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ABSTRACT 

IDENTIFICATION OF SINGLE DOMAIN ANTIBODIES 

AGAINST SARS-CoV-2 OMICRON VARIANT VIA PROTEIN-

PROTEIN DOCKING APPROACHES 
 

Özkan İLMEK 

MSc. in Bioengineering 

Advisor: Assist. Prof. Dr. Şerife AYAZ GÜNER 

June 2022 

 

Omicron, became the dominant variant in 2022 in terms of spreading rate, has 

managed to evade from an immune system of patients due to its unique mutations. Single 

domain antibodies (sdAb) which are functionally important parts of conventional 

antibodies are commonly used for diagnosis and treatment. Although there are many 

sdAbs developed to combat coronavirus in recent years, their effectiveness against 

Omicron variant has not been sufficiently tested and the effect of mutations regarding 

neutralization level is not clear. In this study, structure modelling of 850 sdAb sequences 

obtained from previous studies were generated using AlphaFold 2 and effectiveness of 

these sdAbs against Omicron variant was tested via protein-protein docking approach. In 

the docking process, within a realistic approach, missing residues were completed into 

Spike protein PDB structures, and Spike protein homotrimer structure in closed state 

conformation was used. Finally, top 1000 and top 100 scores are determined as a 

threshold value for different protein-protein docking scoring functions such as HDOCK, 

PRODIGY and Bluues. sdAbs that have successful results for Omicron variant were 

listed. There were 4 sdAbs which exceed the threshold values after 2 different docking 

experiments against the Omicron variant. The scripting codes and methodological 

approach developed within this thesis can be used against new SARS-CoV-2 variants that 

may emerge in the future or other diseases. 

Keywords: SARS-CoV-2, Omicron variant, Protein Structure Modelling, sdAb, Protein-

Protein Docking 
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ÖZET 

SARS-CoV-2 OMİKRON VARYANTINA ÖZGÜ TEK 

DOMAİNLİ ANTİKORLARIN PROTEİN-PROTEİN 

KENETLENMESİ YAKLAŞIMLARIYLA TANIMLANMASI 

Özkan İLMEK 

 Biyomühendislik Anabilim Dalı Yüksek Lisans 

Tez Yöneticisi: Dr. Öğr. Üyesi Şerife AYAZ GÜNER 

Haziran 2022 

 

2022 yılında baskın varyant olan Omikron, kendine has mutasyonları sayesinde 

hastaların bağışıklık sisteminden kaçmayı başarmış, yayılma hızı açısından önceki 

varyantlara göre oldukça başarılı olmuştur. Geleneksel antikorların işlevsel olarak önemli 

kısmı olan tek domainli antikorlar (sdAb), tanı ve tedavi amacıyla yaygın olarak 

kullanılmaktadır. Son yıllarda koronavirüs ile mücadele için geliştirilmiş pek çok sdAb 

olmasına rağmen bunların Omikron varyantına karşı etkinlikleri yeterince test edilmemiş 

ve mutasyonların nötralizasyon düzeyine etkisi net değildir. Bu çalışmada, AlphaFold 2 

kullanılarak önceki çalışmalardan elde edilen 850 sdAb dizisinin yapı modellemesi 

oluşturulmuş ve bu sdAb'lerin Omicron varyantına karşı etkinliği protein-protein 

kenetlenmesi yaklaşımı ile analiz edilmiştir. Protein-protein kenetlenmesi işleminde, 

gerçekçi bir yaklaşımla, Spike proteini PDB yapılarındaki amino asit rezidü eksiklikleri 

tamamlandı ve SARS-CoV-2'nin Spike protein homotrimer yapısının kapalı 

konformasyonu kullanıldı. Son olarak, HDOCK, PRODIGY ve Bluues gibi farklı protein-

protein kenetlenmesi puanlama fonksiyonları için eşik değerler olarak belirlenen top 1000 

ve top 100 puanlarının taranması sonucunda, Omikron varyantına karşı 2 farklı 

kenetlenme deneyi için toplamda 4 adet yüksek oranda başarılı sdAb tespit edilmiştir. Tez 

kapsamında geliştirilen kod ve deneysel yaklaşımlar yeni çıkabilecek SARS-CoV-2 

varyantlarına veya diğer hastalıklara karşı kullanılabilecektir.  

Anahtar kelimeler: SARS-CoV-2, Omikron varyantı, Protein Yapı Modellemesi, sdAb, 

Protein-Protein Kenetlenmesi 
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Chapter 1 

INTRODUCTION 

1. 1 Coronaviruses 

Coronaviruses are member of single-stranded RNA viruses [1] and belong to 

Coronavirinae subfamily of Coronaviridae family [2]. The taxonomic classification of 

the SARS-Cov-2 virus is as follows: Riboviria (Realm), Nidovirales (Order), 

Cornidovirineae (Suborder), Coronaviridae (Family), Orthocoronavirinae (Subfamily), 

Betacoronavirus (Genus), Sarbecovirus (Subgenus), Severe acute respiratory syndrome-

related coronavirus (Species) and SARS-CoV-2 (Individuum) [3] (Figure 1.1). Their 

diameter can change 60 nm to 140 nm [1]. Severe acute respiratory syndrome coronavirus 

(SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), H1N1 2009 

virus and H5N1 influenza A virus caused crucially important diseases such as acute 

respiratory distress syndrome (ARDS) and acute lung injury (ALI) in recent decades 

worldwide [4–8]. In addition to this, it has been reported that coronaviruses can infect 

humans and animals as well as cause respiratory diseases such as cold, pneumonia in 

previous studies [9–14].  

          
Figure 1.1 Taxonomy of SARS-CoV-2.  (This figure is adapted from [3]. 
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1.1.1 SARS-CoV-2 (Covid-19) 

In December 2019 new version of coronavirus which highly causes pneumonia in 

infected patients had occurred in Wuhan, China. After the further genetic analyses, this 

new version was named by International Committee for Taxonomy of Viruses (ICTV) as 

a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), World Health 

Organization (WHO) called disease as a Coronavirus Disease 2019 (Covid-19) in 11 

February 2020 and WHO increased risk assessment of COVID-19 very high a global level 

[3,15,16] (Figure 2.1). According to WHO, 537,591,764 confirmed cases and 6,319,395 

deaths were recorded as of June 20, 2022 [17]. There are four main genera of 

coronaviruses. alpha (α), beta (β), gamma (γ) and delta (δ). SARS-CoV, MERS-CoV and 

SARS-CoV-2 which are responsible for respiratory distress syndrome diseases, belong to 

Betacoronavirus genus [3]. It has been determined that SARS-CoV-2 is more pathogenic 

than previous versions such as SARS-CoV (in 2002) and MERS-CoV (in 2013) [18].  

     

Figure 1.2 Relation between coronavirus species, their taxonomy, and diseases. 
(This figure is adapted from [3]). 

1.1.2 Genome and Structure of SARS-CoV-2 

SARS-CoV-2 is a member of  Betacoronavirus genus [3]. The genomes of MERS-

CoV, SARS-CoV, and SARS-CoV-2 have non-segmented positive-sense single-stranded 

RNA lengths ranging from 26 to 32 kb [19]. The SARS-CoV-2 has 80% identical to 

previous human coronaviruses regarding genome similarity [20]. There are four major 
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structural genes in the SARS-CoV-2 genome and these genes are responsible for coding 

structural genes such as envelope (E), membrane (M), spike (S) and nucleocapsid (N). 

Polyprotein 1ab (pp1ab) and 15 non-structural proteins (nsps) are encoded by Orf1ab 

[18,20,21]. In previous studies, significant variations have been noted between SARS-

CoV and SARS-CoV-2 genomes. These variations are alterations in amino acid sequence 

of 3c and 8b proteins and lack of 8a protein [20]. Moreover, spike protein of SARS-Cov-

2 use angiotensin-converting enzyme 2 (ACE2) to enter host cells similarly with SARS-

CoV [22]. It was shown that mutation at 501. position in amino acid sequence (N501T) 

of the SARS-CoV-2 genome increases the binding affinity for ACE2 [23].  

It has been stated that the 5′UTR and 3′UTRs of Betacoronaviruses play important 

roles in cellular events, such as replication, transcription, intermolecular and 

intramolecular interactions, and RNA-RNA interactions in different studies [24–26]. 

ORF1a and ORF1b take up two-thirds of the virus genome and are responsible for the 

expression of 16 nonstructural proteins, which are significantly important for viral 

replication and transcription [27]. SARS-CoV, MERS-CoV and SARS-CoV-2 genomes 

have a specific number of accessory genes with important functions. While 8 functional 

accessory genes (3a, 3b, 6, 7a, 7b, 8a, 8b, 9b) found in the SARS-CoV genome, 5 

accessory genes (3, 4a, 4b, 5, 8b) present in the MERS-CoV genome. The functional 

accessory gene number is 6 (3, 6, 7a, 7b, 8, 9b) for SARS-CoV-2 [28–30]. 

              
Figure 1.3 Structural proteins of coronaviruses. (Figure was adapted from [31,32] 
and was designed by BioRender). 
 

Spike (S), envelope (E), membrane (M), and nucleocapsid proteins are commonly 

found structural proteins in coronaviruses [33]. RNA genome of coronaviruses is located 

in N protein and other S, E, and M proteins are embedded the viral envelope [30]. The 
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Spike protein has a very high glycosylation rate and is responsible for entry into host cells 

as it contains the receptor binding domain (RBD) [30,34]. Spike protein of coronaviruses 

has highly variable motifs to interact with RBDs of different hosts. Two different 

glycoproteins which are responsible for infection of host cells can be found in 

coronaviruses. Hemagglutinin esterase (HE) is specific to some species and Spike 

glycoprotein trimer (S) is more common among beta coronaviruses. [35–38]. Polybasic 

cleavage site (RRAR/S) which play an important role during viral infection is found in 

SARS-CoV and SARS-CoV-2. This cleavage site is cut by host furin-like protease to 

separate two subunits (S1 and S2) of spike protein [34,39]. Moreover, the ratio of the 

amount of M protein in the coronaviruses is higher than the E protein because it is 

essential for the formation of the virus structure [40,41]. On the other hand, E protein 

blocks the host cell stress response, acts as an ion channel, and ensures the secretion of 

mature virions from the host cells after the cycle [42]. 

