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In this letter, we propose a new model to determine the recombination oscillator

strength of trions and biexcitons for bound and unbound cases in the effective mass

approximation. The validity of our model has been confirmed by the radiative lifetime

of the trion and biexciton in a spherical quantum dot. The results show that the

model works sufficient accuracy in comparison with results of more complex methods

such as quantum monte carlo techniques and atomistic calculations.
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Semiconductor quantum dots (QDs) are very promising structures to confine basic carriers

like electrons, holes, or excitons. Recent studies show that the exciton mechanisms in QDs

play a very important role in revealing extraordinary optical properties and some quantum

mechanical effects which can not be observed in bulk semiconductor materials.1–6 Quantum

dots are currently the subject of intense research because of their controllable properties

such as a size- and shape-tunable energy levels, lifetimes, high quantum yields, and chemical

processability. These adjustable properties allow control of the dynamics of both single- and

multi-exciton states by engineering the electronic and optical properties such as electron-

hole wave function overlap, Coulomb interaction between the electron and hole, tunability

between type-I and type-II localization regimes etc.3,7–11 One of the best known optical

properties is radiative decay of the excitons. In order to control the exciton radiative decay,

one needs to tune the overlap between electrons and holes in QDs and this tuning is named

as wave function engineering by Klimov et al.10 The overlap is very important for oscillator

strength and lifetime of the excitonic structures which can be tuned depending on the

overlap. A number of studies have been reported on oscillator strength and lifetimes of

neutral of charged exciton complexes.12–14

As is well known, respectively, the oscillator strengths of the exciton and biexciton struc-

tures in a quantum heterostructure are15

fX ∝ | < ψX |Pcv|0 > |2, (1)

fXX ∝ | < ψXX |Pcv|ψX > |2, (2)

where |ψX > and |ψXX > are the exciton and biexciton wave functions, respectively, and

Pcv is the momentum operator. Although these expressions are used for the absorption

phenomena, the same forms are also used in the recombination process.

In this letter, we suggest an approximation to calculate the recombination oscillator

strength of biexciton (XX), and negatively (X−) and positively (X+) charged excitons for

bound and unbound cases in the effective mass approximation (EMA). In order to verify

the model, we have calculated the radiative lifetime of the X−, X+ and XX for bound and

unbound cases in a spherical QD. We have shown that the recombination oscillator strengths
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and radiative lifetime of trions and biexcitons can be determined with sufficient accuracy by

our simple model in comparison with results of more complex calculations.

In the electronic structure calculations, we have solved the Poisson-Schrödinger equations

self-consistently in the single band EMA to determine the energy levels and corresponding

wave functions. Also, the quantum mechanical many-body interactions between the same

kinds of particles have been taken into account in the local density approximation (LDA).

We consider a spherically symmetric QD structure. In the EMA and BenDaniel-Duke

boundary conditions, the single particle Schrödinger equations of a multi-exciton complex

can be written as

[

−
~
2

2
~∇r

(

1

m∗

e(r)
~∇r

)

+ Ve(r)− qeΦh + qeΦe + V e−e
xc [ρe(r)]

]

Re(r) = εeRe(r), (3)

and
[

−
~
2

2
~∇r

(

1

m∗

h(r)
~∇r

)

+ Vh(r)− qhΦe + qhΦh + V h−h
xc [ρh(r)]

]

Rh(r) = εhRh(r), (4)

where ~ is the reduced Planck constant, m∗

e(r) andm
∗

h(r) are the position dependent effective

mass of the electron and hole, respectively, Ve(r) is the electron confinement potential and

Vh(r) is the hole confinement potential, qe (qh) is charge of the electron (hole), and Φe and Φh

are the electrostatic Coulomb potentials of the electron and hole, respectively. The Vxc[ρ(r)]

potentials are the exchange-correlation potentials between the same kinds of particles, and

Re(r) and Rh(r) are the radial part of the electron and hole wave functions, respectively. εe

is the energy eigenvalue of the electron and similarly, εh is the hole energy.

These two equations become coupled via attractive Coulomb terms (qeΦh and qhΦe) and

must be solved simultaneously with each other. At the same time, the self-consistency

requirement in these calculations should be provided by the repulsive Coulomb potential

terms (qeΦe and qhΦh) in Eqs. (3) and (4). In this way, all Coulomb effects on the energy

eigenvalues and wave functions are taken into account. The electrostatic Coulomb potentials

are calculated from the Poisson equations

~∇κ(r)~∇Φe =
qe
ε0
ρe(r)

~∇κ(r)~∇Φh = −
qh
ε0
ρh(r), (5)
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where ρe and ρh are the density
16 of the electron and hole, respectively, ε0 is dielectric permit-

tivity of the vacuum and κ(r) is the position dependent dielectric constant of the structure.

