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1. Introduction
Diabetes mellitus (DM) is a group of metabolic disorder 
that is characterized by high blood sugar levels due to 
the body’s inability to produce or use insulin. More than 
500 million adults struggle with DM, and this number 
is expected to reach 783 million by 2045 (International 
Diabetes Federation, 2021) type 1 and type 2 diabetes 
mellitus (T1D, T2D) are the two main types of diabetes, 
which contribute to worldwide health care problem by not 
properly using blood glucose for energy in the body. While 
T1D is mostly related with pancreatic beta cell damage, 
T2D is both associated with beta cells’ functionality and 
insulin resistance (DeFronzo et al., 2015; Zheng et al., 2018); 
(Piko et al., 2021). Recently, with the help of antidiabetic 
agents, significant progress has been made in maintaining 
the glycemic control in T2D patients. Still, the targeted 
glycated hemoglobin levels could not be maintained for 
40% of the adults with diabetes in USA. The decrease in 

pancreatic beta cell functionality and the increase in the 
insulin sensitivity of T2D patients over the time, eventually 
gave rise to the imbalance of glycated hemoglobin (A1C) 
level and antidiabetic treatment gap (Freeman, 2013). This 
kind of imbalance and dysfunctionality emerges as a result 
of the complex interactions among the environmental and 
genetic risk factors. In this respect, the etiology, driving 
factors and the genetic predispositions responsible for 
the increased susceptibility of T2D needed to be well 
understood in developing new drugs and treatments 
for this disorder. In this kind of complex diseases, the 
investigations of different mechanisms of actions may 
provide benefits for therapeutic approaches. Therefore, 
postanalysis of high throughput studies conducted at 
different molecular levels and the elucidation of targeted 
genes and pathways associated with T2D are crucial.

The widespread introduction of large-scale genetic 
studies has enabled researchers to investigate the genetic 
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frameworks of complex disorders. During the last decade, 
genome wide association studies (GWAS) have been widely 
used to identify the risk factors of complex diseases, to better 
understand the biological mechanisms of these diseases, 
and hence to help the discovery of novel therapeutic targets 
(Claussnitzer et al., 2020). Despite the fact that GWASs 
has led to a remarkable range of discoveries in human 
genetics (Visscher et al., 2017), it has some shortcomings. 
One important shortcoming of GWAS stems from its 
testing each marker once at a time for association with 
disease. Since these studies evaluate the significance of 
the variants individually, they probably miss the SNPs that 
have low contribution to disease individually, but might be 
important when interacting collectively (Brubaker et al., 
2016; Elmansy and Koyutürk, 2019; López de Maturana et 
al., 2020). Moreover, in traditional GWASs, the functional 
effects of significant SNPs, predicted at the splicing, 
transcriptional, translational, and posttranslational levels 
are usually neglected. Although GWAS identified more 
than 140 independent loci influencing the risk of T2D 
(Scott et al., 2017; Zhao et al., 2017; Mercader and Florez, 
2017; Bonàs-Guarch et al., 2018; Mahajan et al., 2018b,a; 
Xue et al., 2018), most of these loci are driven by common 
variants and the mechanistic understanding has been 
achieved only for a couple of these genes (Fuchsberger et 
al., 2016; Florez et al., 2021). In this respect, post-GWAS 
strategies need to be developed to enlighten the molecular 
mechanisms underlying T2D development and progress 
(Grotz et al., 2017; Meyre, 2017; White et al., 2019).

Several studies indicated that the methods focusing on 
pathways rather than individual genes can detect significant 
coordinated changes since these genes act in a synergistic 
mode in a biological pathway (García-Campos, Espinal-
Enríquez and Hernández-Lemus, 2015; Nguyen et al., 
2019). Pathway analysis can hypothetically improve power 
to uncover genetic factors relevant to disease mechanisms, 
because identifying the accumulation of small genetic 
effects acting in a common pathway is often easier than 
mapping the individual genes within the pathway that 
contribute to disease susceptibility remarkably (Lamparter 
et al., 2016; Kao et al., 2017; Thrash et al., 2019). The 
profound discovery that T2D is genetically heterogeneous 
suggested that the genetic defects might converge on 
common pathways building up the final similar phenotype 
(Cirillo et al., 2018; Fernández-Tajes et al., 2019). Besides 
providing the opportunity to investigate additional 
therapies that reverse the effects of a particular genetic 
defect, these findings also may encourage scientists to 
understand the aberrant networks at genetic, cellular and 
physiological levels and to devise pharmacological and 
nonpharmacological intervention strategies. 

Inspired by these findings, in this study, we reanalyzed 
three meta GWAS dataset of T2D, using three different 

network and pathway-oriented methodologies (top-
down approach, bottom-up approach, pathway scoring 
algorithm) and we presented a new methodology. The 
first methodology aims to identify disease-associated 
pathways by combining nominally significant evidence of 
genetic association with the known biochemical pathways, 
PPI networks, and the functional information of selected 
SNPs (Bakir-Gungor, Egemen and Sezerman, 2014). The 
second methodology finds out dysregulated modules 
by adding other possible proteins around the known 
disease protein clusters (Ghiassian et al., 2015). The 
third methodology calculates pathway scores from SNP-
phenotype association summary statistics (Lamparter et 
al., 2016). Since the pathways are strongly interrelated, 
in this study we also proposed a new method to identify 
disease related affected pathway subnetworks and pathway 
clusters using multiple association studies. In this method, 
we create a pathway network and then apply subnetwork 
identification methodologies on the generated pathway 
network. Our approach is based on both significance level 
of an affected pathway and its topological relationship with 
its neighbor pathways. Via testing different subnetwork and 
pathway-oriented analyses on T2D GWAS metaanalysis 
datasets, we aimed to enlighten the molecular mechanisms 
contributing to T2D development.

2. Materials and methods
2.1. Datasets
2.1.1. 70K for T2D metaanalysis data (T2D1)
Bonàs-Guarch et al. collected T2D genome wide 
association study (GWAS) data, representing 12,931 cases 
and 57,196 controls of European ancestry from EGA 
and dbGaP databases (Bonàs-Guarch et al., 2018). In 
70KforT2D metaanalysis data, each dataset was quality 
controlled and each cohort was imputed to reference 
panels (1000G and UK10K). Variants which were selected 
for IMPUTE2 info score ≥ 0.7, MAF ≥ 0.001 and, Hardy-
Weinberg equilibrium (HWE) controls p > 1 × 10–6, were 
metaanalyzed. For more details about the followed quality 
control procedure and association analysis of 70KforT2D 
dataset, please see, Bonàs-Guarch et al. (2018).
2.1.2. Metaanalysis of DIAGRAM, GERA, UKB GWAS 
datasets (T2D2) 
Xue et al. performed a metaanalysis of GWAS in T2D by 
gathering DIAGRAM, GERA, UKB GWAS datasets (Xue 
et al., 2018). A total of 62,892 cases and 596,424 controls of 
European ancestry were obtained after quality controls and 
imputed to 1000 Genomes Project. Linkage disequilibrium 
(LD) score regression analysis was demonstrated. Variants 
were filtered for GERA and UKB using IMPUTE2 info 
score ≥ 0.3, MAF ≥ 0.01, HWE controls p > 1 × 10–6. 
Further details about DIAGRAM imputed data in stages 1 
and 2, genotyping, quality control and association analysis 
for each dataset can be found in (Xue et al., 2018).
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2.1.3. Type 2 diabetes GWAS metaanalysis dataset 
(T2D3)
Mahajan et al. collected T2D GWAS datasets from 32 
studies including 74,124 cases and 824,006 controls of 
European population, and aggregated data after initial 
analyses (Mahajan et al., 2018a). Following quality control 
checks, the imputation of studies was performed using 
Haplotype Reference Consortium reference panel, except 
for deCODE GWAS, where population-specific reference 
panel was used for imputation. For detailed information, 
please refer to Mahajan et al. (2018a).
2.1.4. Protein-protein interaction dataset
A human PPI network (interactome data) containing 
13,460 proteins and 141,296 protein-protein interactions 
was derived from (Ghiassian et al., 2015) and used in 
subnetwork identification steps of this study.

2.2. Methods
To enlighten the molecular mechanisms underlying T2D 
development and progress, here we integrated different 
in silico approaches that proceed in top-down manner 
and bottom-up manner, as summarized in Figure 1. Via 
combining nominally significant evidence of genetic 
association with the known biochemical pathways, PPI 
networks, and the functional information of selected 
SNPs, our proposed approach identifies disease-associated 
pathways.
2.2.1. Preprocessing
Association summary statistics for the T2D1, T2D2, and 
T2D3 datasets were downloaded from each project’s 
website. This summary statistics data includes i) marker 
name as chromosome and position, ii) effect allele, iii) 
noneffect allele, and iv) p-value of association. To be able 

Figure 1. Summary of our pathway and network-oriented approach to enlighten T2D mechanisms using multiple association studies.
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to assess the collective effect of the variants detected in 
GWAS with mild effects, all variants were filtered using p 
< 0.05 cutoff, as suggested in previous studies (Baranzini et 
al., 2009; Bakir-Gungor and Sezerman, 2011, 2013; Bakir-
Gungor et al., 2013, 2015).  
2.2.2. Assigning reference SNP cluster IDs (rsIDs) to 
identified SNPs
While T2D2 dataset provides associated rsIDs of the 
identified SNPs in the summary statistics data, T2D1 and 
T2D3 datasets only provide chromosome and position 
information as marker name of the variants and do not 
provide associated rsIDs. In this respect, fast and easy 
variant annotation protocol introduced by (Yang and 
Wang, 2015) is utilized to assign associated rsIDs to the 
identified SNPs using hg19 or hg38 reference genomes, 
depending on the provided genomic coordinates at T2D1, 
T2D3 datasets.  
2.2.3. Assessing the functional impacts of genetic variants
To assess the functional impact of a nonsynonymous 
change on proteins, numerous computational methods 
have been developed, as reviewed in (Zeng and Bromberg, 
2019). These methods can be classified as follows: i) 
methods that score mutations on the basis of biological 
principles, ii) methods that use existing knowledge 
about the functional effects of mutations in the form a 
training set for supervised machine learning (Carter et 
al., 2013). Most of these methods assign a numeric score 
to the nonsynonymous change, indicating the predicted 
functional impact of an amino acid substitution. To 
identify likely functional missense mutations, Douville 
et al. developed a tool called The Variant Effect Scoring 
Tool (VEST), that utilizes random forest as a supervised 
machine learning algorithm (Douville et al., 2016). 
Douville et al. represented all mutations with a set of 86 
quantitative features; and used missense variants from 
the Human Gene Mutation Database as a positive class 
and common missense variants detected in the Exome 
Sequencing Project (ESP) as a negative class, in their 
training set (Douville et al., 2016). Since VEST scores result 
in 0.9 sensitivity and 0.9 specificity values, these scores are 
utilized to assess the functional impacts of genetic variants 
in our study.
2.2.4. Assigning SNPs to genes
Several post-GWAS studies map disease-associated SNPs 
to genes based on physical distance (Segrè et al., 2010), LD 
(Pers et al., 2015), or a combination of both (Wood et al., 
2014). In this respect, to aggregate SNP summary statistics 
into gene scores, several methods have been proposed 
(Liu et al., 2010; Segrè et al., 2010; Li et al., 2011). Via 
applying inverse chi-squared quantile transformation on 
SNP p-values, most of these methods firstly calculate chi-
squared values. Secondly, within a window encompassing 
the gene of interest, some of these methods focus only 
on the most significant SNP, and assign the maximum of 

chi-squared as the gene score statistic (Segrè et al., 2010; 
Lee et al., 2011). Some other methods combine results 
for all SNPs in the gene region by using the sum of chi-
squared statistic (Wang et al., 2011). In order to compute 
a well-calibrated p-value for the statistic, gene size and 
LD structure correction is also critical. (Lamparter et al., 
2016) rigorously analyzed the effects of using the sum and 
the maximum of chi-squared statistics, which correspond 
to the strongest and the average association signals per 
gene, respectively. (Lamparter et al., 2016) proposed a 
fast and efficient methodology, Pascal, that calculates 
gene scores by aggregating SNP p-values from a GWAS 
metaanalysis (without the need for individual genotypes), 
while correcting for LD structure. Pascal only requires 
SNP-phenotype association summary statistics and do not 
require genotype data. Hence, we utilized this tool in our 
study to map SNPs into genes.
2.2.5. The identification of dysregulated modules 
High throughput experiments enable us to gain better 
understanding of the functions of the biological molecules 
in the cell. In addition to the individual activities of these 
molecules, the molecular interactions are essential to 
elucidate these molecular mechanisms. In this regard, 
human PPI networks represent the interactions between 
human proteins. Since the disease genes tend to physically 
interact with other disease genes, one strategy for 
discovering novel disease associated genes is to identify 
the neighbors of known mediators in the PPI network 
(Farber and Mesner, 2016; Sonawane et al., 2019). Hence, 
via analyzing PPI networks, specific sets of proteins 
(modules) associated with disease phenotype could be 
detected (Barabási et al., 2011; Ghiassian et al., 2015). This 
idea is exploited in several post-GWAS analyzes (Bakir-
Gungor and Sezerman, 2011; Bakir-gungor and Sezerman, 
2013; Bakir-Gungor et al., 2013, 2015; Bakir-Gungor et al., 
2014; Chang et al., 2018). 