       

Figure 1.4 Genome organization of Betacoronaviruses. This figure was adapted from 
[1]. 5’UTR (untranslated region), ORF1a/b (encoding nonstructural proteins, dark blue 
box), S (encoding spike protein, green box), numbers (encoding accessory proteins, pink 
box), E (encoding envelope protein, light blue box), M (encoding membrane protein, red 
box), N (encoding nucleocapsid protein, yellow box) and 3’UTR are represented. Boxes 
which are black underlined show important mutation points for SARS-CoV (8a) and 
SARS-CoV-2 (3 and 8). 

 

There are 16 non-structural proteins which have been discovered before in 

coronaviruses. These proteins have very important functions such as RNA processing, 

replication, ssRNA binding, cap methylation of viral mRNAs, prevention of mRNA 

splicing, protein translation and protein trafficking in host, RNA-dependent RNA 

polymerase activity for transcription, providing zinc binding domain, endo- and 
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exoribonuclease activity, methyltransferase activity, transmembrane domain activity 

[27,43,44]. 

1.1.3 Spike (S) Glycoprotein  

The most important structural protein is the Spike (S) glycoprotein, which is 

responsible for virus attachment to host cells. In coronaviruses, Spke proteins are class I 

viral fusion proteins and must be cleaved to be activated. Spike protein is cleaved by a 

host cell protease into two separate polypeptides, named as S1 and S2. Coronavirus Spike 

proteins can be cleaved, depending on virus strains, by several host proteases, including 

Furin, Trypsin, Cathepsins, Transmembrane Protease Serine Protease-2 (TMPRSS-2) and 

TMPRSS-4 [45]. The presence of these proteases in target cells determines whether the 

virus can enter to host cells via the cell surface pathway or endocytosis. TMPRSS2 is 

responsible for the preparation of the Spike protein in SARS-CoV and SARS-CoV-2. 

Then, ACE2 acts as a suitable receptor for the entry of viruses. 

              
Figure 1.5 SARS-CoV-2 Spike protein trimer conformations. Closed state of (Left, 
PDB ID:6VXX) and open state (one RBD up) conformation of Spike protein (right, PDB 
ID:6XM3). Spike protein has homotrimer structure, Chain A (yellow), Chain B (red) and 
Chain C (blue). NAG structures on spike protein were shown in magenta color. 
 

Spike proteins can be found in two different states in infected organisms (Figure 

1.5). The first is the closed state with all RBDs in the down position. In the second state, 

open conformation, at least one RBD is in up position. Sometimes 2 RBDs or 3 RBDs 

can be in the up position, too. The virus is in close state conformation for most of the time 
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when it places in an infected cell, but it passes to open state shortly before interacting 

with ACE2. 

Table 1.1 Coronavirus non-structural proteins (nsps) and their functions. This table 
was adapted from [27]. 

Protein Function References 

Non-structural 

protein 1 

inhibition host cell translation and innate immune response, mRNA 

degradation 

[46–49] 

Non-structural 

protein 2 

Attachment to prohibitin [50,51] 

Non-structural 

protein 3 

function as a transmembrane protein, interaction with Nucleocapsid 

protein, activation of ADRP, stimulation of cytokine expression 

inhibition of host innate immune response, cleavage of viral 

polyprotein via PLPro/Deubiquitinase domain 

[52–59] 

Non-structural 

protein 4 

function as a transmembrane scaffold protein and has role for proper 

structure of DMVs  

[60,61] 

Non-structural 

protein 5 

main protease, cleavage of viral polyprotein,  [62] 

Non-structural 

protein 6 

function as a transmembrane scaffold protein  [63] 

Non-structural 

protein 7 

complex formation with non-structural protein 8, has role in formation 

of processivity clamp for RNA polymerase  

[64] 

Non-structural 

protein 8 

forms hexadecameric complex with nsp7, may act as processivity 

clamp for RNA polymerase; may act as primase  

[64,65] 

Non-structural 

protein 9 

Binding to RNA [66] 

Non-structural 

protein 10 

cofactor for non-structural protein 14 and non-structural protein 16 

which are responsible for heterodimer formation, stimulation of 2-O-

MT and ExoN 

[67,68] 

Non-structural 

protein 12 

RNA helicase, 5′ triphosphatase  [69] 

Non-structural 

protein 13 

RNA-dependent RNA Polymerase [70,71] 

Non-structural 

protein 14 

3′-5′ exoribonuclease, N7 DNA methyltransferase  [72–75] 

Non-structural 

protein 15 

viral endoribonuclease (NendoU endoribonuclease) [76,77] 

Non-structural 

protein 16 

mRNA cap 2'-O-ribose methylation, shielding viral RNA from 

melanoma differentiation-associated protein 5 (MDA5) recognition  

[78,79] 
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1.1.4 Entry Mechanism of SARS-CoV-2 into Cells 

SARS-CoV-2 virus usually uses the host cell's ACE2 receptor to enter the cell, and 

TMPRSS2 serine proteases to prepare the Spike protein for fusion [27]. After the Spike 

protein binds to the ACE2 receptor, Spike protein undergoes conformational changes to 

carry out fusion between the viral envelope protein and the membrane of the host cell 

[80]. As a result of membrane fusion, the virus is covered with the host cell membrane 

and an intracellular endosome structure is formed [81]. This leads to the release of viral 

RNA into the host cytoplasm. For the synthesis of structural and non-structural proteins, 

the virus uses both its own and host cell mechanisms. Viral RNA which enters to the cell 

after fusion undergoes translation, synthesis of non-structural proteins that are responsible 

for replication and transcription processes occurs. The necessary RNA and proteins to 

form the virion are associated together with the help of the endoplasmic reticulum and 

Golgi of the host cell, and these virions are sent back out of the cell via the vesicles 

[82,83]. 

SARS-CoV-2 virus particles perform attachment to host cell and fusion processes 

via its Spke protein. Spike protein is homotrimer, found into the membrane as multiple 

and it seems crown-like. Many types of viruses such as Ebola, HIV, and H5N1 influenza 

A, use their glycoproteins for entry into host cells. After viruses attach to the host cell 

surface, their glycoproteins are cut, separated into two subunits as transmembrane and 

extracellular [84–86]. S1 subunit binds to ACE2, while the S2 subunit provides the 

attachment of Spike protein to the membrane. This event also occurs in SARS-Cov-2 

viruses. The Spike protein of SARS-CoV-2 is cleaved by proprotein convertases such as 

furin of infected organisms and infected cells can release new viruses easily by using this 

mechanism [87,88].  

For viral entry of SARS-CoV-2, two major cleavage events on spike protein have 

significant role. The first one is occurred in between S1 and S2 subunits when the SARS-

CoV-2 attach to ACE2 receptor on cell membrane in the cell surface entry pathway [35]. 

Another cleavage event is necessary at S2' site, in membrane fusion process, which is a 

crucially important step to release viral RNA into cell cytoplasm by using surface entry 

pathway. In addition to this, S2' site is cleaved to release viral RNA after endosome 

formation by Cathepsin L in the endosomal pathway. S1-S2 cleavage is also important 

for after maturation to release of new virions in virus-producing cells.  
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There are two common ways as endosomal and cell surface entry of SARS-CoV-2 

into host cells. In the endosomal entry pathway, target host cells do not have enough 

numbers of transmembrane proteases such as serine 2 (TMPRSS2). Therefore, SARS-

CoV-2 tends to clathrin-mediated endocytosis in this condition. First, SARS-CoV-2 binds 

to ACE2 receptor, and it is engulfed via clathrin-mediated endocytosis by membrane of 

host cell [89,90]. Next, an endosome structure is formed. When acidic suitable condition 

is occurred inside of endosome, Cathepsin L cleavages S2' site [91,92]. Viral RNA is 

released following membrane fusion (Figure 1.6). In the cell surface entry pathway, 

SARS-CoV-2 can find necessary transmembrane protease (serine 2 TMPRSS2). First 

virus binds to ACE2. The site which is present between S1 and S2 subunits, S1-S2 

boundary, is cleavaged by furin protease [27,35,88]. Some conformational changes occur 

on Spike protein. Subsequently, serine 2 TMPRSS2 cuts S2' site [93–95]. Membrane 

fusion occurs, and viral RNA is released into the cytoplasm of host cell (Figure 1.7). 

 
Figure 1.6 Endosomal cell entry pathway of SARS-CoV-2. (Figure was adapted from 
[96] and was designed by using BioRender). 
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Figure 1.7 Cell surface entry of pathway of SARS-CoV-2. (Figure was adapted from 
[96] and was designed by uisng BioRender). 

1.1.5 SARS-CoV-2 Omicron (B.1.1.529) Variant  

Since the SARS-CoV-2 virus emerged and expand worldwide, it has undergone 

many mutations to escape the immune systems of the host organisms. On November 26, 

2021, the World Health Organization declared the highly contagious Omicron (B.1.1.529) 

variant as a variant of serious concern [97]. For 2022, the dominant variant is Omicron 

(B.1.1.529).  