These equations contain the image potential contributions due to surface polarization at the

interfaces.

For the exchange-correlation potential in the trion and biexciton problem, the Perdew-

Zunger17 expression, which is a parametrization of the Monte Carlo results of Ceperley and

Alder18, is employed. Also, this formulation contains the self-interaction correction.

The last three equations, Eqs.(3), (4), and (5), are solved self-consistently by the full

numeric matrix diagonalization technique. It should be noted that the repulsive Coulomb

and exchange-correlation potential terms in both Eqs. (3) and (4) must be reduced for X ,

since there are only one electron and one hole in the X . Similarly, these potential terms

must be omitted in only Eq. (4) for X− because of single hole and in only Eq. (3) for X+

because of single electron.

The binding energy expressions of X−, X+, and XX are given, respectively, as19

Eb(X
−) = Etot

X + εe(0)−Etot
X− ,

Eb(X
+) = Etot

X + εh(0)− Etot
X+ ,

EXX
b = Etot

XX − 2Etot
X , (6)

where Etot
X is single exciton total energy, Etot

X−
and Etot

X+ are the total energy of negatively and

positively charged excitons, respectively, Etot
XX biexciton total energy and εe,h(0) is isolated

single electron (hole) energy in the QD.

As is well known, when a photon interacts with a QD, an electron-hole pair is formed in

the QD. In this case, the single exciton oscillator strength, as is well known, is given by20

fX =
Ep

2EX

∣

∣

∣

∣

∫

r2drRe(r)Rh(r)

∣

∣

∣

∣

2

, (7)

where Ep is the Kane energy, EX is the exciton transition energy, Re(r) and Rh(r) are the

radial part of electron and hole wave functions of the exciton, respectively. This equation

can be easily used in both absorption and recombination processes of a single exciton.

If a second photon is absorbed by the QD, this process results in a second exciton as

illustrated in Fig. 1. This second exciton can occur in two possible situations, unbound
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FIG. 1. Schematic representation of unbound and bound biexciton structure formation.

or bound biexciton cases. In unbound biexciton case, the repulsive Coulomb interaction

is predominant and this structure is considered as two-exciton isolated from each other.

However, if the attractive Coulomb interaction is dominant, this complex is called as the

bound biexciton and considered as a single particle. The oscillator strength of bound or

unbound biexcitons is calculated by means of Eq. (2). These forms of oscillator strengths are

also used in recombination processes of any biexciton structure.21,22 This formulation is right

for an absorption phenomena. On the other hand, we suggest that the oscillator strength of

recombination is assumed as different in a trion or a biexciton structure. Because, in contrast

to the absorption process, there are various situations in a recombination phenomena. As

seen from the left panel of Fig. 2, the unbound X− structure is established a single exciton

and a one electron isolated from each other. In the unbound X− case, while one of the

electrons (for example first electron) has the highest recombination probability with the

hole, the recombination probability of second electron is approximately zero. This is similar

to a single exciton recombination. However, in the bound X− case, all charges are bound

with each other and considered as a single particle as seen the left panel of Fig. 2. Hence,

both of the electrons have same recombination probabilities to the hole. Similar situations

are valid for unbound and bound X+, respectively, as seen in the middle panel of the

figure. That is, while there is one recombination probability in the unbound trions as is in

a single exciton, the recombination probability is two times higher in bound trions. Similar

discussions can be made for the biexciton structure. In an unbound XX case, while the

recombination probability of first electron with first hole is the highest, the recombination

probability of second electron with second hole is the highest. In this case, the recombination

probability of an unbound XX is two times larger than that of a single exciton. In a bound

XX case, the recombination probabilities of first electron with both holes are equivalent.

Similarly, second electron has the same probability as that of the first one. As a result, the

recombination probability of the bound XX is two times greater than that of the unbound
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FIG. 2. Schematic representation of probable recombination processes in the unbound and bound

X
−, X+ and XX structures, respectively.

one.

In the light of all these discussions, we propose a different model to calculate the recom-

bination oscillator strength of trions and biexcitons. In this model, the oscillator strength

is to be computed using single particle wave functions of trions or biexcitons. The wave

functions include all probable Coulomb interactions and the surface polarization effect be-

cause of the self-consistent electronic structure calculation procedure. The recombination

oscillator strengths of trions and biexcitons are proposed as

f(X−,X+,XX) = A
Ep

2E(X−,X+,XX)

∣

∣

∣

∣

∫

r2drRe(r)Rh(r)

∣

∣

∣

∣

2

, (8)

where EX− , EX+ , EXX are the transition energies of negative or positive trion, or biexciton,

respectively. Re(r) and Rh(r) are the radial part of the electron and hole wave functions of

the considered structure, X−, X+ or XX . Here, the A is a recombination probability factor

and A ≃ 2 for bound and A ≃ 1 for unbound trions. Similarly, the factor A ≃ 4 for bound

and A ≃ 2 for unbound biexcitons.