An undirected graph could be defined as G = (V, E), 
in which the vertex or nodes (V) represent proteins, edges 
(E) represent the physical interactions among proteins, 
and graph (G) represent PPI network. A group of proteins 
in a PPI network that works together to carry out a specific 
set of functions can be defined as a subnetwork.  With the 
idea of proteins working as a team, disease related protein 
subnetwork detection has been widely investigated. Active 
subnetwork search algorithms are originally proposed to 
identify dysregulated modules in a PPI via utilizing the 
gene expression values measured in a microarray study 
(Ideker et al., 2002). The p-values of the genes indicate the 
significance of expression changes of a gene over certain 
conditions are mapped to PPI and a search algorithm 
identifies dysregulated modules. Our group and several 
others later extended this idea to post-GWAS analyzes, 
where the SNPs are initially mapped to genes and then 
the p-values of a gene (genotypic p-values) indicate the 
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significance of a gene in the genetic association study. 
In this study, to detect dysregulated modules, we use the 
following two approaches that proceed in top-down and 
bottom-up manners.
2.2.5.1. Using subnetwork identification algorithms 
(top-down approach)
The methodology proposed by (Ideker et al., 2002) to 
identify active modules in PPI networks, became a pioneer 
study in this field. While this method brings together the 
nodes that are highly affected by the condition under study, 
it also gives a chance to the neighbor nodes of these highly 
affected nodes, even if they are not highly affected. In 
this method, firstly, a scoring function is defined for each 
subnetwork and then the problem turned into a search 
problem of a subnetwork, which maximizes this score. 
More specifically, to score a subnetwork, the genotypic 
p-value is converted to a z-score using the equation below, 
where Φ^ (- 1) indicates inverse normal probability 
distribution.

𝑧𝑧𝑖𝑖 = 𝛷𝛷−1(1 − 𝑝𝑝𝑖𝑖)

 

The total z score (ZA) of the subnetwork A, including k 
genes is calculated as follows:  

𝑧𝑧𝐴𝐴 = 1
√𝑘𝑘

∑ 𝑧𝑧𝑖𝑖
𝑖𝑖 ∈ 𝐴𝐴 

. 

 

            
      
While this score is normalized using the following 
equation, where μ and σ indicates mean and standard 
deviation, respectively; the subnetwork scores are also 
calibrated by the Monte Carlo method. 

𝑠𝑠𝐴𝐴 = (𝑧𝑧𝐴𝐴 −  𝜇𝜇𝑘𝑘)
𝜎𝜎𝑘𝑘

 

 
Once the subnetwork score is defined, greedy approach, 
genetic algorithm, and simulated annealing are popular 
search strategies in active subnetwork identification 
methodologies. In this study, greedy approach is used 
during the search steps of the algorithm, and the 
subnetwork score cutoff is chosen as 3, as suggested in the 
original paper (Ideker et al., 2002) to select biologically 
meaningful subnetworks.
2.2.5.2. Using network propagation (bottom-up 
approach)
Based on the idea that the disease-related proteins do 
not concentrate in a specific region, studies focus on 
the estimation of dysregulated modules by using the 
degree of affected nodes information and edges (protein 
interaction). (Ghiassian et al., 2015) proposed DIseAse 
MOdule Detection (DIAMOnD) algorithm that finds out 
dysregulated modules by adding other possible proteins 
around the known disease protein clusters. Based on 
random walking, a defined walker starts from a random 
seed protein and moves through other nodes along the 
connections of the network. It is hypothesized that more 

frequently visited proteins are closer to seed proteins 
(proteins that are known to be associated with the disease). 
The probability of a random protein with k interaction 
having ks interaction with seed proteins is calculated by 
the hyper-geometric distribution as follows: 

𝑝𝑝(𝑘𝑘, 𝑘𝑘𝑠𝑠) =
(𝑠𝑠0𝑘𝑘𝑠𝑠)(

𝑁𝑁−𝑠𝑠0
𝑘𝑘−𝑘𝑘𝑠𝑠)

(𝑁𝑁𝑘𝑘)

 
 
 
 
 

Here, N denotes the number of proteins, s0 denotes the 
number of seed proteins associated with a particular 
disease. Whether a protein in the PPI network is randomly 
interact with the seed protein is calculated by the p-value in 
equation below. In this way, initiating from seed proteins, 
other candidate proteins associated with the disease can 
be identified. 

𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑘𝑘, 𝑘𝑘𝑠𝑠)   = ∑ 𝑝𝑝(𝑘𝑘, 𝑘𝑘𝑖𝑖)
𝑘𝑘

𝑘𝑘𝑖𝑖=𝑘𝑘𝑠𝑠

 2.2.6. Functional enrichment
In multifactorial complex disorders, a single factor 
is unlikely to explain the disease mechanism. Within 
this scope, functional enrichment analysis focuses on 
interconnection of terms and functional groups in 
networks to predict affected pathways for the interested 
disease. Hypergeometric test and correction methods 
such as Bonferroni and Benjamini-Hochberg are used 
for analyses. Hypergeometric p-value determines the 
significance of gene enrichment above a certain threshold 
form predefined functional terms. (Total number of genes 
in organism: f, number of all possible genes in particular 
pathway: g, number of all differentially expressed genes: 
d, number of differentially expressed genes in pathway: k)

𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  ∑
(𝑔𝑔

𝑘𝑘) (𝑓𝑓 − 𝑔𝑔
𝑑𝑑 − 𝑘𝑘)

(𝑓𝑓
𝑑𝑑)

min (𝑔𝑔,𝑑𝑑)

𝑘𝑘=𝑛𝑛

 In this study, ClueGO (Bindea et al., 2009) is utilized for 
performing enrichment analysis. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) biological pathways are used 
as reference pathways. 

For each dataset (T2D1, T2D2, T2D3), firstly the 
enriched KEGG pathways are listed for each identified 
subnetwork. For each dataset, a final list of affected 
pathways is defined by following the methodology 
developed in our earlier studies (Bakir-Gungor et al., 
2012, 2014) and used in (Bakir-Gungor et al., 2013, 2015b; 
Bakir-Gungor and Sezerman, 2013). 
2.2.7. Construction of pathway network
If two or more biological processes are performed by 
similar sets of genes, these processes might be somehow 
related in the biological network. The identification of 
related pathway terms or biological processes can help 
biologists to better understand the bigger biological 
picture. In this regard, we proposed to construct a 
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pathway network and then to detect affected pathway 
subnetworks. Figure 2 summarizes our steps regarding 
pathway network generation and pathway subnetwork 
identification. In order to establish a pathway network, 
first, the relationships between the genes and 288 KEGG 
biological pathways need to be analyzed. This relationship 
is revealed via examining whether the gene of interest 
is found in a specific pathway or not. For example, if 
pathway i includes gene j, a value of 1 is assigned to 
indexi,j in the gene-term matrix and if not, a value of 0 is 
given to this index. Hence, the created gene-term matrix 

is a binary matrix, as shown in Figure 2. Secondly, the 
relationships between pathways need to be analyzed. For 
this purpose, the term-term matrix is formed by using 
the previously obtained gene-term matrix, as illustrated 
in Figure 2. Initially suggested by Huang et al. (2007), the 
Kappa score became a popular metric to determine the 
relationships between pairs of pathways via calculating 
the observed cooccurrence and random cooccurrence 
values (Huang et al., 2009a,b; McHugh, 2012; Brocca et 
al., 2019; Ulgen et al., 2019; Mlecnik et al., 2019). Since 
the Kappa score also adjusts the observed cooccurrence 

Figure 2. Flowchart of pathway network generation and pathway subnetwork identification.
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with chance cooccurrence, it is a corrected measure of 
cooccurence. While the higher Kappa values indicate 
higher cooccurrence and hence stronger agreement; the 
lower Kappa values indicate weaker agreement. If Kappa 
score is calculated as 0 for a pathway pair, it indicates that 
this pathway pair cooccurrence is no better than random 
chance. The equation expressing the Kappa score for any 
two pathways A, B is given as follows:

𝐺𝐺𝐴𝐴,𝐵𝐵 =  𝐶𝐶𝐶𝐶1,1  + 𝐶𝐶𝐶𝐶0,0
𝐶𝐶𝐶𝐶1,1 + 𝐶𝐶𝐶𝐶0,0 + 𝐶𝐶𝐶𝐶0,1 + 𝐶𝐶𝐶𝐶1,0 

𝐶𝐶𝐴𝐴,𝐵𝐵 =  (𝐶𝐶𝐶𝐶0,1 + 𝐶𝐶𝐶𝐶1,1) ∗ (𝐶𝐶𝐶𝐶1,0 + 𝐶𝐶𝐶𝐶1,1) + (𝐶𝐶𝐶𝐶0,0 + 𝐶𝐶𝐶𝐶1,0) ∗ (𝐶𝐶𝐶𝐶0,0 + 𝐶𝐶𝐶𝐶0,1)
(𝐶𝐶𝐶𝐶1,1 +  𝐶𝐶𝐶𝐶0,0 + 𝐶𝐶𝐶𝐶0,1 + 𝐶𝐶𝐶𝐶1,0 ) ∗ (𝐶𝐶𝐶𝐶1,1 +  𝐶𝐶𝐶𝐶0,0 + 𝐶𝐶𝐶𝐶0,1 + 𝐶𝐶𝐶𝐶1,0 )

𝐾𝐾𝐴𝐴,𝐵𝐵 =  𝐺𝐺𝐴𝐴,𝐵𝐵 − 𝐶𝐶𝐴𝐴,𝐵𝐵
1−  𝐶𝐶𝐴𝐴,𝐵𝐵

 

where GA,B represents the observed cooccurrence, CA,B 
represents random cooccurrence and KA,B represents the 
Kappa score between pathways A and B. CN1,1, CN0,0, 
CN1,0, CN0,1 counters are calculated as follows. If the gene 
of interest is present in both compared pathways, CN1,1 
counter is increased by 1. Following the same idea, the 
values of other counters are calculated. Kappa scores, 
which express the relationships between pairs of pathways, 
was obtained using observed cooccurrence (G) and 
random cooccurrence (C) values and stored in term-term 
matrix. Via applying a threshold on Kappa scores, human 
KEGG pathway network is created. The pathway network 
generation steps are implemented in Java.
2.2.8. The identification of affected pathway subnetworks 
and pathway clusters
To be able to utilize the interrelated structure of the 
pathways, we proposed to apply subnetwork identification 
methodologies on the generated pathway networks, hence 
disease related affected pathway subnetworks could be 
identified. A classical subnetwork identification algorithm 
requires the following two information: i) the biological 
network file, ii) significance of the nodes. In the regular 
subnetwork identification problem, while (i) refers to a 
PPI network, (ii) refers to the significance values of the 
genes, obtained in a microarray experiment. Here, for 
(i), we used the pathway network that we generated as 
described in subsection 2.2.7. Regarding (ii), the functional 
enrichment step, as explained in subsection 2.2.6 outputs 
affected pathway lists with their p-values, indicating the 
importance of a pathway for the phenotype under study. 
Hence, to obtain the affected pathway subnetworks, a 
similar methodology, as described in subsection 2.2.5.1 is 
followed. Instead of using a PPI network, in this step, the 
generated pathway network, as explained in subsection 
2.2.7, is used. Instead of using the significance values of 
the proteins, in this step, the significance values of the 
pathways, generated in Functional Enrichment Step, 
subsection 2.2.6, is used. To select biologically meaningful 

subnetworks among all generated subnetworks, the 
subnetwork score cutoff is chosen as 3, as suggested in 
the original paper (Ideker et al., 2002). If the size of the 
identified subnetwork is bigger than 50, this pathway 
subnetwork is further subdivided to find disease related 
pathway clusters. At this step, we used a graph theoretic 
clustering algorithm, Molecular Complex Detection 
(MCODE) to discover densely connected pathway 
clusters in the T2D affected pathway subnetwork (Bader 
and Hogue, 2003). In order to confine the dense regions 
in a PPI, MCODE exploits vertex weighting by local 
neighborhood density and outward traversal from a locally 
dense seed protein. In our problem setting, while the PPI 
refers to the generated pathway network, proteins refer to 
the pathways. The advantage of MCODE over other graph 
clustering methods is its allowance for the i) fine-tuning 
of clusters of interest without considering the rest of the 
network and ii) inspection of cluster interconnectivity, 
which is relevant for pathway networks (Bader and Hogue, 
2003). It uses 4 different parameters to find clusters: cut off 
value, K-core value, haircut and fluff parameters. The cut 
off value sets the intensity of the cluster to be estimated. The 
K-core parameter allows to assign weights to the nodes, 
which is later used by MCODE to reduce the running 
time complexity. The haircut parameter, which is a binary 
parameter, allows the elimination of nodes considered 
to be topologically irrelevant. The fluff parameter allows 
someone to set the size of the cluster, which is estimated 
topologically in the default mode (Bader and Hogue, 2003). 
In our analyses, the default values of these parameters are 
used. In the last step, the identified T2D affected pathway 
subnetworks and pathway clusters are evaluated.
2.2.9. Pathway scoring algorithm (Pascal)
Integration of SNPs across genes and pathways in 
GWASs has potential to make significant advancement in 
statistical power and in enlightening relevant biological 
mechanisms. However, this process is challenging because 
of the multifunctional roles of genes in several biological 
processes and the inadequate information about all 
phenotype – process pairs. In this regard, Pascal is a robust 
tool to calculate gene and pathway scores from SNP-
phenotype association summary statistics (Lamparter 
et al., 2016). It does not require genotype data. Firstly, 
they calculate gene scores by aggregating SNP p-values 
from a GWAS metaanalysis, and also by correcting for 
LD structure. While computing the gene scores, they 
compared the effect of using the sum of chi-squared 
statistics (average association signals per gene) with the 
effect of using max of chi-squared statistics (strongest 
association signals per gene) (Lamparter et al., 2016). 
Secondly, they calculate pathway scores via aggregating 
the scores of genes that belong to the same pathways by 
using modified Fisher method (Lamparter et al., 2016).