1.1.6 Omicron (B.1.1.529) Variant Mutations 

The location of many Omicron variant mutations on the S gene has played an 

important role in making it the dominant variant. The presence of 15 new mutations on 

the RBD of the Omicron variant was detected [98–103]. Some RBD mutation sites, such 

as Lys417Asn, Ser477Asn, Thr478Lys, Glu484Ala, and Asn501Tyr, have been shown to 

help SARS-CoV-2 viral escape from the host immune system by increasing its binding 

affinity for ACE2 [99,104–112]. Six of mutations in RBD is found in receptor binding 

motif (RBM) of Spike protein. These are Asn440Lys, Gly446Ser, Gln493Arg, 

Gly496Ser, Gln498Arg, and Tyr505His and are significantly efficient in formation of 

loop between 470-490 [98]. His557Tyr, Asn679Lys and Pro681His mutations are very 

close to the cleavage site of the furin protease [113–115]. There are six new mutations 

Asn764Lys, Asp796Tyr, Asn856Lys, Gln954His, Asn969Lys and Leu981Phe, in S2 

subunit of Spike protein  [113,114].  
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Table 1.2 Mutation list of major SARS-CoV-2 variants [102]. 
Variant of 

Concern 

List of Mutations Lineage 

Omicron Ala67Val, del69-70, Thr95Ile, Gly142Asp, del143-145, del211, 

Leu212Ile, ins214GluProGlu, Gly339Asp, Ser371Leu, Ser373Pro, 

Ser375Phe, Lys417Asn, Asn440Lys, Glu446Ser, Ser477Asn, 

Thr478Lys, Glu484Ala, Gln493Arg, Gly496Ser, Gln498Arg, 

Asn501Tyr, Tyr505His, Thr547Lys, Asp614Gly, His655Tyr, 

Asn679Lys, Pro681His, Asn764Lys, Asp796Tyr, Asn856Lys, 

Gln954His, Asn969Lys, Leu981Phe 

B.1.1.529 

Alpha del69-70, del144, Asn501Tyr, Ala570Asp, Asp614Gly, 

Pro681His, Thr716Ile, Ser982Ala, Asp1118His 

B.1.1.7 

Beta Leu18Phe, Asp80Ala, Asp215Gly, del242-244, Arg246Ile, 

Lys417Asn, Glu484Lys, Asn501Tyr, Asp614Gly, Ala701Val 

B.1.351 

Gamma Leu18Phe, Thr20Asn, Pro26Ser, Asp138Tyr, Arg190Ser, 

Lys417Thr, Glu484Lys, Asn501Tyr, Asp614Gly, His655Tyr, 

Thr1027Ile, Val1176Phe 

P.1 

Delta Thr19Arg, Gly142Asp, Glu156Gly, del157-158, Leu452Arg, 

Thr478Lys, Asp614Gly, Pro681Arg, Asp950Asn 

B.1.617.2 

 

1.2 Heavy Chain Only Antibodies 
Antibodies are biotechnological products that are frequently used for diagnosis and 

treatment in the field of health and medical biotechnology. Apart from the known 

antibodies in the Camelidae family, there are also antibodies called heavy chain only 

antibodies (HcAb), which contain only two heavy chains. Hamers-Casterman discovered 

the presence of antibodies consisting only of the heavy chain, aside from conventional 

antibodies, in camels and llamas [116]. These antibodies have the potential to make a very 

important social and economic contribution to their small molecular structure, structural 

stability, and suitability for high-scale production in industry.  

1.2.1 Single Domain Antibodies (sdAbs) 

Antibodies are basically proteins that contain two heavy and two light chains in 

their structure. They are quite important regarding their usage in diagnosis and treatment 

of various diseases. But because of their big size and affecting large areas in body, 
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antibodies can cause unwanted immunogenic reaction or side effects in treatment and 

their long half-life causes a large amount of adverse background formation for molecular 

imaging in diagnosis [117,118]. Camelidae family antibodies do not have light chains. 

These antibodies are called Heavy Chain Only Antibodies (HcAb) and they consist of 

two constant regions, a junction region and two variable regions (VHH; antigen binding 

fragment) so they have only heavy chain [119]. This variable domain (VHH) has all the 

binding and strong antigen affinity of an antibody.   

The part that can bind to the antigens of HcAbs which consists of heavy chains, is 

also called single domain antibody (sdAb). A normal-sized human antibody has a 

molecular weight of approximately 160 kDa. While HcAbs are nearly 75 kDa, these 

sdAbs have only around 15 kDa molecular weight. As can be understood, sdAbs are much 

smaller than antibodies, they can bind to internal regions and are functional as a whole 

antibody molecule. Thanks to their small size and long CDR3 domain, they attach to 

surfaces that cannot be reached by standard antibodies on the protein surface. This allows 

the capture of toxins or epitopes that could not be detected with conventional antibodies 

before [120]. They are acceptably successful for tissue penetration and can pass through 

the blood-brain barrier. [121–125].  

 
Figure 1.8 Structure models of conventional antibody, antibody fragments and 
single domain antibody and size comparison. H: Heavy chain, L: Light chain, C: 
Constant region, V: Variable region, Fab: Fragment antigen-binding, scFv: Single-chain 
variable fragment, sdAb: Single domain antibody, VHH: Antigen binding fragment 
HcAb: Heavy chain only antibody.  
 



12 

 

 

 

Single domain antibodies are much more cost effective than antibodies because they 

can be easily produced in bacteria and fungi [126]. They are quite favorable for 

engineering and have a high affinity for different targets in large application area. Because 

the variable parts of sdAbs are more hydrophilic, and have a monomer structure, they are 

more soluble and more stable than conventional antibodies. High solubility rate also 

prevents aggregate formation [127]. In addition to this, stability of sdAbs is very good 

with a remarkable level for high temperature, high pressure, and low pH. They can work 

well even in the presence of proteases [128–133]. 

1.2.2 Single Domain Antibody (sdAb) Based Approaches in 

Infectious Diseases 

There are significant studies in the literature regarding the usage of sdAbs for 

infectious diseases. In a study conducted in 2001, it was determined that the sdAbs 

obtained from a study in which Camelus dromedarius animals were immunized with 

TEM-1 and BcII beta-lactamases were considerably successful in inhibition of these beta-

lactamases and provided an increase of ampicillin sensitivity in bacteria [134]. Moreover, 

small domain antibody fragments to conserved epitopes in variant of surface 

glycoproteins (VSG) of the African trypanosome paradigm have been developed. It has 

been reported that small antibody fragments have the ability to penetrate the VSG coat 

for targeting epitopes in condensed lectin structure [135]. sdAbs produced in llamas 

targeting the cell wall protein Malf1 of Malassezia furfur fungi, which cause dandruff 

formation in the hair, provided successful results in high urea concentration and presence 

of shampoo that has extreme ionic conditions [131]. Rotavirus-induced diarrhea-targeted 

Llama VHH fragments were produced by Lactobacillus paracasei bacteria and it was 

determined that these sdAbs decreased level of diarrhea infection in cell culture and 

mouse model experiments [126]. In another study, an avian influenza virus 

A/Mallard/Pennsylvania/10218/84 (H5N2) was used for immunization of Camelus 

bactrianus. After immunization, new type of sdAb fragments which involves the addition 

of the isoleucine zipper domain (ILZ) was created. Due to this modification, it has been 

recorded that improvement in virus neutralization [136]. Produced sdAbs, anti-flagellin 

VHHs, against to flagellum of P. aeruginosa had acceptable results in vitro assays for 

prevention of swimming and biofilm formation [137]. It was shown in vitro that the 

single-domain antibody fragments bound and inhibited H5N1 virus infection which 
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influenza virus neuraminidase (NA) was used as a target for alpaca (Vicugna pacos) 

immunization [138].  

1.2.3 Single Domain Antibody (sdAb) Based Diagnosis Approaches  

Single domain antibodies (sdAb) are important partners for molecular imaging. 

Because of their small size, they allow multiple targeting by combining multiple sdAbs, 

which is an important property in the imaging field. In addition, kidney glomeruli, which 

have 30-50 kDa filtering feature, can rapidly remove sdAbs with an average size of 13 

kDa from the blood circulatory system. Rapid removal of sdAbs significantly reduces 

their likelihood of causing toxicity [139]. Molecular optical imaging using monoclonal 

antibodies has a low tumor to background ratio. Scientist developed anti-HER2 VHH-IR 

for imaging of human breast tumor xenografts. Anti-HER2 VHH-IR has a detection rate 

20 times faster than traditional methods with a much higher contrast between tumor and 

background tissue [140]. Researchers performed fusion reaction between VHH fragments 

of HcAbs in alpacas and fluorescent proteins, generated Chromobody molecule which 

can diffuse into subcellular compartments of living cells. They expressed in living cells 

and visualized S phase and mitosis [141]. Furthermore, transient interactions between 

metal binding domains (MBDs) and how copper ions regulate subcellular localization of 

ATP7B, a copper transporter, were elucidated by using a sdAb-based design [142]. 

1.2.4 Single Domain Antibody (sdAb) Based Approaches in Covid-

19 Disease 

Neutralization potential of sdAbs was tested against SARS-CoV-2 recently in 

various studies. It was established that isolated sdAb from llamas can attach to RBD of 

Spike protein and prevent interaction between ACE2 and SARS-CoV-2 [143]. TY1 also 

is a successful sdAb candidate which binds to RBD with high affinity for the SARS-CoV-

2. It has been indicated that isolated and characterized TY1 was targeting receptor binding 

site of the SARS-Cov-2 spike protein and inhibiting its interaction with ACE2 in the study 

which SARS-CoV-2 virus and alpaca (Lama pacos) were used [144]. Moreover, it was 

shown using  in vitro experiments that two sdAbs, H11-H4 and H11-D4, can block RBD-

ACE2 interaction [145]. There are many sdAbs that have achieved successful results 

against SARS-CoV-2, which is also mentioned in the experimental procedure part of the 

thesis (Chapter 2). 
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1.3 Structure Modelling of Antibody Derivatives  
Antibodies are proteins that have crucially important functions in the immune 

system. Many of the available antibody structures have been obtained under laboratory 

conditions using experimental processes such as X-ray crystallography, nuclear magnetic 

resonance (NMR), and cryo-electron microscopy (cryo-EM). Besides the economic 

drawbacks of these methods, it is not possible to use for prediction of new antibodies. It 

is not suitable for large-scale libraries or screening studies that have been created as a 

result of information obtained from previous studies and have been developed using new 

approaches, such as site-specific rational mutations. Therefore, the usage of antibody 

structure prediction approaches in creation structural modelling of antibody derivatives is 

inevitable for biological research. Because sdAbs have relatively small structures 

compared to antibodies, approaches which are used in antibody modelling are favorable 

for sdAb structure modelling too. 

1.3.1 RosettaAntibody 

RosettaAntibody is a server which is used to predict antibody variable region 

structures depending on amino acid sequences of heavy and light chains. RosettaAntibody 

uses homologous template structures of light and heavy chains for this process. Software 

also has a high resolution protocol which can optimize torsion angles of complementarity 

determining region (CDR) for steric clashes [146].  

