 

     We used the same datasets that were used with the Pafnucy model. Our 

cheminformatics feature creation process generated a repository of text data files divided 

into three datasets, each of which contained ligand and pocket features in the form of 

comma-separated data files of 2D numerical arrays. The DataLoader class of PyTorch 

Figure 4.11 Outline of the model architecture 
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[57] deep learning suite Ver 1.11 was used to collect the data needed for training and 

testing our model. To achieve the best results, batch sizes of 10 and 20 were selected, as 

well as different learning rate parameters. The optimization algorithms AdamW, NAdam, 

and RAdam were applied to improve the performance of our CNN model. The set value 

of 0.00071 was chosen as the optimal learning rate parameter with the AdamW optimizer. 

4.4.3 Evaluation Metrics 

     Predictions made by our model, DeepMLR, were compared to their experimental 

affinity values provided with the original datasets, during and after the training to assess 

the best weight and bias terms of the model parameters. The root mean square error 

(RMSE) and mean square error (MAE) values were calculated to check the prediction 

power of our model. We also incorporated the metrics to determine the Pearson 

correlation (CORR) between the experimental findings and model predictions and their 

standard deviations (SD). In addition, our model was also tested against the concordance 

index (CI) to test its ranking power.   

4.4.4 Results of experiments run by DeepMLR 

      Although DeepMLR is equipped with such a basic architecture and relatively shallow 

structure, it performed better than the Pafnucy and several other state-of-the-art models 

introduced earlier. Our best model was selected after the 26th epoch, which yielded a 

Pearson correlation value over 79 percent for both the training and test datasets and 

similar concordance index values for both datasets. The best model is determined by the 

criterion of the lowest validation loss calculated at an individual epoch. Table 4.6 lists the 

resulting metrics obtained with DeepMLR, and figure 4.12 depicts both the correlation 

and root mean squared error values obtained through 40 epochs in total.  

 

     Correlation plots of our model’s predictions and the affinity scores provided by  

PDBBIND ver.2020 are presented in Fig. 4.13.  DeepMLR’s experimental results are set 

as our new baseline to evaluate our model further and improve the structure and its 

performance accordingly.   
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Figure 4.13 CORR and RMSE plots of best performing model of DeepMLR 

 

   Table 4.7 Model performance metrics of DeepMLR 

DATASET SIZE LOSS C_INDEX RMSE MAE SD CORR 

Training Set 13342 1.3005 0.7973 1.1404 0.8925 1.1310 0.7928 

Validation Set 697 1.7282 0.7729 1.3146 1.0265 1.3074 0.7362 

Test Set 225 1.7963 0.7967 1.3402 1.0973 1.3038 0.7944 
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Figure 4.14 Correlations between the predictions made by deepMLR and the 

experimental data 

 

 

        We have applied two distinctive feature attribution methods to determine the most 

critical features of interest. Gradient SHapley Additive Predictions (SHAP) [58] is a fast 

and accurate method to prioritize the features contributing to a better predictive 

performance. Integrated Gradients is also a computationally efficient method to mark the 

best features that played a crucial role in learning outcomes. In all scenarios, SASA value 

is the most important feature by far attribution value. The number of neighboring atoms 

and the number of implicit Hydrogen atoms was also highly selective in attributing 

features.     
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Figure 4.15 Gradient SHAP method Ligand and Pocket feature attributions 
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Figure 4.16 Integrated Gradients method Ligand and Pocket feature attributions 
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Chapter 5 

Conclusions and Future Prospects  
 

5.1 Conclusions 

        The deep learning model we have designed was making use of a critical feature of 

solvation energy models, namely, the solvent accessible area of each atom in a protein-

ligand complex. Solvent accessible area of individual atoms in closer contact will mimic 

the molecular recognition mechanisms. The deep learning model will be able to learn not 

only a singular time point of a variety of chemical/physical interactions but also the 

evolution of a longer duration and can perfectly simulate the possible confirmations. 

Another advantage is that its value is translationally and rotationally invariant under 

spatial transformations. We wanted to construct a simpler preparation before conducting 

the learning experiments. For a more extensive library of chemical space in question, 

ligands’ chemical representations can be easily turned into a matrix used as the input of 

our deep learning model, deepMLR. 

 

        The accuracy results of the training and test dataset’s representational learning are 

promising for further evaluation. Most of the conflicting results that were not captured 

after VS experiments of both the traditional and other deep learning models were 

successfully captured by our model. It is mainly due to the representational input data that 

we have selected in our DL model. Even though our approach was employed only locally, 

without considering the global picture of the system, the results are closer and even better 

than most of the other models built with globular descriptors. 
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5.2 Societal Impact and Contribution to Global 

Sustainability  

        In 2015, at a United Nations General Assembly (UN-GA) meeting, seventeen bullet 

points of future goals were determined to be achieved by 2030 for a brighter and more 

sustainable world for all its inhabitants. The sustainable development goals (SDGs) are, 

in total, 17 interconnected issues related to the globe-wide improvement of conditions on 

our environment and societies at first. Health is ranked and mentioned chiefly as the first 

in most reports about the progress of worldwide efforts in addressing the SDGs and their 

achievements. Global health directly connects to the first six items of the list of seventeen 

goals targeted. 

 

        Drugs in our modern world is a societal and an economical mediator that stabilizes 

the adverse effects of human health problems. The global health industry is dependent 

heavily on pharmaceutical therapeutic agents, chemical drugs to keep the wealth and well-

being of modern humans. Improvements in VS of potential drugs will directly impact the 

quality and quantity of health conditions of individuals and the ecosystem they live in. 

 

       Our DL model aims to identify the molecular recognition of the ligand-receptor 

complex directly and quickly. Therefore, it will be better in addressing the lack of 

discovering highly potent drug candidates with lesser side effects. The time and cost of 

investigating newer and better drugs will have multiple outcomes to increase the number 

of new drugs and the final price. Access to newer drugs worldwide will be cheaper, and 

the overall quality of world health will positively impact all six interconnected SDGs. 

More importantly, the number of critical illnesses that lacks a proper drug due to the cost 

of investments will be lowered, and there will be more drugs invested even if it will have 

less use. 

 

        Every advancement in the design and application of the AI world will also positively 

impact the progress of SDGs goals in general. Our model development process can be a 

small but essential showcase for others to inspire and follow the quest to develop better 

DL models. 
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5.3 Future Prospects 

        The feature of solvent accessible surface area is the main chemical descriptor used 

in modeling and running of our DL model, deepMLR. We are planning to extend our 

model with the similar features describing the solvation chemistry. We have trained our 

model on the datasets fulfilling redocking scenario, but we are also going to include cross-

docking experiments into our training setup. Concatenation of different models and 

applying alternative learning strategies will also be considered. A coding repository on 

the Github is being developed and our codes will be available to public free of charge. 

Biologists will be able to accommodate our model for their VS experiments as a primary 

scoring function or as a complement to validate their traditional molecular docking 

experiments. We are also interested in dealing with small scale case-studies to test the 

generalization capacity of our model.  
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