BAKIR-GUNGOR et al. / Turk J Biol

325

2.2.10. Comparison of the identified subnetworks and 
pathways from different datasets using normalized 
mutual information (NMI)
In order to evaluate the similarities between two 
different community detection algorithms, (Xuan Vinh 
et al., 2010) and (Tripathi et al., 2016) proposed to use 
normalized mutual information. Let U and V be the sets of 
subnetworks that are identified using different datasets. Let 
U= {U1, …., UR} denote the set of R different subnetworks 
identified using dataset x, and let V= {V1, …., VS} denote 
the set of S different subnetworks identified using dataset 
y. The following contingency table (Table 1) illustrates the 
numbers of shared genes between pairs of subnetworks. 
In other words, nij indicates the number of common 
genes between subnetworks Ui and Vj. The entropy of 
communities H(U), H(V) and mutual information I (U, 
V) are calculated as follows: 

𝐻𝐻(𝑈𝑈)  =  − ∑ 𝑎𝑎𝑖𝑖
𝑁𝑁

𝑅𝑅

𝑖𝑖=1
(log 𝑎𝑎𝑖𝑖

𝑁𝑁) 

𝐻𝐻(𝑉𝑉)  =  − ∑ 𝑏𝑏𝑖𝑖
𝑁𝑁

𝑆𝑆

𝑖𝑖=1
(log 𝑏𝑏𝑖𝑖

𝑁𝑁) 

𝐼𝐼(𝑈𝑈, 𝑉𝑉) =  ∑ 𝑎𝑎
𝑅𝑅

𝑖𝑖=1
∑

𝑛𝑛𝑖𝑖𝑖𝑖
𝑁𝑁

𝑆𝑆

𝑖𝑖=1
(log 𝑛𝑛𝑖𝑖𝑖𝑖 𝑁𝑁⁄

𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 𝑁𝑁2⁄ )

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆  =  2×𝐼𝐼(𝑆𝑆,𝑉𝑉)
𝐻𝐻(𝑆𝑆) + 𝐻𝐻(𝑉𝑉)

Here, I (U, V) indicate the amount of information shared 
between U and V communities. NMISUM is used to 
compare the clusters in the range of [0,1], where the value 
0 refers no similarity between clusters (Vinh et al., 2010). 
Inspired by these studies, in this research effort firstly we 
have calculated the numbers of common genes between 
subnetworks Ui and Vj. Secondly, we have computed 
the entropy of communities H(U), H(V) and the mutual 
information I (U, V).

3. Results
Based on the idea that the genes and proteins perform 
cellular functions in a coordinated fashion, understanding 
the cooperations of proteins in interaction networks 
may help to identify candidate biomarkers. In this study, 
we proposed an integrative approach that concurrently 
analyzes multiple association studies, the functional 
impacts of these variants, incorporates the interaction 
partners of susceptibility genes, detects a pathway network 
of functionally enriched pathways and finally determines 
the clusterings and subnetworks of affected pathways. The 
methodology proposed in Figure 1 is applied on three 
metaanalyses  of GWAS  data, which are introduced in 
subsection 2.1. As summarized in Table 2, T2D1, T2D2 
and T2D3 datasets include 14,683,492, 5,053,015 and 
21,635,866 SNPs, respectively. After the filtration of 3 
GWAS datasets using p < 0.05 cutoff, the SNPs with mild 
effects are collected and the numbers of genetic variants 
are reduced to 762,111, 557,564 and 1,525,650, for T2D1, 
T2D2 and T2D3 datasets, respectively. Chromosomal 
position, reference allele, altered allele information of 
genetic variants are utilized to assign rsIDs. 335,212 and 
639,622 rsIDs are assigned to T2D1 and T2D3 datasets, as 
explained in subsection 2.2.2 (Reference genome: hg19). 
557,564 rsIDs presented as part of T2D2 dataset is used 
for further analyses. In the next step, functional scores 
are assigned to each SNP via using VEST (Douville et 
al., 2016), as explained in subsection 2.2.3. Weighted 
p-values (pW) are calculated for SNPs via combining the 
genetic association p-values with functional scores (FS) pw 
= pGWAS/10FS, as proposed by Saccone et al. (2008). Then, 
SNPs are mapped to 15,806, 15,460 and 17,200 genes for 
T2D1, T2D2 and T2D3 datasets, respectively. Combined 

Table 1. Contingency table of overlapping genes (ni, 

j) between subnetworks Ui and Vj , where U and V 
indicate the sets of subnetworks identified via using 
datasets X and Y, respectively.

U | V V1   V2    …     VS Sum

U1 n11    n12   …    n1S a1

U2 n21    n22   …    n2S a2

… …     …   …     … …

UR nR1    nR2   …    nRS aR

Sum b1        b2       …   bS N

Table 2. Summary of T2D1, T2D2, T2D3, T2DC datasets, and the numbers of identified SNPs, genes, subnetworks for each 
dataset.

Datasets # of cases # of controls # of SNPs # of SNPs (p-value < 0.05) # of rsIDs # of genes # of subnetworks
T2D1 12.931 57.196 14.683.492 762.111 335.212 15.806 984
T2D2 62.892 596.424 5.053.015 557.564 557.564 15.460 904
T2D3 74.124 824.006 21.635.866 1.525.650 639.622 17.800 941
T2DC - - - - - 10.298 813
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p-values of 10,298 common genes among three datasets are 
calculated using Fisher’s combined test (Fisher, 1934), and 
called as T2D-combined (T2DC) in the rest of this paper. 
For the detection of dysregulated modules, top-down 
and bottom-up approaches are followed, as explained in 
subsection 2.2.5, and as illustrated in Figure 1.
3.1. Affected subnetworks that are identified using meta 
GWAS datasets and top-down approach
In order to identify affected subnetworks, the genes and 
their significance levels are mapped to PPI network for all 
datasets. 983, 903, 940 and 813 active protein subnetworks 
are identified for T2D1, T2D2, T2D3 and T2DC datasets, 
respectively. We analyzed whether there is any bias among 
the sizes of the generated subnetworks (in terms of gene 
numbers) when different T2D GWAS datasets are used. 
While most of the subnetworks included 175–250 genes in 
T2D1 and T2D2 datasets, most of the subnetworks detected 
for T2C dataset included 200–250 genes. For T2D3 dataset, 
around two third of the subnetworks included 150–175 
genes. In Figure S1, we have shown the distribution of the 
numbers of the genes included in the subnetworks, which 
are generated for different T2D datasets in our analysis. 
In this figure, we have observed that a similar distribution 
is observed between T2D1, T2D2 and T2D3 datasets. The 
distribution of the sizes of the subnetworks obtained from 
T2DC dataset is slightly different. The number of identified 
subnetworks including 151–200 genes is smaller for the 
T2DC dataset (197) compared to the number of identified 
subnetworks of this size in other datasets. The number of 
identified subnetworks including 201–250 genes is slightly 
higher for the T2DC dataset (562) compared to the number 
of identified subnetworks of this size in other datasets. In 
general, when the overall distribution of the subnetwork 
sizes are investigated, no big difference is observed. In the 
following steps for each identified subnetwork, functional 
enrichment analysis is carried out and hence, affected 
pathways are determined.
3.2. Dysregulated modules of T2D that are identified 
using network propagation (bottom-up approach)
Known T2D genes, collected in Ghiassian et al.’s (2015) 
study are used as seed genes to find dysregulated modules 
via expanding a module by adding other possible genes 
to the known disease gene clusters. This study indicated 
that seed proteins display unusual interaction patterns 
among each other. It enlightens the idea that the existence 
of disease specific modules is not by chance. Connectivity 
significance values are calculated for all neighbors of 73 
known T2D disease associated seed genes. Afterwards, 
the node with the most significant interaction is added 
to the module and this iteration is repeated until 200 and 
500 genes are included in a module. Then, functional 
enrichment procedure is performed on each of these two 
dysregulated modules (T2D_D200, T2D_D500).

3.3. Affected pathways of T2D
Based on the observation that genes almost always act 
cooperatively rather than independently, to facilitate 
the biological interpretation of high-throughput data, 
many different methods have been postulated to identify 
the biological pathways associated with a particular 
clinical condition under study. Here, to characterize this 
cooperative nature of genes and to elucidate the molecular 
mechanisms of T2D, we investigate the affected pathways 
of T2D and search for the potential failures in these wiring 
diagrams.
3.3.1. Overrepresented pathways of T2D dysregulated 
modules (top-down approach)
To detect possible pathogenic pathways related with 
T2D, the genes listed in each dysregulated module are 
compared with the genes included in KEGG pathways 
and the proportion of the module genes over all pathway-
associated genes is calculated. Significantly affected KEGG 
pathways (pathways with corrected p-values < 0.05) 
for our defined dysregulated modules are appended to 
potentially significant pathway list of T2D disorder. Table 
3 presents top 10 affected pathways that are found to be 
overrepresented in the dysregulated modules of T2DC 
dataset, and the rankings of these pathways in different 
datasets. The p-values of these identified pathways are 
listed in Table S1. Five of these pathways (shown in bold in 
Table 3) are also identified in all other T2D datasets. These 
shared pathways are spliceosome, focal adhesion, soluble 
N-ethylmaleimide-sensitive factor attachment protein 
receptor (SNARE) interactions in vesicular transport, 
transforming growth factor-β (TGF-β) signaling, and ErbB 
signaling pathways. Table 3 also displays the numbers of 
genes identified in different datasets for each pathway. 
Although these pathways are found to be affected in T2D 
in different datasets, for each dataset, different genes may 
be targeted. As shown in Table 3, for each affected pathway, 
the number of genes that are found in at least one dataset 
(union gene set for an identified pathway) can be up to 
15% higher than the max number of targeted genes for an 
identified pathway. Hence, we report that although these 5 
pathways are commonly affected in all metaanalysis GWAS 
datasets of T2D, different sets of genes may be targeted in 
each dataset. In our analysis, while all four metaanalysis 
GWAS data of T2D identifies the same 5 pathways, each 
dataset sheds light on slightly different sets of affected 
genes and it is worth to analyze these different sets of genes. 
We continued our analysis as following. Within these 5 
commonly targeted pathways, the frequencies of the genes 
that are targeted in different datasets are further analyzed 
and shown in Figure 3. While AKT1, AKT2, AKT3, BCL2, 
BRAF, BTC, CCND2, CDKN2B, ERBB4, IGF1, LAMA1, 
PIK3CB, RAPGEF1, TGFB1, TNF, VEGFC, VTI1A genes 
are known to have a role in T2D development mechanism 
in DisGeNET (Piñero et al., 2019); the other genes that 
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Table 3. Top 10 affected T2D pathways of T2DC dataset. Among these pathways, 5 pathways (shown in bold) are commonly 
overrepresented for the dysregulated modules of T2D1, T2D2, T2D3, T2DC datasets.

Rank # of genes identified in 
different datasets (DD)

# of genes 
found in at 
least one 
dataset 
(Union)

# of genes 
in pathway 
(GiP)

Percent of identified 
genes in pathways

KEGG term T2DC T2D1 T2D2 T2D3 T2DC T2D1 T2D2 T2D3 max (DD) 
/ GiP

Union 
/ GiP

Spliceosome 1 15 8 5 65 62 75 85 104 127 0.66 0.81
Focal adhesion 2 10 1 1 150 135 146 146 172 200 0.75 0.86
SNARE 
interactions 
in vesicular 
transport

3 3 5 4 31 30 29 32 34 36 0.88 0.94

Valine leucine 
and isoleucine 
degradation

4 1 34 13 36 36 35 37 41 44 0.84 0.93

Purine 
metabolism 5 2 83 3 54 57 34 92 99 166 0.55 0.59

Dopaminergic 
synapse 6 37 7 9 107 107 110 103 119 130 0.84 0.91

TGF-beta 
signaling 
pathway

7 6 3 15 62 64 64 58 75 84 0.76 0.89

ErbB signaling 
pathway 8 8 9 7 84 80 82 81 85 87 0.96 0.97

Chemokine 
signaling 
pathway

9 33 20 39 107 139 111 129 163 189 0.73 0.86

Glutamatergic 
synapse 10 38 10 14 81 86 88 87 101 126 0.69 0.80

Figure 3. Highly targeted T2D genes that reside in five commonly identified pathways. Frequencies in different datasets are shown with 
different colors.
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are highly represented in Figure 3 and in Table S2 can be 
potential T2D causing genes. The possible roles of these 
genes in T2D development are discussed in Section 4.