1.3.2 AlphaFold 

AlphaFold is a leader program that attempts to predict and visualize the 3D 

structures of proteins. The software workflow attempts to improve the accuracy of 

structure prediction based on the PDB structures of existing proteins and using state-of-

the-art machine learning techniques referred to as DeepMind including utilization of 

multiple alignments.  

1.4 Protein-Protein Docking 
Proteins are molecules that carry out many tasks for organisms. They are 

responsible for various tasks, such as structural processes, cellular signal transduction, 

performing of intracellular chemical reactions, cellular defense, and transport of 
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molecules. While the responsible proteins perform all these tasks, they interact with other 

proteins in cellular processes. The elucidation of these interactions is essential for 

understanding the mechanism of cellular events and behaviors. Protein-protein docking 

experiments used for this purpose are very useful approaches in terms of shedding light 

on these processes. Protein-protein docking processes are usually carried out with two 

main members of the experiment. The first is the target protein with a large conformation 

called the receptor, while the second is the ligand proteins that have been tested for their 

ability to bind and neutralize a target slightly smaller than the receptor.  

1.4.1 HDOCK 

HDOCK server is a useful and comprehensive software for homology-based 

studies, macromolecule structure prediction, template based modelling and 

macromolecular docking experiments. Amino acid sequences or PDB (Protein Data 

Bank) structures can be directly used in the HDOCK server. The software is used a 

specific hybrid algorithm which depends on template-based and template-free docking to 

predict structures of ligand and receptor and to determine interaction between them. 

Furthermore, the server has a special workflow and scoring strategy for protein-

RNA/DNA docking experiments besides protein-protein docking. A normal docking 

experiment is completed in approximately 30 minutes. After the docking experiment is 

concluded, the docking model with top 100 scores, which shows interaction between 

receptor and ligand can be downloaded from the software and the top 10 of them can be 

visualized on the server [147,148]. 

1.4.2 Paratome 

The target regions of the receptor molecules used for protein-protein docking 

experiments were usually determined, but antibody or sdAb loop regions which are 

functional in docking should be specified to target these regions. These interaction loop 

regions on antibodies or sdAbs are called as a paratope (or antigen binding region) which 

are interacting with the epitope of target antigens. Antigen Binding Regions Identification 

Tool (Paratome) is a beneficial server to find paratope sites by using special algorithm. 

Software uses alignment consensus regions of antibody-antigen complexes as a template 

in paratope determination process [149]. Important interaction sites generally overlap 

with complementarity determining regions (CDRs). However, it was reported that 22% 
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of antigen-binding sites are found outside of CDRs [150]. Paratome software can estimate 

paratope sites depends on 3D structure or amino acid sequence of antibody or sdAb. 

Moreover, it has been reported that Paratome web server can predict antigen binding 

residues with 94% accuracy [150].  

1.5 Protein-Protein Docking Scoring and Analyzing 

Tools 

1.5.1 Bluues 

Bluues scoring program uses electrostatic properties of proteins to find out the best 

accurate scoring for docking experiments. The blues program relies on seven main 

approaches to fully reveal its scoring. These are generalized Born radius of each atom, 

pH-dependent properties, pKa of all ionizable groups, electrostatic potential in a volume 

surrounding the molecule, electrostatic solvation free energy, electrostatic forces on each 

atom and electrostatic potential at the surface of the molecule [151].  

1.5.2 Protein Binding Energy Prediction (PRODIGY) 

The PROtein binDIng enerGY prediction (PRODIGY) web server is a useful tool 

for estimating binding affinities and the predisposition of protein-protein interactions 

after docking experiments. In this respect, the PRODIGY can be preferred for many 

purposes, such as determining the biological functions of small ligand molecules or 

proteins related to diseases. Server achieves this via its strong predictive ability for 

interactions between protein-protein complexes. Moreover, special calculations made by 

the software about intermolecular interactions are factors that increase the accuracy of 

prediction rate. Software utilizes 3D protein structures of interaction complexes when 

estimating binding energies [152].  

1.5.3 LigPlot+ 

LigPlot+ is a visualization system for ligand-protein or protein-protein interactions. 

System uses 3D coordinates of complexes to occur multiple 2D diagrams of ligand-

protein interactions. The diagrams show hydrophobic or hydrogen-bond interactions 

between side or main chain of protein and ligand. The list of interactions can be obtained 
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as a file from the system. In addition, the interactions of all ligands that bind to the same 

protein at the same time can also be viewed at once [153].  

1.5.4 PyMOL 

PyMOL is a program which is used for visualization of protein interactions in 3D 

structures of complexes. The interaction regions can be focused and the bonds between 

atoms can be visualized on the 3D structure by using the program. It is an ideal application 

for labeling, detailed visualization and cleaning processes for all small parts of 3D 

structures, from chain differences to atomic residues [154]. 

 

1.6 Aim of The Study 
The coronavirus outbreak which started end of the 2019, has a status of a pandemic 

worldwide thus far, because of the virus has a high infectivity rate, undergone various 

mutations and evolved different variants. Due to each new variant of the SARS-CoV-2 

virus has different mutations, the success of many antibody-based approaches developed 

for therapeutic purposes is declining. Omicron, a dominant variant in 2022, has managed 

to evade from many antibodies and sdAbs due to its unique mutations, in terms of 

spreading rate, it has been quite successful compared to previous variants. Although there 

are many sdAbs developed to combat coronavirus in recent years, their effectiveness 

against the new Omicron variant has not been sufficiently tested and the effect of 

mutations regarding neutralization level is not clear.  

Therefore, testing sdAbs known sequences and have proven efficacy against 

previous variants of the SARS-CoV-2 virus is a very rational approach. In this study, the 

effectiveness of sdAbs, which were successful for previous variants obtained from the 

literature and databases, against the Omicron variant, was evaluated via protein-protein 

docking experiments. Even if the tested sdAbs do not show the expected effect against 

the Omicron variant, their efficacy can be increased by making some mutations on 

possible interaction points. The important thing here is to establish a rational and 

repeatable method for sdAbs selection. In this way, time-consuming and difficult 

processes, including animal experiments, can be shortened. The main aim of this study is 

developing a new strategy for screening and analyzing effective nanobody candidates 

against to various pathogens including new SARS-CoV-2 variants in the future. 
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Chapter 2 
 

EXPERIMENTAL PROCEDURE  

2.1 Collection of Single Domain Antibody (sdAb) 

Sequences 
625 sdAb sequences with neutralizing attributes against SARS-CoV-2 variants 

were obtained from Coronavirus Antibody Database [155] by using specific searching 

parameters on 17 February 2022. Another sequences were taken from different studies; 

117 from [156], 50 from [157], 99 from [158] and 31 sequences listed from Protein Data 

Bank (PDB) [159]. 72 redundant sdAbs sequences were removed from the collection. 

2.2 Structure Modelling of Single Domain 

Antibodies (sdAbs) 
850 sdAb sequences were prepared in FASTA format for structure modelling. sdAb 

sequences obtained from previous studies or databases were used as a template. 5 model 

structure files (total 4250) in PDB format for each sdAb sequence were created via 

AlphaFold 2.1 [160]. After structure modelling, the PDB file was selected out of top 5 

highest ranked models which were produced by AlphaFold 2.1 for each sdAb to use in 

protein-protein docking experiments. AlphaFold 2.1 was installed and run on local High-

Performance Computing (HPC) cluster. Parameters in software were set as default. 

Standard procedure was used. After prediction of first models by deep learning in 

AlphaFold 2.1 algorithm, relaxation, and energy minimization for PDB structures were 

performed in AMBER force field to obtain the final top 5 ranked model. 
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2.3 First Round Protein-Protein Docking 

Experiments 
PDB structures for SARS-CoV-2 wilt type and Omicron variant were obtained from 

Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) 

[159]. PDB ID:6VXX [161] for the wild-type Spike protein and PDB ID:7WP9 [109] for 

the Omicron variant were selected (Table 2.1 ). Active residues were determined based 

on Omicron variant mutation sites (Table 2.2). Amino acid sequences were obtained from 

the PDB website [159] and sequence alignment was performed on Clustal Omega web 

server [162,163] to determine the exact position of residues. Paratome web server [149] 

was used to define active residues (paratope regions) (Figure 2.1 and Table 2.4 ) of sdAbs 

whose PDB structures were generated in AlphaFold [160] for the docking experiment. 

Although the spike protein trimer was loaded onto the server as a receptor, only one chain 

of active sites was given to the system for each running. Because of three chains of Spike 

proteins, totally six running (three for 6VXX and three for 7WP9) were performed for 

PDB structures. HADDOCK server was tested for 3 chains, but software did not permit 

docking all chain in same time so realistic approach was not applied Spike homotrimer. 

Therefore, the HDOCK program was used for protein-protein docking [147,148]. All 

PDB structures were visually inspected via PyMOL before starting docking experiment  

[154]. Files which have a suitable format for HDOCK server were prepared for active 

residues. Standard running parameters were used for the docking process.  