The radiative lifetime of exciton is an important quantity for some device applications

and therefore a number of studies on lifetime have been reported both theoretically and

experimentally.1,25–29 In order to check the validity of our model, we calculate the radiative

lifetime of bound and unbound trions and biexciton in a core/shell spherical QD. As is well

known, the radiative lifetime is inversely proportional with the oscillator strength and it is

defined as23,24

τ =
6πε0m0c

3
~
2

e2nβsE2f
, (9)

where ε0 is the dielectric permittivity of the vacuum, m0 is the free electron mass, c is the
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FIG. 3. The overlap integrals (a), oscillator strength (b) and lifetime (c) of the X, X−, X+ and

XX as a function of the core radius in CdSe/CdS QD.

light velocity, e is the electronic charge, f is the oscillator strength, n is the refractive index,

E is the transition energy and βs is the screening factor.24

As a model structure, we use CdSe/CdS QD for type-I confinement regime. In this

structure, both electron and hole are localized in the CdSe core region. The atomic units

have been used throughout the calculations, ~ = m0 = e = 1. The material parameters are

taken from Refs. 5. The effective exciton Bohr radius is 48.75 Å and the effective exciton

Rydberg energy is 15.9 meV.

In the CdSe/CdS QD, the calculations are performed as a function of the core radius for

fixed shell thickness to 2 nm. In this structure, both of the electron and hole are confined
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to the CdSe core region. As can be seen from Eqs. (7) and (8), the oscillator strength

expressions are directly proportional to the electron-hole overlap integral. Figure 3 (a)

shows the overlap integral of the electron-hole wave functions for X , X−, X+, and XX . As

is well known, in perturbation calculations, the overlap integral of the wave functions are

same for the considered complexes, since there is no perturbative correction on the wave

functions. Because all Coulombic effects in the electronic structure calculations are taken

into account, the overlap integrals are different from each other. We conclude that the effects

of the attractive and repulsive Coulomb potentials on the wave functions have drastically

changed the overlap characteristic and hence these effects on the wave functions must be

taken into account for more realistic calculations. The overlaps are small for all exciton

complexes in small core radii and increase with increasing core radius except the X−. The

reason for this behavior in the X− can be explained with repulsive Coulomb energy between

the electrons. Because the electrons are more energetic than the hole(s), their wave functions

expand much more to the CdS shell region5 and this process reduces the overlap of the wave

functions. In the case of X , X+ and XX , the kinetic energy term decrease with increasing

core radii and the attractive Coulomb energy is a bit more dominant according to the X−

and hence their overlap integrals increase.

The oscillator strength of X , X−, X+ and XX are shown in Fig. 3 (b). The oscillator

strengths of the X−, and especially X+, have approximately the same values as that of X

because the X− and X+ are unbound in all core radii. When the core radius increases,

the oscillator strength of X− decreases, while the oscillator strengths of X and X+ increase

slightly. The XX structure is unbound until the core radius is approximately equal to 4

nm. Therefore the recombination probability factor is A ≃ 2. In further increasing of the

core radii, the XX becomes bound structure and therefore A ≃ 4. The recombination

oscillator strength of each exciton is fX−/fX ≃ 0.92 and fX+/fX ≃ 1.02. This relationship

for biexciton is fXX/fX ≃ 1.92 in unbound cases and fXX/fX ≃ 3.94 in bound cases. These

ratios increases with increasing core radius in both bound and unbound XX cases.

The lifetime of the X , X−, X+ and XX , calculated by means of Eq.(9), is shown in Fig. 3

(c) as a function of the core radius. As seen from the figure, the single exciton lifetime is

approximately equal for all core radii. Similar trends have been reported both theoretically

and experimentally by some authors28,30. Some changes have been observed in the trions

radiative lifetimes with the core radius, but these variations are not very evident especially in
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X+. Although, in some theoretical studies25,28, it has been reported that the trion lifetime

is almost half that of the single exciton lifetime, in our results, the trions’ lifetimes are

approximately equal to the exciton lifetime since the trions are not bound. The our model

predicts τ−1
X−

≃ 0.95
τX

and τ−1
X+ ≃ 1.05

τX
. As regards to the biexciton, its lifetime is approximately

two times (i.e. τ−1
XX = 2.14

τX
) shorter than that of single exciton in case of unbound biexciton.