Additionally, the commonalities between the gold 
standard T2D pathways (Yoon et al., 2018) and the 
whole list of affected pathways that are enriched for the 
dysregulated modules of T2D1, T2D2, T2D3, T2DC 
datasets, are also studied. When the identified pathways 
are overlapped among all datasets and with the gold 
standard T2D pathway set (Yoon et al., 2018), 12 KEGG 
pathways are commonly observed. These pathways are 

valine, leucine and isoleucine degradation, cell cycle, 
glycolysis/gluconeogenesis, type II diabetes mellitus, fatty 
acid metabolism, JAK-STAT signaling, calcium signaling, 
insulin signaling, Wnt signaling, PPAR signaling, 
adipocytokine signaling, and Notch signaling pathways.
3.3.2. Enriched pathways for the expanded modules of 
T2D seed genes (bottom-up approach)
Overrepresented pathways for expanded modules of T2D 
seed genes are identified with functional enrichment 
analysis. As shown in Table 4, the enrichment operation 
on T2D_D200 and T2D_D500 dysregulated modules 

Table 4. Comparison of the overrepresented pathways of T2D dysregulated modules (T2DC), expanded 
modules of T2D seed genes (T2D_D500), the affected pathways identified using Pascal (T2DP). While the 
pathways, which are highlighted in bold refers to the gold standard T2D KEGG pathways reported in Yoon et 
al.’s (2018) study; the pathways, which are highlighted in italic refers to the pathways that are not included in 
gold standard T2D KEGG pathways, but they have support from literature as related with T2D.

p-value Rank
KEGG term T2DP T2DC T2D_D500 T2DP T2DC T2D_D500
Pathways in cancer 1.42E-15 2.52E-20 1.86E-33 2 24 79
Focal adhesion 4.39E-14 7.03E-38 1.48E-33 3 2 80
Type II diabetes mellitus 4.72E-14 1.84E-08 1.81E-10 4 127 43
Prostate cancer 4.28E-10 1.19E-19 2.94E-29 7 27 73
Calcium signaling pathway 9.66E-10 3.71E-13 2.18E-08 9 77 33
MAPK signaling pathway 3.48E-08 8.59E-24 5.25E-27 10 14 71
Small cell lung cancer 7.44E-08 5.10E-10 1.79E-07 11 110 26
Chronic myeloid leukemia 7.78E-08 5.65E-19 1.09E-31 12 33 77
Insulin signaling pathway 2.12E-07 2.67E-14 2.21E-30 13 63 76
Glioma 3.01E-07 7.22E-18 6.81E-32 14 36 78
Nonsmall cell lung cancer 7.16E-07 6.51E-12 3.38E-26 15 87 70
GnRH signaling pathway 1.93E-06 1.81E-19 8.73E-20 17 29 62
Pancreatic cancer 2.41E-06 4.22E-15 4.55E-21 18 56 65
Vascular smooth muscle contraction 2.80E-06 1.21E-19 1.41E-05 19 28 19
Leukocyte transendothelial migration 6.45E-06 2.82E-13 2.35E-16 20 76 53
Chemokine signaling pathway 8.94E-06 5.24E-28 1.70E-29 21 9 74
Gap junction 3.33E-05 1.17E-20 5.05E-08 23 23 31
Tight junction 9.78E-05 6.68E-14 1.35E-09 25 67 39
Wnt signaling pathway 1.16E-04 5.63E-22 3.97E-06 26 21 22
Adipocytokine signaling pathway 1.35E-04 5.40E-11 1.35E-05 27 95 20
Acute myeloid leukemia 1.55E-04 1.08E-13 4.62E-21 29 72 63
Adherens junction 1.61E-04 2.81E-24 7.02E-24 30 12 67
Long-term depression 2.23E-04 1.67E-16 2.98E-06 31 46 62
ErbB signaling pathway 2.81E-04 1.60E-28 2.74E-54 32 8 83
Phosphatidylinositol signaling system 3.49E-04 1.91E-23 1.05E-02 33 16 2
Neurotrophin signaling pathway 3.91E-04 3.03E-22 2.08E-58 34 20 84
Melanogenesis 4.38E-04 1.81E-19 1.57E-07 36 30 27
JAK-STAT signaling pathway 4.57E-04 7.54E-14 6.66E-19 37 68 60
Long-term potentiation 6.07E-04 3.64E-15 9.56E-19 38 55 26
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(including 200 and 500 genes) resulted in 41 and 84 
significant pathways, respectively.
3.3.3. The pathways that are identified 
using Pascal algorithm on T2D GWAS metadata
The Pascal algorithm, as explained in subsection 2.2.9, is 
used to find potentially affected pathways for T2D1, T2D2, 
and T2D3 data sets. Firstly, gene and pathway scores 
from SNP-phenotype association summary statistics are 
computed for each dataset. Secondly, the calculated scores 
of affected pathways for each dataset are combined with 
Fisher’s method, and consequently, 38 KEGG and 46 
Reactome pathways are detected.

The affected pathways of T2D using top-down 
approach, bottom-up approach and Pascal algorithm are 
described in subsections 3.3.1, 3.3.2, 3.3.3, respectively. 
Once we detect the affected pathways of T2D using three 
different approaches, we also analyzed the commonalities 
among the results of these approaches. The commonly 
identified KEGG pathways of T2D are listed in Table 4 
with their rankings and p-values in different approaches; 
and visualized in Figure 4. Six of these affected pathways, 
which are highlighted in bold in Table 4 and shown in 
Figure 4 refers to the gold standard KEGG pathways 
of T2D reported in Yoon et al.’s (2018) study. These six 
commonly identified KEGG pathways are type II diabetes 
mellitus, Insulin signaling, JAK-STAT signaling, Calcium 
signaling, Adipocytokine signaling, and Wnt signaling 
pathways. Additionally, we have commonly identified 
GnRH signaling pathway, pancreatic cancer, adherens 

junction, ErbB signaling pathway, Phosphatidylinositol 
signaling system, neurotrophin signaling pathways in all 
three methods. Although these pathways (highlighted in 
italic in Table 4) are not included in the gold standard 
pathways of T2D, they could have potential role in T2D 
development mechanisms, as discussed in detail in Section 
4.
3.3.4. Affected pathway subnetworks and pathway 
clusters of T2D
We hypothesized that similar to the dysregulated modules 
of proteins, dysregulated modules of pathways have a 
role in disease development mechanisms. In order to 
identify affected pathway subnetworks of a disease; we 
proposed a methodology, as shown in Figure 2. Instead of 
a PPI network, this method requires a pathway network 
as the baseline. Here, we utilized the 288 human KEGG 
pathways as a reference, for the generation of this 
biological network. To establish a pathway network, firstly, 
we examined the relationships between the genes and the 
biological pathways, as explained in subsection 2.2.7. In 
this study, we stored these relationships in a gene-term 
matrix, which is a binary matrix with dimensions 6881 
× 288, representing the number of individual genes in 
all pathways, and the number of pathways, respectively. 
Secondly, the relationships between the pathways are 
analyzed, as explained in subsection 2.2.7. For this purpose, 
kappa statistics was used to determine the relationships 
between pathways, and a term-term matrix (of size 288 × 
288), was formed by using the previously obtained gene-

Figure 4. Comparison of the affected pathways that are identified using top-down approach, bottom-up approach and Pascal, and the 
gold-standard pathways of T2D.
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KEGG ID Pathway Name 

KEGG:04920 Adipocytokine signaling pathway 

KEGG:04020 Calcium signaling pathway 

KEGG:04910 Insulin signaling pathway 

KEGG:04630 JAK-STAT signaling pathway 

KEGG:04930 Type II diabetes mellitus 

KEGG:04310 Wnt signaling pathway 
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term matrix. Thirdly, to identify interrelated pathways, we 
experimented with different cutoff values of kappa scores. 
The sizes of the networks that are created with different 
threshold values are presented in Table S3. Since the node 
to edge ratio in the human PPI network is approximately 1 
to 10, the kappa score threshold value is selected as 0.15 in 
this study and finally, a human pathway network including 
288 pathways (nodes) and 2976 interrelations (edges) is 
created.

Active subnetwork identification algorithms require a 
biological network and the significance values of the nodes, 
e.g., the p-values of the genes obtained from microarray 
studies, indicating the significance of a gene, in terms of 
the expression levels differing between two experimental 
conditions. Here, while our biological network is selected 
as our generated pathway network, significance values of 
the nodes are selected as the corrected hypergeometric 
test p-values, indicating the importance of the pathway 
for T2D. Following the methodology proposed in 
Figure 2, for all T2D datasets, only one affected pathway 
subnetwork exceeded the predefined subnetwork score, as 
summarized in Table S3. As the node and edge numbers of 
these identified pathway subnetworks could be inspected 
from Table S3, it could be observed that the nodes are 
severely connected to each other in the identified pathway 
subnetworks. Therefore, these four identified pathway 
subnetworks (for four different datasets) were further 
grouped into subcategories as explained in subsection 
2.2.8, and the affected pathway clusters of T2D are 
obtained for each dataset. As shown in Table S4, for 
T2D1, T2D2, T2D3, T2DC datasets, 7, 9, 7, and 8 affected 
pathway clusters are identified, respectively. Numbers of 
nodes (pathways) included in each cluster and the scores 
of each pathway cluster can be found in Table S4. When 
the obtained results are analyzed, it is seen that the initial 
pathway subnetwork, which is severely connected with 
each other and has more than 50 nodes is successfully 
divided into smaller disease related subnetworks. This 
can be considered as a proof of the effectiveness of the 
developed method. The highest scoring pathway cluster 
of T2D1, T2D2, T2D3, T2DC datasets included 38, 34, 
35 and 35 pathways, respectively. For each dataset, the 
representative networks of the identified pathway clusters 
are shown in  Figure S2. In this figure, while the node 
IDs indicate the corresponding KEGG pathway IDs, the 
edges indicate that the number of common genes between 
two pathways is more than a predefined threshold. When 
we analyze the commonalities among these pathways, 
we observed that 27 of these pathways were commonly 
identified in T2D1, T2D2, T2D3, T2DC datasets. The 
details of these commonly identified pathways within 
pathway clusters of different datasets are given in Table 5.

Via analyzing multiple association studies of T2D 
with four different approaches, namely, i) top-down 

approach, ii) bottom-up approach, iii) Pascal algorithm, 
iv) pathway subnetworks and pathway clusterings; we 
presented our findings in subsections 3.3.1, 3.3.2, 3.3.3 
and 3.3.4, respectively. Among these different approaches, 
we summarized the commonalities between the affected 
pathways in Figure 5. In addition to the well-known T2D 
pathways (e.g., insulin signaling pathway, type II diabetes 
mellitus pathway), additional pathways are commonly 
identified by at least three of the four approaches. These 
pathways are listed in Figure 5.

In Table 6, we provide a consensus list of T2D pathways 
to follow up on. Among these pathways while 11 pathways 
are identified by all four approaches (as shown in Figure 
5), 12 pathways are identified by our proposed top-down 
approach in all three metaanalysis GWAS data of T2D (as 
presented in subsection 3.3.1) and also included in the 
gold standard pathways of T2D (Yoon et al., 2018); and 
5 pathways are commonly identified in the top 10 lists of 
top-down approach on all three metaanalysis GWAS data 
of T2D (as presented in Table 3). The 11 pathways that 
are commonly detected in all four approaches are acute 
myeloid leukemia, chemokine signaling pathway, chronic 
myeloid leukemia, ErbB signaling pathway, glioma, insulin 
signaling pathway, neurotrophin signaling pathway, 
nonsmall cell lung cancer, pancreatic cancer, prostate 
cancer, type II diabetes mellitus. In order to reduce 
the potential redundancy within the consensus T2D 
pathways, we calculated the Kappa scores between each 
pair of consensus T2D pathways. Kappa score statistics 
quantitatively measures the degree of the agreement 
between the pathways, via comparing the amount of 
similar genes. In Table S5, we presented these scores along 
with the numbers of common genes between consensus 
T2D pathway pairs. We observed in Table S5 that 7 
pathways (Chronic myeloid leukemia, Nonsmall cell lung 
cancer, acute myeloid leukemia, ErbB signaling pathway, 
pancreatic cancer, prostate cancer, glioma) among 25 
consensus T2D pathways share similar genes (their 
pairwise Kappa scores are higher than 0.5) and all these 
7 pathways are cancer related pathways. Additionally, we 
have visualized the commonalities among our consensus 
T2D pathways (the Kappa scores) in a heatmap in 
Figure S3. In this figure we observed that the pairwise 
combinations of the abovementioned 7 pathways have red, 
purple, blue colors (Kappa scores higher than 0.5) in the 
heatmap. Hence, we simplified Table 6 via merging these 
pathways into a single cluster and we kept other consensus 
T2D pathways that are driven by unique gene signatures.