 

Table 2.1 Model structures on PDB website and their properties. 
Variant  PDB ID State (Open/Closed) Method Resolution 

Wild Type 6VXX Closed Electron Microscopy  2.80 Å 

Wild Type 6VYB Open Electron Microscopy  3.20 Å 

Wild Type 6VSB Open  Electron Microscopy  3.46 Å 

Wild Type 6XM3 Open Electron Microscopy  2.90 Å 

Omicron 7WK3 Open  Electron Microscopy  3.40 Å 

Omicron 7TGW Open Electron Microscopy  3.00 Å 

Omicron 7WP9 Closed Electron Microscopy  2.56 Å 

Omicron 7QO7 Open  Electron Microscopy  3.02 Å 

Omicron 7WPA Open Electron Microscopy  2.77 Å 
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Table 2.2 Active residues which were used in 1st round docking experiments. 
Spike Protein PDB ID HDOCK Protein-Protein Docking Active Residues 

6VXX 157-165:A, 385-400:A, 431-441:A, 453-470:A, 491-529:A, 561-571:A, 

628-638:A, 669-679:A, 692-710:A, 778-788:A, 810-820:A, 870-880:A, 

968-978:A, 983-993:A, 995-1005:A, 157-165:B, 385-400:B, 431-

441:B, 453-470:B, 491-529:B, 561-571:B, 628-638:B, 669-679:B, 692-

710:B, 778-788:B, 810-820:B, 870-880:B, 968-978:B, 983-993:B, 995-

1005:B, 157-165:C, 385-400:C, 431-441:C, 453-470:C, 491-529:C, 

561-571:C, 628-638:C, 669-679:C, 692-710:C, 778-788:C, 810-820:C, 

870-880:C, 968-978:C, 983-993:C, 995-1005:C 

7WP9 135-145:A, 362-377:A, 409-419:A, 431-449:A, 469-507:A, 539-549:A, 

606-616:A, 647-657:A, 670-688:A,755-765:A, 788-798:A, 848-858:A, 

946-956:A, 961-971:A, 973-983:A, 135-145:B, 362-377:B, 409-419:B, 

431-449:B, 469-507:B, 539-549:B, 606-616:B, 647-657:B, 670-

688:B,755-765:B, 788-798:B, 848-858:B, 946-956:B, 961-971:B, 973-

983:B, 135-145:C, 362-377:C, 409-419:C, 431-449:C, 469-507:C, 539-

549:C, 606-616:C, 647-657:C, 670-688:C,755-765:C, 788-798:C, 848-

858:C, 946-956:C, 961-971:C, 973-983:C 

 

Table 2.3 Active residues which were used in 2nd round docking experiments. 
Spike Protein PDB ID HDOCK Protein-Protein Docking Active Residues 

6VXX 138-146:A, 366-381:A, 412-422:A, 434-451:A, 472-510:A, 542-552:A, 

609-619:A, 650-660:A, 673-691:A, 759-769:A, 791-801:A 851-861:A, 

949-959:A, 964-974:A, 976-986:A, 138-146:B, 366-381:B, 412-422:B, 

434-451:B, 472-510:B, 542-552:B, 609-619:B, 650-660:B, 673-691:B, 

759-769:B, 791-801:B, 851-861:B, 949-959:B, 964-974:B, 976-986:B, 

138-146:C, 366-381:C, 412-422:C, 434-451:C, 472-510:C, 542-552:C, 

609-619:C, 650-660:C, 673-691:C, 759-769:C, 791-801:C, 851-861:C, 

949-959:C, 964-974:C, 976-986:C 

7WP9 135-145:A, 362-377:A, 409-419:A, 431-449:A, 469-507:A, 539-549:A, 

606-616:A, 647-657:A, 670-688:A,755-765:A, 788-798:A, 848-858:A, 

946-956:A, 961-971:A, 973-983:A, 135-145:B, 362-377:B, 409-419:B, 

431-449:B, 469-507:B, 539-549:B, 606-616:B, 647-657:B, 670-

688:B,755-765:B, 788-798:B, 848-858:B, 946-956:B, 961-971:B, 973-

983:B, 135-145:C, 362-377:C, 409-419:C, 431-449:C, 469-507:C, 539-

549:C, 606-616:C, 647-657:C, 670-688:C,755-765:C, 788-798:C, 848-

858:C, 946-956:C, 961-971:C, 973-983:C 
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Table 2.4 Paratope regions in amino acid sequences of sdAb NM1223, sdAb-2F2, 
S1-24 and VHH E. 

sdAb Name CDR1 CDR 2 CDR 3 

NM1223 FAFSSVSMS (27-35) WVAEIDRDGGNGNYE 

(47-61) 

RLGTRDHIMSG (97-

107) 

sdAb-2F2 LAQSKWAYG 

(27-35) 

AVAAIDVATGPWYY (47-

60) 

AHHIPTKHPAFPDFRDY 

(98-114) 

S1-24 STTTNYHMG (27-

35) 

LVAAINAGGITNYA (47-

60) 

NIGGGWDYRNSYYIPRV

DS (96-114) 

VHH E VTLDYYAIG (27-

35) 

GVSCIGSSDGRTYY (47-

60) 

LTVGTYYSGNYHYTCSD

DMDY (98-118) 

 

        
Figure 2.1 Active residues for sdAbs NM1223 and S1-24 used in docking 
experiments. Paratope regions (red) and rigid body structure (blue) were represented. 
Structure alignment was performed via PyMOL (surface representation and 50% 
transparency). 

2.4 Second Round Protein-Protein Docking 

Experiments 
PDB structures for SARS-CoV-2 wilt type and Omicron variant were obtained from 

Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) 

[159]. PDB ID:6VXX [161] for the wild-type Spike protein and PDB ID:7WP9 [109] for 

the Omicron variant were selected (Table 2.1 ). PDB models had some deficiencies about 

missing residues, so various tools were tried to a solve problem. PDBFixer, MODELLER, 

CHARMM-GUI PDB Reader and GalaxyFill were tested. CHARMM-GUI PDB Reader 

caused some error in the HDOCK server regarding chain ID of Spike proteins which were 

formed after fixation. All these tools can be used for preparation of proteins in docking 

experiment or molecular dynamics (MD) simulations such as missing residue problem, 
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adding hydrogens, setting pH, deficiency in crystal structure. PDBFixer, MODELLER 

and CHARMM-GUI PDB Reader use amino acid sequence in the PDB website [109,161] 

as a template to fill missing residues but there were some mistakes in the sequences 

compared to natural ones. Unlike these tools, GalaxyFill uses the amino acid sequence 

provided by users. Therefore, PDB structure data files were analyzed via text editor 

program and engineered mutation sites were determined (residue P983K and P984V in 

PDB ID:7WP9, residue P986K and P987V in PDB ID:6VXX). These sites were removed 

manually in text and were given to GalaxyFill as a missing residue. FASTA file was 

downloaded from PDB website for 7WP9 and necessary substitutions depending on 

literature readings were occurred in sequences. For the 6VXX, PDB file was downloaded 

from CHARMM-GUI Covid-19 archive [164] and FASTA format was obtained by using 

PDB to FASTA converter web server [165]. Membrane-associated parts of Spike proteins 

(PDB ID:6VXX and 7WP9) after 1145 residue number for PDB ID:7WP9 and 1148   

residue number for PDB ID:6VXX in the C terminal of amino acid sequences were 

removed in FASTA files. NAG structures on PDB models of Spike proteins (PDB 

ID:6VXX and PDB ID:7WP9) were removed. Active residues were determined based on 

Omicron variant mutation sites (Table 2.3). Amino acid sequence alignment was 

performed on Clustal Omega web server [162,163] to determine the exact position of 

residues. Paratome web server [149] was used to define active residues (paratope regions) 

(Figure 2.1 and Table 2.4) of sdAbs whose PDB structures were generated in AlphaFold 

[160] for the docking experiment. Prepared FASTA files were used as a template and 

PDB structures which have extra missing residues (P983K and P984K in PDB ID:6VXX, 

P986K and P987V in PDB ID:7WP9) were given to GalaxyFill (Table 2.5 and Table 2.6). 

After residue filling process, Spike protein structure models obtained from CHARMM-

GUI PDB Reader, PDBFixer and GalaxyFill were aligned and analyzed via PyMOL 

(Figure 2.2 and Figure 2.3). As a result of the analysis, it was decided to use the structural 

modelling obtained by using GalaxyFill in next protein-protein docking experiments. 

Molecular Dynamic Simulation (MD) was performed for structure models of Spike 

proteins obtained from GalaxyFill to energy minimization and relaxation of newly added 

loops in edge parts of structures (Figure 2.4 and Figure 2.5). GROMACS force field 

standard protocols were used for 1 nanosecond (ns) on local cluster. All PDB structures 

were visually inspected via PyMOL before starting docking experiment. [154]. 
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Figure 2.2 Spike protein model structure alignment (PDB ID:7WP9) after addition 
of missing residues and PDB fixation with GalaxyFill and PDBFixer. GalaxyFill (red) 
and PDBFixer (blue) were used for fixation. Structure alignment was performed via 
PyMOL (cartoon representation). RMSD = 0.008 Å (24465 to 24465 atoms). 
 

                      
Figure 2.3 Spike protein model structure alignment (PDB ID:7WP9) after the 
addition of missing residues and PDB fixation with GalaxyFill and CHARMM-GUI. 
GalaxyFill (red) and CHARMM-GUI PDB Reader (magenta) were used for fixation. 
Structure alignment was performed via PyMOL (cartoon representation). RMSD = 0.000 
Å (23871 to 23871 atoms). 
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Figure 2.4 Spike protein model structure alignment (PDB ID:7WP9) after molecular 
dynamics (MD) simulation for 1 nanosecond. Before MD (red) and after MD (blue) 
models were represented. Structure alignment was performed via PyMOL (cartoon 
representation). RMSD = 1.877 Å (26691 to 26691 atoms). 

 

                         
Figure 2.5 Spike protein model structure alignment for PDB ID:6VXX) after 
molecular dynamics (MD) simulation for 1 nanosecond. Before MD (red) and after 
MD (magenta) models were represented. Structure alignment was performed via PyMOL 
(cartoon representation). RMSD = 2.107 Å (26890 to 26890 atoms). 
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Figure 2.6 Spike protein model structure alignment for receptor proteins which 
were used in 2nd round protein-protein docking experiment. (Blue:PDB ID:6VXX, 
Red:PDB ID:7WP9 and Yellow: Unexpected loops comprised of chain C of 6VXX after 
missing residue addition in GalaxyFill and molecular dynamics (MD) simulation for 1 
nanosecond application. RMSD = 2.640 Å (42027 to 42027 atoms). 
 