This ratio is τ−1
XX = 4.17

τX
for the bound biexciton structure. Similar results are found from

quantum monte carlo and atomistic calculations12,28,31,32.

In conclusion, we have suggested a new model to determine the recombination oscillator

strength for the bound and unbound excitons in QDs and provided a different perspective for

their radiative lifetimes. The model has been tested in determining the radiative lifetimes of

the X−, X+ and XX in a type-I spherical QD heterostructures and it is seen that the results

are in a very good agreement with quantum monte carlo and atomistic calculations results.

We have not compared our results with the results of first-order perturbation calculations

in the EMA because, in that method, there is not taken into consideration the Coulombic

effect corrections on the wave functions. In addition, the binding energy results are used a

different manner except traditional one and as depending on the binding energy, we have

decided the probability of recombination type. The presented model can be expanded to

type-II QD strucutures or to more excitonic complexes than a biexciton, for example three

or four excitons and so on. It should be noted that the success of the model is strongly

dependent on taking into consideration of Coulomb effects on the wave functions in the

electronic structure calculations.

This study was supported by Turkish Scientific and Technical Research Council (TUBITAK)

with Project Number 109T729.

REFERENCES

1S. A. Ivanov and M. Achermann, ACS Nano 4, 5994 (2010).

2R. W. Meulenberg, J. R. I. Lee, A. Wolcott, J. Z. Zhang, L. J. Terminello, T. V. Buuren,

ACS Nano 3, 325 (2009).

3S. Kim, B. Fisher, H.-J. Eisler and M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003).

4V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett., 85, 5971, (2004).

5S. Brovelli, R.D. Schaller, S.A. Crooker, F. Garcia-Santamaria, Y. Chen, R. Viswanatha,

9



J.A. Hollingsworth, H. Htoon and V.I. Klimov, Nature Communications 2, Article num-

ber:280 (2011).

6M. Achermann, J. A. Hollingsworth, and V. I. Klimov, Phys. Rev. B 68, 245302 (2003).

7A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, L.

E. Brus, J. Am. Chem. Soc. 112, 1327 (1990).

8L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann and V. I. Klimov, Nano Lett. 4,

1485 (2004).

9D. Oron, M. Kazes, and U. Banin, Phys. Rev. B 75, 035330 (2007).

10A. Piryatinski, S. A. Ivanov, S. Tretiak, and V. I. Klimov, Nano Lett. 7, 108 (2007).

11E. J. Tyrrell and J. M. Smith, Phys. Rev. B 84, 165328 (2011).

12G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K.

Leonardi, and D. Hommel, Phys. Rev. Lett. 83, 4417 (1999).

13M. Combescot, and J. Tribollet, Solid State Commun. 128, 273 (2003).

14M. Combescot, and O. Betbeder-Matibet, Phys. Rev. B 80, 205313 (2009).

15T. Takagahara, Phys. Rev. B 39, 10206 (1989).

16M. Sahin , S. Nizamoglu , O. Yerli, and H.V. Demir, J. Appl. Phys. 111, 023713 (2012).

17J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

18D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

19T. Tsuchiya, Physica E 7, 470 (2000).

20V. A. Fonoberov and A. A. Balandin, J. Appl. Phys. 94, 7178 (2003).

21V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N.

Klimin, Phys. Rev. B 57, 2415 (1998).

22T. Feldtmann, L. Schneebeli, M. Kira, and S. W. Koch, Phys. Rev. B 73, 155319 (2006).

23M. Califano, A. Franceschetti and A. Zunger, Phys. Rev. B 75, 115401 (2007).

24B. Alen, J. Bosch, D. Granados, J. Martinez-Pastor, J. M. Garcia and L. Gonzalez, Phys.

Rev. B 75, 045319 (2007).

25F. Rajadell, J. I. Climente, J. Planelles, and A. Bertoni, J. Phys. Chem. C 113, 11268

(2009).

26M. Gong, W. Zhang, G. C. Guo, and L. He, Appl. Phys. Lett. 99, 231106 (2011).

27P. P. Jha and Philippe Guyot-Sionnest, ACS Nano 3, 1011 (2009).

28G. A. Narvaez, G. Bester, and A. Zunger, Phys. Rev. B 72, 245318 (2005).

29C. H. Wang, T. T. Chen, Y. F. Chen, M. L. Ho, C. W. Lai, and P. T. Chou, Nanotechnology

10



19, 115702 (2008).

30C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M.

Chergui, Phys. Rev. B 71, 205317 (2005).

31G A. Narvaez, G. Bester, A. Franceschetti, and A. Zunger, Phys. Rev. B 74, 205422 (2006).

32M. Wimmer, S. V. Nair, and J. Shumway, Phys. Rev. B 73, 165305 (2006).

11