In order to get a better idea about the relationships 
between the T2D risk pathways in our consensus list, we 
generated pathway relationship network in Figure 6. In 
Figure 6, the edges between the pathways are defined by 
their shared genes (calculated using the Kappa score as 
presented in Figure S3 and Table S5). As shown in Figure 6 
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and Table S5, there are almost no common genes between 
Wnt signaling, calcium signaling, Notch signaling, 
spliceosome, and SNARE interactions in vesicular 
transport pathways (the pair-wise Kappa scores between 
these pathways are less than the predefined threshold). 
Hence, they are kept as individual nodes in the network of 
consensus T2D pathways (Figure 6). In Figure 6, we also 
color-coded cancer-related pathways as grey, signaling 
pathways as orange and other pathways as green.
3.4. Shared T2D subnetworks and pathways among 
different GWAS metadata
3.4.1. Comparative evaluation of identified T2D 
subnetworks for each dataset
The identified T2D1, T2D2, T2D3 and T2DC subnetworks 
(as explained in subsection 3.1, and summarized in Figure 

S1) are compared in a pairwise manner to assess the 
shared information among them. Firstly, for each x, y pairs 
of T2D1, T2D2, T2D3 and T2DC datasets, each identified 
subnetwork of T2Dx dataset and T2Dy dataset are 
compared in gene level and a contingency table of T2Dx/
T2Dy, as shown in Table 1, is created. In this contingency 
table, each value of nij represents the shared gene counts 
between the ith subnetwork of T2Dx dataset and the jth 
subnetwork of T2Dy dataset. Secondly, based on this table, 
the entropy values H(T2Dx), H(T2Dy) and the mutual 
information values I(T2Dx, T2Dy) are computed for each 
x, y dataset pair. Thirdly, normalized mutual information 
(NMI) is calculated as explained in subsection 2.2.10. 
This procedure is repeated for all pairwise combinations 
of the T2D datasets. Hence, similarity scores (NMISUM) 

Table 5. Common pathways of highest scoring pathway clusters identified for different T2D GWAS metadata.

Pathway name p-values Rank
T2D1 T2D2 T2D3 T2DC T2D1 T2D2 T2D3 T2DC

Renal cell carcinoma 7.12E-15 1.95E-15 7.23E-13 8.14E-15 68 55 90 57
Colorectal cancer 1.52E-12 7.53E-10 1.82E-14 3.51E-17 97 115 77 41
Hepatitis C 2.99E-14 1.29E-14 1.35E-18 1.59E-16 77 62 47 43
VEGF signaling pathway 1.05E-11 1.20E-10 4.18E-12 4.15E-13 104 99 99 78
Toxoplasmosis 2.38E-12 2.24E-12 1.30E-18 4.39E-13 99 78 48 80
Chagas disease (American trypanosomiasis) 2.10E-18 1.62E-12 3.85E-19 3.57E-15 48 76 42 54
Type II diabetes mellitus 1.32E-12 2.68E-09 6.18E-19 1.84E-08 96 124 44 127
Chemokine signaling pathway 1.47E-21 1.01E-23 2.97E-19 5.23E-28 33 20 39 9
Progesterone-mediated oocyte maturation 2.67E-16 3.57E-12 4.95E-16 7.25E-18 62 81 68 37
Insulin signaling pathway 2.16E-16 1.67E-16 2.96E-18 2.67E-14 60 48 49 63
Toll-like receptor signaling pathway 1.70E-29 2.63E-11 3.20E-13 1.27E-14 13 91 85 62
Cholinergic synapse 6.32E-35 1.17E-25 1.61E-31 4.37E-27 4 16 11 11
Neurotrophin signaling pathway 4.20E-22 3.68E-23 3.03E-31 3.02E-22 30 22 12 20
Fc gamma R-mediated phagocytosis 3.57E-19 2.88E-18 1.01E-19 1.75E-16 44 37 35 47
Osteoclast differentiation 5.24E-22 1.28E-14 3.60E-19 3.16E-17 31 61 41 40
T cell receptor signaling pathway 3.32E-19 3.69E-21 4.49E-20 2.14E-18 43 32 33 34
Fc epsilon RI signaling pathway 3.75E-18 9.42E-16 5.92E-18 2.33E-23 52 53 52 17
Natural killer cell mediated cytotoxicity 2.61E-13 1.53E-13 2.12E-09 5.47E-12 90 69 131 86
B cell receptor signaling pathway 3.28E-19 3.39E-17 2.41E-14 1.96E-19 42 43 78 31
mTOR signaling pathway 1.28E-12 4.34E-10 1.72E-08 1.60E-10 95 108 141 102
Nonsmall cell lung cancer 7.60E-16 3.04E-11 1.86E-13 6.51E-12 65 92 82 87
ErbB signaling pathway 4.64E-31 1.09E-29 1.46E-37 1.59E-28 8 9 7 8
Acute myeloid leukemia 5.42E-14 1.40E-10 1.03E-11 1.08E-13 80 102 105 72
Chronic myeloid leukemia 7.27E-20 8.58E-17 2.48E-16 5.65E-19 41 45 65 33
Melanoma 4.79E-14 8.51E-17 6.46E-15 1.05E-14 78 44 74 59
Prostate cancer 1.13E-17 1.82E-13 1.12E-12 1.18E-19 53 70 93 27
Glioma 3.33E-21 1.67E-16 7.34E-19 7.21E-18 35 47 45 36
Endometrial cancer 3.47E-16 1.67E-14 4.80E-13 1.62E-16 63 63 88 45
Pancreatic cancer 6.15E-13 4.15E-14 8.21E-15 4.21E-15 94 65 75 56
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are calculated between all pairs of datasets. The presented 
heatmap in Figure S4 illustrate the similarities of datasets 
according to the strength of the NMISUM score. As 
illustrated in Figure S4A, T2D1, T2D2, T2D3 and T2DC 
subnetwork similarities are resulted in range [0, 0.01]. 
While the highest similarity score of 0.0073 is obtained 
for T2D2-T2D3 dataset pair, the lowest score of 0.0060 is 
obtained for T2D1-T2DC dataset pair. Accordingly, while 
the darker colors indicate higher correlation, lighter colors 
indicate smaller correlation in the heatmap of Figure 
S4A. NMISUM scores in the diagonals of the heatmap are 
“whitened” for clearer visibility of the other NMISUM values.
3.4.2. Comparative evaluation of identified T2D 
pathways for each dataset
Shared information among different methodologies 
(subnetwork identification, as presented in subsection 
2.2.5.1 and bottom-up approach, as presented in 
subsection 2.2.5.2) and different T2D metadatasets, are 
also evaluated in terms of the identified T2D pathways. 
The same functional enrichment analysis is applied on 
the subnetworks and dysregulated modules, as explained 
in subsection 2.2.6. In addition to the identified pathways 
of T2D1, T2D2, T2D3 and T2DC datasets, the pathways 
identified from T2D_D200 and T2D_D500 gene sets are 
also evaluated here. Firstly, for each x, y pairs of T2D1, 
T2D2, T2D3, T2DC, T2D_D200 and T2D_D500, each 
identified pathway of T2Dx dataset and T2Dy dataset 
are compared in terms of their common genes and a 
contingency table of T2Dx/T2Dy is created, as shown 
in Table 1. In this contingency table, each value of 
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Figure 5. Commonalities between the affected pathways that are identified using four different approaches, namely, i) 
top-down approach, ii) bottom-up approach, iii) Pascal, iv) pathway subnetworks and pathway clusterings.

Table 6. Consensus list of T2D pathways that are identified 
using different T2D GWAS metadata and different network and 
pathway oriented post-GWAS analyze.

KEGG ID Pathway name
KEGG:04920 Adipocytokine signaling pathway
KEGG:04020 Calcium signaling pathway
KEGG:04110 Cell cycle
KEGG:04062 Chemokine signaling pathway
KEGG:00071 Fatty acid metabolism
KEGG:04510 Focal adhesion
KEGG:00010 Glycolysis/gluconeogenesis
KEGG:04910 Insulin signaling pathway
KEGG:04630 JAK-STAT signaling pathway
KEGG:04722 Neurotrophin signaling pathway
KEGG:04330 Notch signaling pathway
KEGG:03320 PPAR signaling pathway
KEGG:04130 SNARE interactions in vesicular transport
KEGG:03040 Spliceosome
KEGG:04350 TGF-beta signaling pathway
KEGG:04930 Type II diabetes mellitus
KEGG:00280 Valine, leucine and isoleucine degradation
KEGG:04310 Wnt signaling pathway

Cancer related pathways*

Cancer related pathways*: acute myeloid  leukemia, chronic 
myeloid  leukemia, ErbB signaling pathway, glioma, nonsmall 
cell lung cancer, pancreatic cancer, prostate cancer. 
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nij represents the shared gene counts between the ith 
identified pathway of T2Dx dataset and the jth identified 
pathway of T2Dy dataset. Secondly, based on this table, 
the entropy values H(T2Dx), H(T2Dy) and mutual 
information values I(T2Dx, T2Dy) are computed for each 
x, y dataset pair. Thirdly, normalized MI is calculated as 
explained in subsection 2.2.10. This procedure is repeated 
for all pairwise combinations of the T2D datasets. Hence, 
similarity scores (NMISUM) are calculated between all 
pairs of datasets, in terms of overrepresented pathways. 
In terms of the identified pathways, Figure S4B illustrates 
the similarity levels of the T2D1, T2D2, T2D3, T2DC, 
T2D_D200 and T2D_D500, in the range of [0–0.1]. While 
a maximum NMISUM score of 0.0658 is achieved for T2D1-
T2D3 pair, a minimum NMISUM score of 0.016 is obtained 
for T2DC-T2D_D200 pair. Accordingly, while the darker 
colors indicate higher correlation, lighter colors indicate 
smaller correlation in the heatmap of Figure S4B. NMISUM 
scores in the diagonals of the heatmap are “whitened” for 
clearer visibility of the other NMISUM values.

4. Discussion
GWASs of T2D have significantly accelerated the discovery 
of T2D–associated loci (Bonnefond and Froguel, 2015; 
Adeyemo et al., 2015; Scott et al., 2017; Meyre, 2017; Liu 
et al., 2017). Although the identified T2D-risk variants 

including 243 loci and 403 distinct association signals 
exhibit a potential for clinical translation, the genome-wide 
chip heritability explains only 18% of T2D risk (Bonàs-
Guarch et al., 2018; Mahajan et al., 2018a; Xue et al., 2018). 
Traditional GWASs focus on top-ranked SNPs and discard 
all others except ‘the tip of the iceberg’ SNPs. Such GWAS 
approaches are only capable of revealing a small number of 
associated functions. In this regard, even though GWASs 
are a compelling method to detect disease-associated 
variants, it does not directly address the biological 
mechanisms underlying genetic association signals, and 
hence, the development of novel post-GWAS analysis 
methodologies is needed (Lin et al., 2017; Gallagher and 
Chen-Plotkin, 2018; Erdmann and Zeller, 2019). In this 
respect, to enlighten the molecular mechanisms of T2D 
development, here we proposed a method that perform 
protein subnetwork, pathway subnetwork and pathway 
cluster level analyses of the SNPs that are found to be 
mildly associated with T2D in multiple association studies. 
In other words, to achieve a coherent comprehension 
of T2D molecular mechanisms, the proposed network 
and pathway-based solution conjointly analyzes three 
metaanalyses of GWAS, which are conducted on T2D.

The baseline of our study is built on the interactions of 
T2D related proteins since the proteins act as the functional 
base units of the cells and construct the frameworks of 

Figure 6. The relationship between the consensus KEGG pathways of T2D (pathway 
list in Table 6). The edges between the pathways are defined by their shared genes 
(calculated using the Kappa score as presented in Supplementary Figure 3 and 
Supplementary Table 5).
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cellular mechanisms. Protein network structure helps us 
to gain a collective insight about the biological systems. 
At the mesoscopic level of these protein networks, active 
modules are the potential intermediate building blocks 
between individual proteins and the global interaction 
network. Dysregulation of these modules are considered 
to have a role in disease development mechanisms. Hence, 
the identification of dysregulated modules of T2D helps us 
to understand the fundamental molecular characteristics 
of T2D and to discover new candidate disease genes 
having a role in the regulation of T2D related pathways. In 
this context, for each analyzed T2D GWAS metaanalysis 
dataset (where the characteristics of each dataset is 
summarized in Table 2), 800 to 1000 dysregulated 
modules, including 150 to 250 genes are detected using 
a top-down approach, as explained in subsection 2.2.5.1. 
As outlined in Figure 1, these modules are functionally 
enriched and the pathways that have a potential effect on 
T2D development are identified. As presented in Table 
3, among the top 10 affected T2D pathways of T2DC 
datasets, 5 pathways are commonly overrepresented for 
the dysregulated modules of T2D1, T2D2, T2D3, T2DC 
datasets. These five shared pathways are spliceosome, 
focal adhesion, SNARE interactions in vesicular 
transport, TGF-β signaling, and ErbB signaling pathways. 
Spliceosome pathway has a role in the regulation of 
alternative splicing in insulin resistance cases by aberrantly 
spliced genes like ANO1, GCK, SUR1, VEGF (Costantini 
et al., 2011; Schmid et al., 2012; Dlamini et al., 2017). 
Focal adhesion pathway is complementary in regulation 
of insulin signaling pathway. Via controlling adipocyte 
survival, focal adhesion kinases (FAK) regulate insulin 
sensitivity (Luk et al., 2017). SNARE protein contributes 
to fusion mechanism of insulin secretory vesicles (Xiong 
et al., 2017). The study conducted by Boström et al.  
demonstrated that total skeletal muscle SNARE protein 
SNAP23 and SNARE related Munc18C protein levels are 
higher in patients with T2D, which are also correlated 
with markers of insulin resistance (Boström et al., 2010). 
TGF-β signaling pathway has role in inflammation by 
cytokines such as interleukins, tumor necrosis factors, 
chemokins interferons, transforming growth factors 
(TGF). Insulin enhances TGF-β receptors in fibroblasts 
and epithelial cells. Herder et al. documented that high 
levels of antiinflammatory immune mediator TGF-β1 are 
correlated with T2D (Herder et al., 2009). TGF-β signaling 
pathway is also shown to have a crucial role in extracellular 
matrix accumulation in diabetic nephropathy (Kajdaniuk 
et al., 2013). Akhtar et al. showed that the dysregulation 
of epidermal growth factor receptor family (ErbB) triggers 
vascular dysfunction stimulated by hyperglycemia in T2D 
(Akhtar et al., 2015). Other dual role of ErbB protein 
family included diabetes triggered cardiac dysfunction 
(Akhtar and Benter, 2013). Within these five pathways, 