Table 2.5 Missing residues for PDB ID:7WP9.* 

Missing Residues Chain ID 
1-16 A, B, C 
24 B 

67-77 A, B 
141-150 A, B, C 
174-180 A, B, C 
240-260 A, B, C 
369-373 A 

402 B 
408-413 B 

412 A 
416 B 
420 B 

465-467 B 
496-502 B 
497-500 C 
497-502 A, 
675-684 A, B, C 
834-843 A, B, C 

1145-1205 A, B, C 
*(1145-1205 residues were not added in GalaxyFill.) 
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Table 2.6 Missing Residues for PDB ID:6VXX.* 
Missing Residues Chain ID 

1-26 A, B, C 

70-79 A, B, C 

144-164 A, B, C 

173-185 A, B, C 

246-262 A, B, C 

445-446 A, B, C 

455-461 A, B, C 

469-488 A, B, C 

502 A, B, C 

621-640 A, B, C 

677-688 A, B, C 

828-853 A, B, C 

1148-1262 A, B, C 

*(1148-1262 residues were not added in GalaxyFill.) 

Paratome web server [149] was used to define active residues (paratope regions) 

(Figure 2.1 and Table 2.4) of sdAbs whose PDB structures were generated in AlphaFold 

[160] for the docking experiment. Although the spike protein trimer was loaded onto the 

server as a receptor, only one chain of active sites was given to system for each running. 

Because of three chains of Spike proteins, totally six running (three for 6VXX and three 

for 7WP9) were performed for PDB structures. HADDOCK server was tested for 3 

chains, but software did not permit docking all chain in same time so realistic approach 

was not applied Spike homotrimer. Therefore, the HDOCK program was used for protein-

protein docking [147,148]. All PDB structures were visually inspected via PyMOL before 

starting docking experiment  [154]. Files which have suitable format for HDOCK server 

were prepared for active residues. Standard running parameters were used for the docking 

process.  

 

2.5 Visualization and Analysis of First Round 

HDOCK Docking Experiment Results 
After the docking experiment, 4392 HDOCK binding modes were obtained for each 

complex. PDB model structures which have top 10 HDOCK scores were created for 850 

sdAbs and 3 chains, so the total number of complexes was 25500. Bluues and PRODIGY 
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scoring tools need file in PQR format, so after docking experiments, PDB2PQR was used 

to covert PDP files into PQR. Consensus score was used for the selection of docking 

experiment results. Three docking scoring functions, HDOCK, Bluues and PRODIGY 

were scripted and implemented as a consensus and score of results were sorted. Common 

ones between the top 1000 scores and 3 chains for each Spike protein were listed. 

Proportional Venn diagrams were created for listed docking results (Figure 3.3 and Figure 

3.4). LigPlot+ was used to examine the interactions between sdAbs and Omicron Spike 

protein (Figure 3.6 and Figure 3.7).  

 

2.6 Visualization and Analysis of Second Round 

HDOCK Docking Experiment Results 
After the docking experiment, 4392 HDOCK binding modes were obtained for each 

complex. PDB model structures which have top 220 HDOCK scores were created for 850 

sdAbs and 3 chains, so the total number of complexes was 561000. Before the scoring 

with HDOCK, Bluues and PRODIGY, newly developed strategy by us was used to 

decrease number of complexes. This strategy is based on evolutionary information about 

interaction sites between target protein and antibody derivatives. Necessary codes were 

scripted, pre-scanning and visually inspection analyses were performed on large result 

datasets. Minimum 10 close contacts (3.5 Å distance between sdAb and Spike proteins) 

in determined interaction sites were selected as a parameter. 80% coverage of these results 

also were considered. Total number was reduced to 13871 for 6VXX and 7WP9 samples. 

Minimum scores were determined based on the thousandth or hundredth ranked 

complexes for each scoring function, chain, and variants. Bluues and PRODIGY scoring 

tools need file in PQR format, so after docking experiments PDB2PQR was used to covert 

PDP files into PQR. Consensus score was used for filtration of docking experiment 

results. Three docking scoring functions, HDOCK, Bluues and PRODIGY were scripted 

and implemented as a consensus and score of results were sorted. Common ones between 

the top 1000 and top 100 scores with 3 chains for each Spike protein were listed. 

Proportional Venn diagrams were created for listed docking results (Figure 3.8, Figure 

3.9, Figure 3.10 and Figure 3.11) LigPlot+ was used to examine the interactions between 

sdAbs and Omicron Spike protein (Figure 3.13, Figure 3.14, Figure 3.16, Figure 3.18 and 

Figure 3.19). 
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Chapter 3 
 

RESULTS  

3.1 Structure Modelling Results of Single Domain 

Antibodies (sdAbs) 

         
Figure 3.1 Structure modelling experiment results of sdAb Nb20. Red: PDB ID:7JVB, 
Nb20 and magenta: Nb20 structure was created AlphaFold2. Structure alignment was 
performed via PyMOL (cartoon representation). RMSD = 0.697 Å (713 to 713 atoms). 
 

                                 
 
Figure 3.2 Structure modelling experiment results of sdAb Ty1. Red: PDB ID:6ZXN, 
Ty1 and blue: Ty1 structure was created AlphaFold2. Structure alignment was performed 
via PyMOL (cartoon representation). RMSD = 1.842 Å (1514 to 1514 atoms). 
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According to the obtained results (Figure 3.1 and Figure 3.2), AlphaFold 2 is quite 

useful for the structural modelling of proteins which have small amino acid sequences 

like sdAb. Structure estimation of functional loops is a more complex issue for many 

structures modelling tools. When the alignment was visually examined in detail, It can be 

easily seen that AlphaFold 2 gave similar results to 3D model structures obtained in 

laboratory conditions for loop-like structures which have especially important functions 

for interaction with the target proteins. If the root-mean-square deviation (RMSD) value 

is close to 0, which is obtained as a result after structure alignment of the models, is 

considered more appropriate. 0.697 Å for sdAb Nb20 (713 atoms) and 1.842 Å for sdAb 

Ty1 (1514 atoms) values were observed in PyMOL structure alignment. These results can 

be considered acceptable. 

3.2 Protein-Protein First Round Docking 

Experiment Results  

 
Figure 3.3 Common sdAb numbers in top 1000 scores for wild-type SARS-CoV-2 
after 1st round docking experiment by chains. 
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Figure 3.4 Common sdAb numbers in top 1000 scores for Omicron variant SARS-
CoV-2 after 1st round docking experiment by chains. 
 

Top 1000 scores of HDOCK, Bluues and PRODIGY were used for the selection of 

successful sdAbs. Then, comparison was performed to find common sdAb numbers in 

three chains of spike proteins (Figure 3.3 and Figure 3.4). In total, out of 25500 complex 

models present for Omicron Spike protein, 2 sdAbs which can be a successful candidate 

against Omicron variant when tested in the laboratory, were detected. According to the 

first Venn diagram (Figure 3.3), the number of sdAbs, which have a probability of success 

for 3 chains and successful results were obtained for at least 2 chains, is 56 for wild-type 

Spike protein. In addition, when the Venn diagram formed for Omicron variant Spike 

protein was investigated, it was seen that this number is 28. At the end of the scanning 

occurred with a rational approach, the number of sdAb that gave successful results for the 

wild type was 31, while this number decreased to 2 for the Omicron variant. Theses result 

are explaining why Omicron variant can easily evade from existing antibodies or sdAbs, 

and became dominant variants.   
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Figure 3.5 Docking sites for sdAb NM1223 and sdAb 2F2 with SARS-CoV-2 
Omicron variant in 1st docking experiment. Red: PDB ID:7WP9 Spike protein, 
magenta: sdAb NM1223, gray: sdAb 2F2. Visualization was performed via PyMOL, 
(surface representation and 50% transparency). 
 

In Figure 3.5, it was appeared that sdAb NM1223 may be bound to a site close to 

the possible furin protease cleavage site. On the other hand, the strong binding affinity of 

sdAb 2F2 to the RBD region of the Spike protein was revealed by visual analysis of the 

complex molecule in PyMOL. In the 1st round protein docking experiment, 3D structures 

of the Spike protein available on the PDB website were used. Besides, it should be 

considered that those PDB models can have some structural deficiencies regarding 

missing residues.  

 

Figure 3.6 LigPlot+ 2D interaction analysis between sdAb NM1223 and Omicron 
Spike protein after 1st round docking experiment. (Chain X: NM1223 and Chain A: 
Omicron spike protein; yellow lines: hydrogen bonds, Distances; Asn603(B)-1-
Trp108(X):2.86Å, Asn603(B)-2-Trp108(X):2.91Å, Ala685(B)-1-Arg97(X):3.08Å, 
Ala685(B)-2-Arg97(X):2.53Å, Ala685(B)-Arg101(X):2.77Å, Ser686(B)-
Thr45(X):1.53Å. 
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When the LigPlot+ analyses are examined in detail, it was seen that the NM1223 

sdAb interacts with the Asn603(2 interactions, 2.86Å, 2.91Å), Ala685(3 interactions, 

2.53Å, 2.77Å, 3.08Å) and Ser686 (1.53Å) residues of the Omicron spike protein by using 

hydrogen bonds (Figure 3.6). The Asn603 position is very close to the D614G mutation 

(611. Residue in 7WP9), which has contributed to the acceleration of infection of the 

Omicron variant, as indicated in many studies [166–168]. Furthermore, residues Ala685 

and Ser686 of Omicron spike protein, which are among the interaction sites of sdAb 

NM1223, are located near the furin protease cleavage site, which is crucially important 

for cell entry of SARS-CoV-2 virus [35,87,96,169,170].  

 

 
Figure 3.7 LigPlot+ 2D interaction analysis between sdAb 2F2 and Omicron Spike 
protein after 1st round docking experiment.  (Chain X: sdAb 2F2 and Chain A: 
Omicron spike protein; yellow lines: hydrogen bonds, red lines: salt bridges, Distances; 
Arg454(A)-Asp110(X):3.34Å, Lys455(A)-His99(X): 2.71Å, Lys455(A)-
Asp110(X):2.97Å, Glu462(A)-Arg(X):3.18Å. 
 

On the other hand, sdAb 2F2 was established strong interactions with Arg454, 

Lys455 and Glu462 residues of Omicron spike protein (Figure 3.7). While it interacted 

with Arg454 with 3.34Å distance by using hydrogen bonding, it formed a salt bridge 

interaction with Glu462 at a distance of 3.18Å. Moreover, sdAb 2F2 has both hydrogen 

bond (2.97Å) and salt bridge (2.71Å) interaction with Lys455 residue of Omicron spike 
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protein. All three interaction sites of Omicron variants, Arg454, Lys455 and Glu462, are 

found in RBD, which is responsible for attachment to ACE2 receptor of host cells. 