we identified additional genes that are highly represented 
in the generated subnetworks of all three datasets (as 
shown in Figure 3 and in Table S2). Among these genes, 
CRK, CRKL, EGF, EGFR, ERBB2, GRB2, GSK3B, HRAS, 
JUN, MAP2K1, MAPK1, MAPK10, MAPK3, MAPK8, 
MAPK9, MYC, PAK1, PAK2, PAK7, PIK3CA, PIK3CD, 
PIK3CG, PIK3R1, PIK3R2, PIK3R3, PIK3R5, PRKCA, 
PRKCB, PRKCG, PTK2, RAF1, RHOA, RPS6KB1, SHC1, 
SHC3, SOS1, SOS2, SRC, THBS1 genes can be potential 
T2D causing genes. In insulin uptake mechanism, insulin 
binds to its insulin receptor and intracellular signaling 
molecules are induced. Phosphatidylinositol 3-kinase 
(PI3K) is one of the highly represented genes in our study 
and it stimulates glucose uptake into muscle cells. PI3Ks 
consist of regulatory and catalytic subunits. Among the 
overrepresented genes in our study, PIK3R1, PIK3R2, 
PIK3R3 and PIK3CA, PIK3CD encode these subunits 
respectively (Maffei et al., 2018). Excessive free fatty 
acid accumulation in skeletal muscle cells impairs PI3K/
AKT signaling, causes insulin resistance, and eventually 
leads to obesity and T2D (Huang et al., 2018). Another 
overrepresented gene GSK3ß is a key kinase and plays 
a causative role in impairment of insulin signaling by 
degradation of insulin receptor substrate (IRS1) (Leng et 
al., 2010). Leng et al. also stated that p-21 activated kinase 
(PAK) signaling have role in glucose homeostasis and 
cancer. PAK2 and PAK7 proteins from PAK family are 
highlighted in our study and they are potential molecular 
targets in T2D. In the same study (Leng et al., 2010), PAK 
interacting partners are reported as SOS1, SHC1, EGFR, 
GRB2, GSK3ß and PIK3R1, and these genes are identified 
in our highly represented genes list.

While identifying active subnetworks of T2D, in 
addition to the top-down approach (as discussed above), 
we also applied bottom-up approach as explained in 
subsection 2.2.5.2. Overrated pathways of i) top-down 
approach (T2DC), ii) bottom-up approach (T2D_D200, 
T2D_D500), and iii) Pascal (T2D_P) are comparatively 
evaluated. Among these pathways, type II diabetes mellitus, 
calcium, insulin, Wnt, adipocytokine, JAK-STAT signaling 
pathways (shown in bold in Table 4) overlap with gold 
standard pathways of T2D (Yoon et al., 2018). Additionally, 
the pathways that are shown in italic in Table 4 have support 
from the literature as following. The study conducted by 
(Berntorp et al., 2013) reported that T2D patients express 
antibodies against gonadotropin-releasing hormone 
GnRH in serum.  (De Souza et al., 2016) stated T2D as 
prognostic and risk factor for pancreatic cancer. Houtz et 
al. (2016) reported that paracrine neurotrophin signaling 
have a role in insulin secretion between pancreatic vascular 
system and beta cells, which is triggered by glucose.  Ono et 
al. (2001) stated that phosphatidylinositol signaling system 
including PTEN (phosphatase and tensin homologue 
deleted on chromosome 10) and PI3K (phosphoinositide3-
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kinase) proteins regulate glucose homeostasis and insulin 
metabolism. In a study performed by (Dissanayake et 
al., 2018), cadherin mediated adherens junction proteins 
are shown to have a potential regulation role in insulin 
secretion mechanism by controlling vesicle traffic in cell. 
Via studying different GWAS metaanalyses, Schierding 
et al. indicated the spatial connection of CELSR2–PSRC1 
locus with BCAR3, which is part of the insulin signaling 
pathway (Schierding and O’Sullivan, 2015). The post-
GWAS study conducted by Liu et al. (2017) identified T2D 
risk pathways. Among these pathways, type II diabetes 
mellitus, calcium signaling pathway, cell cycle, pancreatic 
cancer, MAPK signaling pathway, chemokine signaling 
pathway, Tight junction pathways were also identified in 
our study (p < 0.05). Another study performed by Perry 
et al. (2009) analyzed T2D GWAS data and reported that 
Wnt signaling pathway, olfactory transduction, galactose 
metabolism, pyruvate metabolism, type II diabetes, TGF-
signaling pathways are associated with T2D. Wnt signaling 
and type II diabetes pathways are overlapped with 
our findings, as shown in Table 4.  The analysis of T2D 
WTCCC GWAS dataset by (Zhong et al., 2010) indicated 
22 affected pathways in T2D. Among these pathways, 
tight junction, phosphatidylinositol signaling system, 
pancreatic cancer, adherens junction, calcium signaling 
pathway are replicated in our study, as shown in Table 4.
3.1. Systematic assessment of the proposed pathway 
identification methods: ability to identify the gold 
standard pathways of T2D
Nguyen et al. proposed that the validation of a pathway 
analysis method is realized via evaluating its ability 
to identify the target pathway describing the related 

mechanism of the condition studied (Nguyen et al., 
2019). For this purpose, they collected data sets related 
to conditions that already have an associated KEGG 
pathway (i.e. target pathway). They assumed that a perfect 
method should be able to identify the target pathway as 
significantly impacted and rank it on top. They applied 
different pathway analysis methods on each of those data 
sets and reported the ranks and the p-values of target 
pathways. Inspired by their approach, here we compared 
the performances of three different pathway identification 
methods on four different T2D GWAS metaanalysis 
datasets (T2D1, T2D2, T2D3, T2DC). 

In Figure 7, we summarized our workflow to compare 
the pathway identification methods. As illustrated in Figure 
7, different methods and datasets are evaluated based on 
their ability to rank the target pathways of T2D. Each 
method and dataset produces lists of ranks and p-values for 
the target pathways of T2D, which are then used to assess 
the method’s performance. In Figure 8, the resulting ranks 
and p-values of the target pathways are plotted in violin 
plots. While the horizontal axis shows the method and the 
dataset, the vertical axis in Figure 8A represents the ranks, 
and the vertical axis in 8B corresponds to the -log10(p-
values) of the target pathways. As target pathways, we used 
the gold standard pathways of T2D (Yoon et al., 2018).

We perform a comparison between the ranks and the 
p-values of the gold standard T2D pathways obtained 
by top-down approach, bottom-up approach and Pascal 
algorithm on three datasets. As shown in Figure 8A, for 
the 17 gold standard pathways of T2D, our post-GWAS 
analysis methodology (top-down approach) yielded in 
higher –log10 (p-values) on all four metaanalysis GWAS 
datasets of T2D than bottom-up approach (DIAMOnD 

Figure 7. A workflow to evaluate a pathway analysis method’s performance, based on its ability to identify gold standard KEGG pathways 
of T2D.
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algorithm based on network propagation (Ghiassian 
et al, 2015), shown as T2D200 and T2D500 in figure) 
and Pascal  algorithm (Lamparter et al, 2016), shown as 

T2DP1, T2DP2, T2DP3, T2DPC in figure). As shown in 
Figure 8B, our post-GWAS analysis methodology (top-
down approach) identified the 17 gold standard pathways 

Figure 8. (A) p-values and (B) the ranks of gold standard KEGG pathways of T2D, derived by top-
down approach on three different datasets; bottom-up approach; Pascal.

Figure 9. The performances of top-down approach, bottom-up approach, Pascal in term of –log10 (p-values) of gold standard KEGG 
pathways of T2D. We collect all the p-values that are obtained for gold standard pathways of T2D using different approaches and different 
datasets in Figure 8 and categorize them accordingly into three groups. The higher –log10 (p-values) indicate better performance.
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of T2D in lower rankings on all four metaanalysis GWAS 
datasets of T2D than bottom-up approach (DIAMOnD 
algorithm based on network propagation (Ghiassian et 
al, 2015), shown as T2D200 and T2D500 in figure) and 
Pascal algorithm (Lamparter et al, 2016), shown as T2DP1, 
T2DP2, T2DP3, T2DPC in figure). 

Additionally, we conduct a higher level comparison 
between three different approaches. The median p-values 
obtained by using top-down approaches are also 
significantly lower (Wilcoxon p-value = 6.289 E−4) than 
those of the bottom-up approaches; and significantly lower 
(Wilcoxon p-value = 6.948 E−5) than those of the pathway 
scoring algorithm (Figure 9). These results suggest that 
top-down approaches perform superior to the bottom-up 
approach and Pascal algorithm. 

Within the gold standard KEGG pathways of T2D 
(Yoon et al., 2018), the frequencies of the genes that are 
targeted in different datasets are also analyzed. In Figure 
S5, we present the frequencies of the highly targeted 
T2D genes that reside in gold standard KEGG pathways 
of T2D. The different colors in Figure S5 refer to the 
frequencies in different datasets. While some of the genes 
that are listed in Table S6 are known to have a role in 
T2D development mechanism in DisGeNET (Piñero et 
al., 2019); the other genes that are highly represented in 
Figure S5 and in Table S7 can be potential T2D causing 
genes. ALDH1B1 as one of these highly represented genes 
belongs to aldehyde dehydrogenase gene family. This 
gene encodes mitochondrial ALDH1B1 protein which 
regulates progenitor cells in mouse pancreas development. 
Studies showed that loss of function of this enzyme 
induces deficiency in mouse ß-cells and upregulation of 
ALDH1B1 enzyme was identified in human pancreatic 
cancer (Mameishvili et al., 2019). Other overrepresented 
genes encoding EP300 and CREBBP transcriptional 
coactivators contribute to development and maintain 
proper functioning of ß-cells. Functional inactivation of 
either p300 or CBP in mice lead to glucose intolerance and 
reduction ß-cells mass (Wong et al., 2018).

Using the mutual information based on the shared 
genes, the identified protein subnetworks and the 
affected pathways of each dataset were compared. While 
the NMISUM subnetwork scores range from 0 to 0.01, 
NMISUM pathway scores range from 0 to 0.1 (as shown in 
Figure S4). Hence, we show that while the subnetwork level 
analyzes increase the degree of irregularity, pathway level 
evaluation of different T2D GWAS metadata and different 
methodologies (top-down vs. bottom-up approach) 
resulted in higher levels of conservation and yielded in 
more interpretable outcome.

While the type II diabetes mellitus pathway is identified 
in the later rankings for T2D1, T2D2, T2D3, and T2DC 
GWAS datasets (as shown in Table 5), the incorporation 
of the generated pathway network information helped us 

to prioritize this pathway. This pathway is found in the 
highest scoring pathway cluster of each dataset. Since the 
pathways are strongly interrelated, our proposed approach 
created a pathway network, and identified affected 
pathway subnetworks and pathway clusters using multiple 
association studies, which are conducted on T2D. Our 
approach is based on both significance level of an affected 
pathway and its topological relationship with its neighbor 
pathways.

4. Conclusion
In conclusion, the availability of T2D GWAS metadata 
and new analytical methods has provided opportunities to 
bridge the knowledge gap from sequence to consequence. 
In this study, the collective effects of T2D–associated 
variants are inspected using network and pathway-based 
approaches, and the prominent genetic association signals 
related with T2D biological mechanisms are revealed. We 
presented a comprehensive analysis of three different T2D 
GWAS metadata at protein subnetwork, pathway, and 
pathway subnetwork levels. To explore whether our results 
recapitulate the pathophysiology of T2D, we performed 
functional enrichment analysis on the dysregulated 
modules of T2D. In addition to our analysis of the 
shared information among different datasets in terms of 
subnetworks, we also analyzed the shared information 
in terms of the identified T2D pathways. The identified 
pathway subnetworks, pathway clusters and affected 
genes within these pathways helped us to illuminate T2D 
development mechanisms. We hope the affected genes 
and variants within these identified pathway clusters help 
geneticists to generate mechanistic hypotheses, which can 
be targeted for large-scale empirical validation through 
massively parallel reporter assays at the variant level; and 
through CRISPR screens in appropriate cellular models, 
and through manipulation in in vivo models, at the gene 
level.
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Supplementary files

Supplemental Figure 1. Numbers of genes included in 
the identified (A) 983 subnetworks for T2D1, (B) 903 
subnetworks for T2D2, (C) 940 subnetworks for T2D3, 
and (D) 813 subnetworks for T2DC datasets.

Supplemental Figure 2. The representative networks of the 
highest scoring pathway clusters of (A) T2D1, (B) T2D2, (C) 
T2D3, (D) T2DC datasets, including 38, 34, 35 and 35 pathways, 
respectively.

Supplemental Figure 3. The commonalities among our con-
sensus T2D pathways (based on the Kappa scores). While red, 
purple and blue colors represent higher commonalities between 
the genes of a pathway pair and also higher Kappa scores; the 
green color represents less commonality between the genes of a 
pathway pair and also lower Kappa score for a pathway pair in 
the heatmap. The white color represents that none of the genes 
or very small numbers of genes are common between the genes 
of a pathway pair.
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Supplemental Figure 5. Highly targeted T2D genes that reside in 
gold standard KEGG pathways of T2D. Frequencies in different 
datasets are shown with different colors.

Supplemental Figure 4. Shared information comparison among different datasets in terms of 
(A) identified T2D subnetworks, and (B) identified pathways via normalized mutual information 
(NMISUM). While the darker colors indicate higher correlation, lighter colors indicate smaller 
correlation. NMISUM scores in the diagonals of the heatmap are “whitened” for clearer visibility of 
the other NMISUM values.
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Supplementary Table 1. The p-values and the rankings of the top 10 affected pathways of four datasets using top-down approach. Among these pathways, 5 
pathways (shown in bold) are commonly overrepresented for the dysregulated modules of T2D1, T2D2, T2D3, T2DC datasets.

p-values Rank # of genes identified in 
different datasets (DD)

# of genes 
found 
in at 
least one 
dataset 
(Union)

# of 
genes in 
pathway 
(GiP)

Percent of 
identified genes in 
pathways
max (DD) 
/ 
GiP

Union 
/ 
GiP

KEGG term T2DC T2D1 T2D2 T2D3 T2DC T2D1 T2D2 T2D3 T2DC T2D1 T2D2 T2D3

Spliceosome 8.55E-39 3.26E-27 6.95E-30 3.10E-41 1 15 8 5 65 62 75 85 104 127 0.66 0.81

Focal adhesion 7.032E-38 1.80E-30 3.82E-42 1.97E-54 2 10 1 1 150 135 146 146 172 200 0.75 0.86
SNARE interactions in 
vesicular transport 1.98E-35 1.37E-37 8.16E-33 5.41E-44 3 3 5 4 31 30 29 32 34 36 0.88 0.94

Valine leucine and 
isoleucine degradation 5.97E-35 3.26E-43 6.39E-20 3.34E-29 4 1 34 13 36 36 35 37 41 44 0.84 0.93

Purine metabolism 7.60E-34 5.35E-43 4.92E-12 1.29E-45 5 2 83 3 54 57 34 92 99 166 0.55 0.59

Dopaminergic synapse 3.26E-33 1.04E-20 9.48E-32 6.80E-34 6 37 7 9 107 107 110 103 119 130 0.84 0.91
TGF-beta signaling 
pathway 5.03E-29 8.70E-32 5.61E-34 3.23E-28 7 6 3 15 62 64 64 58 75 84 0.76 0.89

ErbB signaling pathway 1.59E-28 4.64E-31 1.00E-29 1.46E-37 8 8 9 7 84 80 82 81 85 87 0.96 0.97
Chemokine signaling 
pathway 5.23E-28 1.47E-21 1.01E-23 2.97E-19 9 33 20 39 107 139 111 129 163 189 0.73 0.86

Glutamatergic synapse 3.47E-27 1.97E-20 1.94E-29 3.03E-28 10 38 10 14 81 86 88 87 101 126 0.69 0.80
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Supplementary Table 2. Potential T2D causing genes that are highly represented in five shared pathways among the top 10 affected path-
ways of four datasets using top-down approach. 

Spliceosome
ErbB 
signaling 
pathway

SNARE 
interactions 
in vesicular 
transport

TGF-beta 
signaling 
pathway

Focal 
adhesion

Gene Total 
Frequency T2D1 T2D2 T2D3 T2DC hsa03040 hsa04012 hsa04130 hsa04350 hsa04510

AKT1 8 2 2 2 2 ✓ ✓
AKT2 8 2 2 2 2 ✓ ✓
AKT3 8 2 2 2 2 ✓ ✓
BRAF 8 2 2 2 2 ✓ ✓
CRK 8 2 2 2 2 ✓ ✓
CRKL 8 2 2 2 2 ✓ ✓
EGF 8 2 2 2 2 ✓ ✓
EGFR 8 2 2 2 2 ✓ ✓
ERBB2 8 2 2 2 2 ✓ ✓
GRB2 8 2 2 2 2 ✓ ✓
GSK3B 8 2 2 2 2 ✓ ✓
HRAS 8 2 2 2 2 ✓ ✓
JUN 8 2 2 2 2 ✓ ✓
MAP2K1 8 2 2 2 2 ✓ ✓
MAPK1 12 3 3 3 3 ✓ ✓ ✓
MAPK10 8 2 2 2 2 ✓ ✓
MAPK3 12 3 3 3 3 ✓ ✓ ✓
MAPK8 8 2 2 2 2 ✓ ✓
MAPK9 8 2 2 2 2 ✓ ✓
MYC 8 2 2 2 2 ✓ ✓
PAK1 7 2 2 1 2 ✓ ✓
PAK2 7 2 2 2 1 ✓ ✓
PAK7 7 2 2 1 2 ✓ ✓
PIK3CA 8 2 2 2 2 ✓ ✓
PIK3CB 8 2 2 2 2 ✓ ✓
PIK3CD 8 2 2 2 2 ✓ ✓
PIK3CG 7 2 2 2 1 ✓ ✓
PIK3R1 8 2 2 2 2 ✓ ✓
PIK3R2 8 2 2 2 2 ✓ ✓
PIK3R3 8 2 2 2 2 ✓ ✓
PIK3R5 7 2 2 1 2 ✓ ✓
PRKCA 8 2 2 2 2 ✓ ✓
PRKCB 8 2 2 2 2 ✓ ✓
PRKCG 7 2 1 2 2 ✓ ✓
PTK2 8 2 2 2 2 ✓ ✓
RAF1 8 2 2 2 2 ✓ ✓
RHOA 6 2 1 2 1 ✓ ✓ ✓
RPS6KB1 8 2 2 2 2 ✓ ✓
SHC1 8 2 2 2 2 ✓ ✓
SHC3 8 2 2 2 2 ✓ ✓
SOS1 8 2 2 2 2 ✓ ✓
SOS2 6 0 2 2 2 ✓ ✓
SRC 8 2 2 2 2 ✓ ✓
THBS1 8 2 2 2 2 ✓ ✓
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Supplementary Table 3. Node – edge relationships in the generated pathway networks 
and affected pathway subnetworks.

Sizes of the generated pathway networks for different threshold values
Threshold values ( ≥ ) # of nodes # of edges
0 288 82944
1.21E-5 288 10904
0.05 288 6806
0.1 288 4617
0.15 288 2976
0.2 288 1866
0.25 288 1321
Sizes of the generated highest scoring pathway subnetworks for different T2D datasets
Dataset # of nodes # of edges
T2D1 119 1356
T2D2 134 1383
T2D3 135 1441
T2DC 158 1709

Supplementary Table 4. Identified pathway clusters that are affected in T2D for each dataset.

T2D1 T2D2 T2D3 T2DC
# of 
clusters

# of 
nodes

Score of 
cluster

# of 
clusters

# of 
nodes

Score of 
cluster

# of 
clusters

# of 
nodes

Score of 
cluster

# of 
clusters

# of 
nodes

Score of 
cluster

7

38 32.919

9

34 30.182

7

35 31.412

8

35 31.118
14 8.462 19 13.111 21 14.3 16 8.8
9 4.75 15 5.286 11 5.2 16 8.533
4 3.333 5 5 5 4.5 11 5
3 3 5 4,5 4 4 5 5
3 3 4 4 4 3.333 8 4.286
3 3 3 3 3 3 4 3.333

Supplementary Table 5. The Kappa scores and the numbers of common genes between each pair of consensus T2D pathways.

KEGG ID KEGG name KEGG ID KEGG name Kappa score Common gene 
number

05214 Glioma 05223 Nonsmall cell lung cancer 0.674842 41
05212 Pancreatic cancer 05220 Chronic myeloid leukemia 0.585755 41
05214 Glioma 05220 Chronic myeloid leukemia 0.560827 39
05214 Glioma 05215 Prostate cancer 0.553567 43
04012 ErbB signaling pathway 05214 Glioma 0.547740 42
05212 Pancreatic cancer 05223 Nonsmall cell lung cancer 0.536905 33
05220 Chronic myeloid leukemia 05221 Acute myeloid leukemia 0.534126 35
05220 Chronic myeloid leukemia 05223 Nonsmall cell lung cancer 0.522735 34
05215 Prostate cancer 05223 Nonsmall cell lung cancer 0.505403 37
04012 ErbB signaling pathway 05220 Chronic myeloid leukemia 0.494162 40
05215 Prostate cancer 05221 Acute myeloid leukemia 0.487980 36
05215 Prostate cancer 05220 Chronic myeloid leukemia 0.487857 40
04012 ErbB signaling pathway 05223 Nonsmall cell lung cancer 0.470279 34
05221 Acute myeloid leukemia 05223 Nonsmall cell lung cancer 0.455708 26
05212 Pancreatic cancer 05214 Glioma 0.452808 30
05212 Pancreatic cancer 05215 Prostate cancer 0.445505 35
04012 ErbB signaling pathway 05221 Acute myeloid leukemia 0.438825 32
04722 Neurotrophin signaling pathway 05214 Glioma 0.425391 40
05214 Glioma 05221 Acute myeloid leukemia 0.421118 26
05212 Pancreatic cancer 05221 Acute myeloid leukemia 0.417586 26
04012 ErbB signaling pathway 04722 Neurotrophin signaling pathway 0.416569 44
04722 Neurotrophin signaling pathway 05220 Chronic myeloid leukemia 0.375176 37
00071 Fatty acid degradation 00280 Valine, leucine and isoleucine degradation 0.369459 17
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Supplementary Table 5. (Continued).

KEGG ID KEGG name KEGG ID KEGG name Kappa score Common gene 
number

04012 ErbB signaling pathway 04910 Insulin signaling pathway 0.369013 43
04012 ErbB signaling pathway 05215 Prostate cancer 0.366904 33
04722 Neurotrophin signaling pathway 04910 Insulin signaling pathway 0.333639 45
04910 Insulin signaling pathway 04930 Type II diabetes mellitus 0.333501 32
04910 Insulin signaling pathway 05214 Glioma 0.332856 35
04012 ErbB signaling pathway 05212 Pancreatic cancer 0.332587 26
04722 Neurotrophin signaling pathway 05223 Nonsmall cell lung cancer 0.322021 29
04910 Insulin signaling pathway 05220 Chronic myeloid leukemia 0.319142 35
04012 ErbB signaling pathway 04510 Focal adhesion 0.307397 47
04722 Neurotrophin signaling pathway 05215 Prostate cancer 0.305474 33
04722 Neurotrophin signaling pathway 05221 Acute myeloid leukemia 0.297190 27
04910 Insulin signaling pathway 05221 Acute myeloid leukemia 0.296282 30
00071 Fatty acid degradation 03320 PPAR signaling pathway 0.295383 17
04722 Neurotrophin signaling pathway 05212 Pancreatic cancer 0.281428 27
04510 Focal adhesion 05214 Glioma 0.261438 37
04910 Insulin signaling pathway 05215 Prostate cancer 0.259024 31
04910 Insulin signaling pathway 05223 Nonsmall cell lung cancer 0.256664 26
04062 Chemokine signaling pathway 05220 Chronic myeloid leukemia 0.255785 35
03320 PPAR signaling pathway 04920 Adipocytokine signaling pathway 0.251432 18
04062 Chemokine signaling pathway 04722 Neurotrophin signaling pathway 0.249358 41
04910 Insulin signaling pathway 04920 Adipocytokine signaling pathway 0.246928 27
04510 Focal adhesion 05215 Prostate cancer 0.243062 38
04930 Type II diabetes mellitus 05212 Pancreatic cancer 0.239467 14
04012 ErbB signaling pathway 04062 Chemokine signaling pathway 0.233097 34
04510 Focal adhesion 04722 Neurotrophin signaling pathway 0.227594 40
04062 Chemokine signaling pathway 05221 Acute myeloid leukemia 0.225918 29
04930 Type II diabetes mellitus 05221 Acute myeloid leukemia 0.222682 12
04910 Insulin signaling pathway 05212 Pancreatic cancer 0.213040 23
04510 Focal adhesion 05223 Nonsmall cell lung cancer 0.210418 29
00010 Glycolysis / Gluconeogenesis 00071 Fatty acid degradation 0.210120 12
04110 Cell cycle 05220 Chronic myeloid leukemia 0.202547 21
04062 Chemokine signaling pathway 05214 Glioma 0.201371 27
04510 Focal adhesion 05212 Pancreatic cancer 0.200829 29
04062 Chemokine signaling pathway 05212 Pancreatic cancer 0.200395 27
04012 ErbB signaling pathway 04930 Type II diabetes mellitus 0.200216 14
04062 Chemokine signaling pathway 04510 Focal adhesion 0.199227 44
04920 Adipocytokine signaling pathway 04930 Type II diabetes mellitus 0.196741 12
04062 Chemokine signaling pathway 05215 Prostate cancer 0.194466 29
04062 Chemokine signaling pathway 04910 Insulin signaling pathway 0.193923 35
04510 Focal adhesion 04910 Insulin signaling pathway 0.193683 37
04630 JAK-STAT signaling pathway 05220 Chronic myeloid leukemia 0.189152 23
04930 Type II diabetes mellitus 05214 Glioma 0.188174 11
04510 Focal adhesion 05220 Chronic myeloid leukemia 0.187250 28
04930 Type II diabetes mellitus 05223 Nonsmall cell lung cancer 0.186194 10
04062 Chemokine signaling pathway 05223 Nonsmall cell lung cancer 0.185694 24
04930 Type II diabetes mellitus 05215 Prostate cancer 0.182369 13
04722 Neurotrophin signaling pathway 04930 Type II diabetes mellitus 0.182330 16
04630 JAK-STAT signaling pathway 05221 Acute myeloid leukemia 0.177817 20
04930 Type II diabetes mellitus 05220 Chronic myeloid leukemia 0.174873 11
00071 Fatty acid degradation 04920 Adipocytokine signaling pathway 0.168912 10
04920 Adipocytokine signaling pathway 05212 Pancreatic cancer 0.168257 12
04510 Focal adhesion 05221 Acute myeloid leukemia 0.155698 22
04110 Cell cycle 04350 TGF-beta signaling pathway 0.154720 17
04012 ErbB signaling pathway 04630 JAK-STAT signaling pathway 0.150823 20
04920 Adipocytokine signaling pathway 05221 Acute myeloid leukemia 0.149712 10
04110 Cell cycle 05212 Pancreatic cancer 0.147216 15
04722 Neurotrophin signaling pathway 04920 Adipocytokine signaling pathway 0.136266 14
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Supplementary Table 5. (Continued).