Table 3.1 HDOCK protein-protein 1st docking experiment scores for Omicron 
Spike protein (PDB ID:7WP9) and common sdAbs. 
Spike Protein PDB 

ID 

Chain 

Name 

sdAb Name HDOCK 

Score 

Bluues Score PRODIGY 

Score 

7WP9 A NM1223 -397.68 -131.38 -15.6 

7WP9 B NM1223 -393.34 -111.36 -15.6 

7WP9 C NM1223 -383.53 -104.54 -16.8 

7WP9 A sdAb-2F2 -381.9 -115.15 -15.8 

7WP9 B sdAb-2F2 -382.28 -116.26 -15.9 

7WP9 C sdAb-2F2 -363.28 -103.69 -13.5 

 

 
Table 3.2 Amino acid sequences of two selected successful sdAbs for SARS-CoV-2 
Omicron variant in 1st round docking experiment. 

sdAb Name Amino Acid Sequences 

NM1223 [171] EVQLVESGGGLVQPGGSLRLSCSASGFAFSSVSMSWVRLLPGKGTEWVAE 

IDRDGGNGNYEDSVKGRFTISRDNAKNTLFLQMNSLVPEDTALYYCRLGTR 

DHIMSGWGPGAPVTVSS 

 

sdAb-2F2 [172] QVQLVESGGGLVQPGGSLRLSCAASGLAQSKWAYGWFRQAPGKGLEAVA 

AIDVATGPWYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAH 

HIPTKHPAFPDFRDYWGQGTQVTVSS 
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3.3 Protein-Protein Second Round Docking 

Experiment Results  

   
 

Figure 3.8 Common sdAb numbers in top 1000 scores for wild-type SARS-CoV-2 
after 2nd round docking experiment by chains. 
 
 
 

  
 
Figure 3.9 Common sdAb numbers in top 1000 scores for SARS-CoV-2 Omicron 
variant after 2nd round docking experiment by chains. 
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First, newly designed approach was used for pre-filtration in 2nd round docking 

experiment results. Total number of docking result complexes was reduced to 13871 

(7429 for PDB ID:6VXX and 6442 for PDB ID:7WP9) from 561000. Minumum values 

in the top 1000 scores of HDOCK, Bluues and PRODIGY were used as a threshold for 

the selection of successful sdAbs. Then, comparison was performed to find common sdAb 

numbers in three chains of spike proteins (Figure 3.8 and Figure 3.9).  In total, out of 

6442 complex models present for Omicron Spike protein, 2 sdAbs which could be a 

successful candidate against Omicron variant when tested in the laboratory were 

determined. According to Venn diagram in Figure 3.8, the number of sdAbs, which have 

a possibility of success for 3 chains and gave successful results for at least 2 chains, is 

635 for wild-type Spike protein. Besides, when Venn diagram created for Omicron 

variant Spike protein was investigated, it was seen that this number is 579 (Figure 3.9). 

Finally, after scanning carried out with a rational approach, the number of sdAb that gave 

successful results for the wild type was 259, while this number decreased to 264 for the 

Omicron variant. These results were shown that the number of candidates sdAbs that 

could be successful against Omicron and wild type Spike protein was similar. 

             
Figure 3.10 Common sdAb numbers in top 100 scores for wild-type SARS-CoV-2 
after 2nd round docking experiment by chains. 
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Figure 3.11 Common sdAb numbers in top 100 scores for SARS-CoV-2 Omicron 
variant 2nd round docking experiment by chains. 
 

After pre-filtering, which was carried out with newly added approach for 2nd round 

docking experiment results, total number of docking result complexes was decreased to 

7429 for wild type Spike protein and 6442 for Omicron Spike protein (totally 13871) from 

561000. Minimum values of 100th complexes for HDOCK, Bluues and PRODIGY 

scoring functions were determined as a threshold in the selection of successful sdAbs. 

Comparison was performed to find common sdAb numbers in three chains of spike 

proteins in next step. 2 sdAbs which could be a successful candidate against Omicron 

variant when tested in the laboratory were detected as a result of scanning in 6442 

complex models present for Omicron Spike protein (Figure 3.11). Number of sdAbs, 

which have a probability of success for 3 chains and gave successful results for at least 2 

chains, is 13 for Omicron Spike protein in Figure 11. But there was only 1 sdAb was 

common between chain A and chain B of wild type Spike Protein, compared to Omicron 

variant. Common sdAb with other chains could not be detected for the chain C when 

diagram was examined. Unexpected loops comprised after missing residue addition can 

be a reason for insufficient number of sdAbs in chain C of wild type (PDB ID:6VXX) 

docking experiment (Figure 2.6). 
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Figure 3.12 Docking sites between sdAb VHH E and SARS-CoV-2 Omicron variant 
in 2nd docking experiment. Red: PDB ID:7WP9 Spike protein, blue: sdAb VHH E. Left 
interaction sites on Spike Protein: Arg682 (Chain A). Right interaction sites on Spike 
Protein: Ser440 (Chain B), Ser491, Gly444 (Chain A). Visualization was performed via 
PyMOL, (surface representation and 50% transparency). 
 

sdAb VHH E shown affinity for different sites on Omicron Spike protein. In Figure 

3.12, VHH E has 3 strong interactions with chain A (2) and chain B (1) for RBD region. 

It also has 1 interaction for potentially for furin protease site which is important cell entry 

of SARS-CoV-2. Its ability to bind to different sites indicates that it has considerable 

flexibility regarding affinity. Loop structures of sdAbs’ have crucially important role for 

flexibility to reach difficult areas on target proteins. sdAb VHH has large affinity for at 

least two important sites.  

                            
Figure 3.13 LigPlot+ 2D interaction analysis between sdAb VHH E and RBD of 
Omicron Spike protein after 2nd round docking experiment.  (Chain X: sdAb VHH E 
and Chain A, B: Omicron spike protein; yellow lines: hydrogen bonds. Distances; 
Ser440(B)-Lys43(X):2.95Å, Ser491(A)-Tyr103(X): 2.83Å, Gly444(A)-
Asp115(X):2.62Å. 
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Figure 3.14 LigPlot+ 2D interaction analysis between sdAb VHH E and protease 
cleavage sites of Omicron Spike protein after 2nd round docking experiment.  (Chain 
X: sdAb VHH E and Chain A: Omicron spike protein; yellow lines: hydrogen bonds, red 
lines: salt bridges. Distances; Arg482(A)-Val100(X):3.08Å, Arg482(A)-Asp117(X): 
3.22Å. 
 

sdAb VHH E has various interactions on RBD region of Omicron Spike protein. 

sdAb VHH E interacts with Ser440 (Chain B) at 2.95Å distance, Gly444 (Chain A)at 

2.62Ådistance and Ser491 (Chain A) at 2.83Å distance by forming hydrogen bonds. sdAb 

VHH E used Lys43(for Ser440), Asp115 (for Gly444) and Tyr103 (for Ser491) paratope 

regions for interactions (Figure 3.13). When the LigPlot+ analysis is examined in detail, 

sdAb VHH E interacts with the Arg482 by using 2 paratope regions. It was observed that 

sdAb VHH E formed hydrogen bond using Val100 residue at 3.08 Å distance and salt 

bridge was formed with Asp117 residue (3.22Å distance) (Figure 3.14). 685-686 

positions are furin protease cleavage sites for Omicron variant of SARS-CoV-2 (PDB 

ID). Disruption of interaction between furin protease and this site is significant to prevent 

the spreading of SARS-CoV-2. Moreover, sdAb VHH E is docking to furin protease site 

with two strong bonds [35,83,96,170,173].  
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Figure 3.15 Docking sites between sdAb S1-24 and RBD of SARS-CoV-2 Omicron 
variant in 2nd docking experiment.  Red: PDB ID:7WP9 Spike protein, yellow: sdAb 
S1-24. Left interaction sites on Spike Protein: Ser456 (Chain A), Asn457 (Chain A), 
Lys459 (Chain A). Right interaction sites on Spike Protein: Tyr348 (Chain C). 
Visualization was performed via PyMOL, (surface representation and 50% transparency). 
 

sdAb S1-24 has interactions on different sites of the RBD region. Interactions 

occurred in various regions with a closed state of Omicron Spike Protein. Normally, 

sdAbs or antibody derivatives can reach and bind easily to the RBD region in the open 

state of Spike protein, which at least one RBD of protein up, but sdAb movement can be 

affected differently during docking experiment.  

            
Figure 3.16 LigPlot+ 2D interaction analysis between sdAb S1-24 and RBD of 
Omicron Spike protein after 2nd round docking experiment. (Chain X: sdAb S1-24 
and Chain A,C: Omicron spike protein; yellow lines: hydrogen bonds. Distances; 
Ser456(A)-Asn31(X):3.04Å, Asn457(A)-Ser27(X): 2.95Å, Lys459(A)-Ser27(X):3.30Å, 
Tyr348(C)-Tyr103(X):3.26Å. 
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RBD region of SARS-CoV-2 is the first target region for neutralization. sdAb S1-

24’s 4 determined interactions were shown in Figure 3.16. sdAb S1-24 interacts with 

Ser456(Chain A) at 3.04Å distance, Asn457 (Chain A) at 2.95Å distance, Asn459 (Chain 

A) at 3.30Å distance and Tyr348 (Chain C) at 3.26Å distance via hydrogen bonds. S1-24 

used Ser27 residue for Lys459 and Asn457, Asn31 residue for Ser456 and Tyr103 residue 

for Tyr348. In addition, LigPlot+ analysis is showing that S1-24 has successful results for 

different chains.  

                 
Figure 3.17 Docking sites between sdAb S1-24 and protease cleavage sites of SARS-
CoV-2 Omicron variant in 2nd docking experiment. Red: PDB ID:7WP9 Spike protein, 
yellow: sdAb S1-24. Left interaction sites on Spike Protein: Glu658 (Chain A), Cys659 
(Chain A), Ser695 (Chain A). Right interaction sites on Spike Protein: Asp817 (Chain A), 
Asp834 (Chain A). Visualization was performed via PyMOL. (Surface representation and 
50% transparency). 
 