KEGG ID KEGG name KEGG ID KEGG name Kappa score Common gene 
number

04020 Calcium signaling pathway 05214 Glioma 0.134931 18
04630 JAK-STAT signaling pathway 05212 Pancreatic cancer 0.132448 16
04630 JAK-STAT signaling pathway 05223 Nonsmall cell lung cancer 0.131103 15
04920 Adipocytokine signaling pathway 05220 Chronic myeloid leukemia 0.130829 10
04350 TGF-beta signaling pathway 05212 Pancreatic cancer 0.127816 10
04110 Cell cycle 05215 Prostate cancer 0.127707 15
04630 JAK-STAT signaling pathway 05215 Prostate cancer 0.124352 17
04630 JAK-STAT signaling pathway 05214 Glioma 0.124065 15
04630 JAK-STAT signaling pathway 04910 Insulin signaling pathway 0.123086 21
04350 TGF-beta signaling pathway 05220 Chronic myeloid leukemia 0.120966 10
04920 Adipocytokine signaling pathway 05215 Prostate cancer 0.115713 10
00010 Glycolysis / Gluconeogenesis 04930 Type II diabetes mellitus 0.114537 7
00010 Glycolysis / Gluconeogenesis 04910 Insulin signaling pathway 0.113934 13
04630 JAK-STAT signaling pathway 04930 Type II diabetes mellitus 0.108132 12
04110 Cell cycle 05214 Glioma 0.105312 11
04020 Calcium signaling pathway 04310 Wnt signaling pathway 0.104504 20
04012 ErbB signaling pathway 04310 Wnt signaling pathway 0.100507 13
04062 Chemokine signaling pathway 04930 Type II diabetes mellitus 0.099688 13
00010 Glycolysis / Gluconeogenesis 00280 Valine, leucine and isoleucine degradation 0.098022 6
04062 Chemokine signaling pathway 04630 JAK-STAT signaling pathway 0.093423 20
04510 Focal adhesion 04930 Type II diabetes mellitus 0.091674 13
04630 JAK-STAT signaling pathway 04722 Neurotrophin signaling pathway 0.090770 15
04110 Cell cycle 05223 Nonsmall cell lung cancer 0.089793 9
04920 Adipocytokine signaling pathway 05223 Nonsmall cell lung cancer 0.086981 6
04310 Wnt signaling pathway 05212 Pancreatic cancer 0.085159 10
04310 Wnt signaling pathway 04722 Neurotrophin signaling pathway 0.082773 13
04012 ErbB signaling pathway 04020 Calcium signaling pathway 0.081722 13
04110 Cell cycle 04310 Wnt signaling pathway 0.080919 13
04062 Chemokine signaling pathway 04920 Adipocytokine signaling pathway 0.078990 12
04012 ErbB signaling pathway 04920 Adipocytokine signaling pathway 0.078784 7
04310 Wnt signaling pathway 04350 TGF-beta signaling pathway 0.077256 10
04310 Wnt signaling pathway 05214 Glioma 0.075883 9
04310 Wnt signaling pathway 04510 Focal adhesion 0.075541 17
04310 Wnt signaling pathway 04330 Notch signaling pathway 0.075502 8
04310 Wnt signaling pathway 05215 Prostate cancer 0.072669 10
04020 Calcium signaling pathway 04910 Insulin signaling pathway 0.072522 15
04510 Focal adhesion 04630 JAK-STAT signaling pathway 0.069606 17
04020 Calcium signaling pathway 04722 Neurotrophin signaling pathway 0.067145 13
04020 Calcium signaling pathway 04062 Chemokine signaling pathway 0.067143 17
04630 JAK-STAT signaling pathway 04920 Adipocytokine signaling pathway 0.066537 9
04350 TGF-beta signaling pathway 05221 Acute myeloid leukemia 0.063936 5
00010 Glycolysis / Gluconeogenesis 04920 Adipocytokine signaling pathway 0.063675 5
04062 Chemokine signaling pathway 04310 Wnt signaling pathway 0.063207 14

00280 Valine, leucine and isoleucine 
degradation 03320 PPAR signaling pathway 0.061337 4

04310 Wnt signaling pathway 05221 Acute myeloid leukemia 0.059998 7
04330 Notch signaling pathway 05220 Chronic myeloid leukemia 0.058187 4
03320 PPAR signaling pathway 05223 Nonsmall cell lung cancer 0.055513 4
04310 Wnt signaling pathway 05220 Chronic myeloid leukemia 0.052512 7
04920 Adipocytokine signaling pathway 05214 Glioma 0.049949 4
04012 ErbB signaling pathway 04350 TGF-beta signaling pathway 0.048351 5
04020 Calcium signaling pathway 05223 Nonsmall cell lung cancer 0.047497 7
04020 Calcium signaling pathway 04930 Type II diabetes mellitus 0.042080 6
04310 Wnt signaling pathway 05223 Nonsmall cell lung cancer 0.039858 5
04350 TGF-beta signaling pathway 04930 Type II diabetes mellitus 0.038491 3
04310 Wnt signaling pathway 04910 Insulin signaling pathway 0.037561 8
04110 Cell cycle 04330 Notch signaling pathway 0.036823 4
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Supplementary Table 5. (Continued).

KEGG ID KEGG name KEGG ID KEGG name Kappa score Common gene 
number

04350 TGF-beta signaling pathway 05215 Prostate cancer 0.035527 4
04012 ErbB signaling pathway 04110 Cell cycle 0.033022 5
04020 Calcium signaling pathway 04510 Focal adhesion 0.029693 11
04510 Focal adhesion 04920 Adipocytokine signaling pathway 0.028550 6
03320 PPAR signaling pathway 04910 Insulin signaling pathway 0.025182 4
04110 Cell cycle 04630 JAK-STAT signaling pathway 0.023244 6
04330 Notch signaling pathway 04350 TGF-beta signaling pathway 0.022730 2
04110 Cell cycle 05221 Acute myeloid leukemia 0.022049 3
04350 TGF-beta signaling pathway 04910 Insulin signaling pathway 0.021892 4
04310 Wnt signaling pathway 04930 Type II diabetes mellitus 0.021752 3
04330 Notch signaling pathway 05215 Prostate cancer 0.020317 2
04350 TGF-beta signaling pathway 05223 Nonsmall cell lung cancer 0.020029 2
00010 Glycolysis / Gluconeogenesis 03320 PPAR signaling pathway 0.019725 2
04310 Wnt signaling pathway 04630 JAK-STAT signaling pathway 0.019514 6
04350 TGF-beta signaling pathway 04630 JAK-STAT signaling pathway 0.018819 4
04350 TGF-beta signaling pathway 04510 Focal adhesion 0.018382 5
04350 TGF-beta signaling pathway 05214 Glioma 0.017344 2
04350 TGF-beta signaling pathway 04722 Neurotrophin signaling pathway 0.016276 3
04110 Cell cycle 04722 Neurotrophin signaling pathway 0.015333 4
04310 Wnt signaling pathway 04920 Adipocytokine signaling pathway 0.015212 3

Supplementary Table 6. Possible T2D causing genes that are both highly represented in our analysis within the gold-standard 
pathways of T2D and also found in DisGeNET as associated with T2D.

ABCC8 ADRB3 CACNA1D EPO HNF4A IRS2 NPY PPARA SLC2A4
ACACA AGTR1 CAMKK2 ERBB4 HSD17B12 KCNJ11 NR1D1 PPARD SOCS3
ACACB AKT1 CCND2 FADS2 IL10 LEPR NR1H3 PPARG SORBS1
ACSL1 AKT2 CDKN2A FASN IL23R LPL ONECUT1 PPARGC1A SREBF1
ADCY3 AKT3 CDKN2B FOXO1 IL4R MCM6 PCK1 PPP1R3A TACR3
ADIPOQ ALDH2 CHEK2 GCK IL6 NEUROD1 PDX1 PRKAA2 TCF7L2
ADIPOR1 ALDH7A1 CHRM3 GYS1 IL6R NEUROG3 PIK3CB PTPN1 TGFB1
ADIPOR2 ARNTL CLOCK HK2 INS NFKB1 PKLR RAPGEF1 TNF
ADRA1A BCAT1 CRY2 HNF1A INSR NOS3 PLIN1 SLC2A1 TP53
ADRB2 BRAF CTBP1 HNF1B IRS1 NOTCH2 PLTP SLC2A2 WNT5B
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Supplementary Table 7. Potential T2D causing genes that are highly represented in the gold-standard pathways of T2D in our analy in our analysis.

Frequencies in the gold-standard 
pathways of T2D, obtained using 
different datasets

Glycolysis / 
Gluconeogenesis

Fatty acid 
metabolism

Valine, 
leucine and 
isoleucine 
degradation

Valine, 
leucine and 
isoleucine 
biosynthesis

Biosynthesis 
of 
unsaturated 
fatty acids

PPAR 
signaling 
pathway

Calcium 
signaling 
pathway

Cell cycle
Wnt 
signaling 
pathway

Notch 
signaling 
pathway

JAK-
STAT 
signaling 
pathway

Gene Total T2D1 T2D2 T2D3 T2DC hsa00010 hsa00071 hsa00280 hsa00290 hsa01040 hsa03320 hsa04020 hsa04110 hsa04310 hsa04330 hsa04630
ACAA1 14 4 2 4 4 ✓ ✓ ✓
ACADM 11 3 2 3 3 ✓ ✓ ✓
ACOX1 12 3 3 3 3 ✓ ✓
ACSL1 12 3 3 3 3 ✓ ✓
ACSL3 12 3 3 3 3 ✓ ✓
ACSL5 11 3 3 3 2 ✓ ✓
AKT2 12 3 3 3 3 ✓
AKT3 12 3 3 3 3 ✓
ALDH1B1 12 3 3 3 3 ✓ ✓ ✓
ALDH2 12 3 3 3 3 ✓ ✓ ✓
ALDH3A2 12 3 3 3 3 ✓ ✓ ✓
ALDH7A1 12 3 3 3 3 ✓ ✓ ✓
ALDH9A1 12 3 3 3 3 ✓ ✓ ✓
CPT1A 12 3 3 3 3 ✓ ✓
CPT1B 12 3 3 3 3 ✓ ✓
CREBBP 15 4 4 3 4 ✓ ✓ ✓ ✓
EHHADH 11 3 2 3 3 ✓ ✓ ✓
EP300 14 4 3 3 4 ✓ ✓ ✓ ✓
GCK 12 3 3 3 3 ✓
GSK3B 12 3 3 3 3 ✓ ✓
IKBKB 12 3 3 3 3
IRS1 12 3 3 3 3
IRS2 12 3 3 3 3
MAPK10 15 4 4 3 4 ✓
MAPK8 15 4 4 3 4 ✓
MAPK9 15 4 4 3 4 ✓
MYC 12 3 3 3 3 ✓ ✓ ✓
PIK3CA 12 3 3 3 3 ✓
PIK3CB 12 3 3 3 3 ✓
PIK3CD 12 3 3 3 3 ✓
PIK3R1 12 3 3 3 3 ✓
PIK3R2 12 3 3 3 3 ✓
PIK3R3 12 3 3 3 3 ✓
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