Although, SARS-CoV-2 can entry to host cells via endosomal pathway, generally 

viruses need to proteases depending on abundance of proteases in environment. 

Therefore, protease cleavage sites can be targeted by antibody derivatives.  sdAb S1-24. 

Docking visualization results shown that sdAb S1-24 may be also effective for protease 

cleavage regions in addition to its high affinity in the RBD region. There are some 

interactions near furin cleavage sites at Glu658 (Chain A), Cys659(Chain A ) and Ser695 

(Chain A) positions. There are some interactions near furin cleavage sites at Glu658 

(Chain A), Cys659 (Chain A) and Ser695 (Chain A) positions for sdAb S1-24 (Figure 

3.18) but these interaction sites are quite far from furin cleavage site. Therefore, efficacy 

of S1-24 can be lower than other sdAbs which have specific interactions for this region, 

such as VHH E (Figure 3.14).  
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Figure 3.18 LigPlot+ 2D interaction analysis between sdAb S1-24 and protease 
cleavage sites of Omicron Spike protein after 2nd round docking experiment. (Chain 
X: sdAb S1-24 and Chain A: Omicron spike protein; yellow lines: hydrogen bonds, red 
lines: salt bridges. Distances; Glu658(A)-Arg104(X):2.98Å, Cys659(A)-Arg104(X): 
2.54Å and 3.14 Å, Ser695(A)-Ser27(X):3.28Å. 

 

                                           
Figure 3.19 LigPlot+ 2D interaction analysis between sdAb S1-24 and protease 
cleavage sites of SARS-CoV-2 Omicron variant Spike protein after 2nd round 
docking experiment.  (Chain X: sdAb S1-24 and Chain A: Omicron spike protein; 
yellow lines: hydrogen bonds, red lines: salt bridges. Distances; Asp817(A)-
Asp111(X):3.46Å, Tyr834(A)-Asn31(X): 3.19Å. 
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The 818th and 819th residues (815-816 in wild type) are the serine protease 

TMPRSS2 recognition sites used by SARS-CoV-2 during cell infection. When looking 

at the interactions in Figure 3.19, it is seen that sdAb S1-24 docked by forming at 3.46Å 

distance salt bridge with Asp817(Chain A). It uses the Asp111 residue in the paratope 

region for this interaction. Also, in support of this, there is a hydrogen bond interaction at 

3.19Å for the Tyr834 (Chain A) residue. Although this region is not close to the cleavage 

region of the TMPRSS2 protease, it is anticipated that it may help sdAb S1-24 to bind 

more strongly into this docking position. The sdAb residue responsible for this interaction 

is Asn31. 

Table 3.3 HDOCK protein-protein 2nd experiment docking scores for Omicron 
Spike protein (PDB ID:7WP9) and common sdAbs. 
Spike Protein PDB 

ID 

Chain 

Name 

sdAb Name HDOCK 

Score 

Bluues Score PRODIGY 

Score 

7WP9 A VHH E -753.34 -121.92 -13.8 

7WP9 B VHH E -721.28 -134.21 -14.1 

7WP9 C VHH E -755.12 -123.06 -13.9 

7WP9 A S1-24 -697.59 -127.01 -13.0 

7WP9 B S1-24 -683.77 -121.29 -12.4 

7WP9 C S1-24 -697.71 -123.13 -12.8 

 

There is proper correlation between all scores applied for sdAbs and each chain of 

Omicron Spike protein. 2nd round experiment docking scores for HDOCK and Bluues are 

more than 1st round but PRODIGY score of 1st round is higher than 2nd ones (Table 3.1 

and Table 3.3). The reason for high Bluues and HDOCK scores may be the addition of 

missing residues in the 2nd round and the removing of NAG structures from the models 

taken from the PDB website.  

Table 3.4 Amino acid sequences of two selected successful sdAbs for SARS-CoV-2 
Omicron variant in 2nd round docking experiment. 

sdAb Name Amino Acid Sequences 

VHH E [174] QVQLVETGGGFVQPGGSLRLSCAASGVTLDYYAIGWFRQAPGKEREGVSCI 

GSSDGRTYYSDSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCALTVGT 

YYSGNYHYTCSDDMDYWGKGTQVTVSS 

S1-24 [175] QVQPVESGGGLVQAGGSLRLSCVASGSTTTNYHMGWYRQTPGEQRELVAAI 

NAGGITNYADSVKGRFTISRDNAKNTMYLQMNNLRFEDTAVYYCNIGGGWD 

YRNSYYIPRVDSWGQGTQVTVS 



43 

 

 

 

   
Figure 3.20 Successful sdAb candidates for Omicron variants common between 3 
chains after 1st round docking experiment. (sdAb NM1223 (left, magenta) and sdAb 
2F2 (right, gray)). Visualization was created via PyMOL (cartoon representation). 
 

    
 
Figure 3.21 Successful sdAb candidates for Omicron variants common between 3 
chains after 2nd round docking experiment. (sdAb VHH E (left, blue) and sdAb S1-24 
(right, yellow)). Visualization was created via PyMOL (cartoon representation). 
 
 
 

 
Figure 3.22 Amino acid sequence alignment for obtained 4 candidate sdAbs. 
Alignment was performed Clustal Omega web server [162,163]. 
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Chapter 4 
 

CONCLUSIONS AND FUTURE 

PROSPECTS  

4.1 Conclusions 
The usage of sdAbs against infectious diseases has been among the trend 

approaches in recent years. sdAbs are antibody fragment molecules containing only the 

heavy chain, synthesized in camels. These fragments are called as a variable regions and 

are responsible for recognition of target antigen epitopes [119,125]. Once the sequence 

information of the targeted sdAbs gene is obtained, it provides a continuous, reliable 

source by allowing these sdAbs to be resynthesized at any time and the desired 

modifications to be made [176,177]. 

Before 1st round docking experiments, in order to find appropriate PDB structures 

were screened RSSB-PDB database. PDB ID:6VXX [161] was chosen for the SARS-

CoV-2 wild type and PDB ID:7WP9 [178] for the Omicron variant because these two 

PDB structures belong to the closed (all RBD's down) state of the SARS-Cov-2 Spike 

protein and their resolutions are quite high in comparison with others. There are 2 

common forms of Spike protein which was determined when SARS-CoV-2 infects the 

organism [98,104,111,179–181]. The first one is open form, which has at least one RBD 

of Spike protein is in the up position, and this is the form usually used for docking 

experiments. Besides many studies currently use the RBD region as a target and it is easier 

to reach the RBD region in open form. Closed state from among conformations of SARS-

CoV-2 Spike proteins was used in docking experiments. After infection of host 

organisms, SARS-CoV-2 Spike proteins are in open state conformation for a very short 

time interval. Open state conformation, which at least one RBD is in up position, only 

can be seen immediately before ACE2-RBD interactions. The Spike protein is in the 

closed conformation in infected organisms during the rest of the time. Therefore, a more 

realistic state of the Spike protein in the natural environment was targeted. When the spike 



45 

 

 

 

protein is in the closed state, the candidate sdAbs interacting on many RBD regions can 

prevent the transition of the RBDs from the down position to the up position. This may 

block the expected interaction between ACE2 and the Spike protein (Figure 3.5, Figure 

3.12, and Figure 3.15). 

The receptor molecule used for SARS-CoV-2 neutralization interactions is usually 

the RBD of the Spike protein. Because SARS-CoV-2 acts as a ligand that binds to the 

ACE2 receptors of cells by using the RBD to infect host cells. Therefore, targeting the 

RBD of SARS-CoV-2 and neutralizing this region has been the primary approach in 

various studies [143–145]. In order to find neutralizing molecules against SARS-CoV-2, 

regions with different functions on the Spike protein, such as the cleavage site of proteases 

that have an important role in cell infections, can be targeted. Within the scope of the 

current thesis, other biologically important regions were also accepted as a target by using 

the homotrimer structure of the spike protein as a receptor.  

Furthermore, mutation sites of the SARS-CoV-2 Omicron variant were used, while 

active residues were determining for the Spike protein during the docking experiments. 

In this way, it was aimed to investigate the effects of mutations of the Omicron variant 

on sdAbs activities (Table 2.2 and Table 2.3). When the results of the 1st round docking 

experiment are examined, it is appeared that the Omicron variant mutations significantly 

decrease the number of successful sdAbs for 3 chains. While the common successful 

sdAb number for the 3 chains in strong interaction with the wild type Spike protein was 

31, this number was observed as 2 in the docking experiment using Omicron variant 

(Figure 3.3 and Figure 3.4). A healthy comparison could not be made for the second-

round docking experiment, because after the addition of missing residues, unexpected 

loops were formed far away from the rigid body of wild type Spike protein structure. 

These loops could not have a favorable position as a result of 1 nanosecond molecular 

dynamic simulation (Figure 2.5 and Figure 2.6). Therefore, chain C of the wild type Spike 

protein which was used in the second round experiment has a problematic structure. As a 

result, this situation significantly decreased the number of successful sdAb for chain C 

(Figure 3.10). However, in chain A and chain B, the number of successful sdAbs 

decreased from 48 (wild type) to 16 (Omicron variant) (Figure 3.10 and Figure 3.11). 

Here, the effect of mutations in the Omicron variant is seen, too. 

In this thesis study, as a result of using Spike protein as a complete structure instead 

of only RBD or single chain, binding of sdAbs to regions that are normally inaccessible 
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was prevented. This situation presented a more realistic experiment approach. Otherwise, 

the region which a sdAb effectively binds could be inside the Spike homotrimer structure 

for docking experiments that single chain is used as a receptor. Likewise, adding missing 

residues before the 2nd round docking experiments enabled the structural deficiencies of 

the models on the PDB website to be eliminated. This is clearly seen when the common 

successful sdAb numbers for 3 chains obtained as a result of the 1st and 2nd round docking 

experiments are examined. According to the results where TOP 1000 scores were used as 

threshold, the number of common successful sdAbs for 3 chains for the 2 variants (wild 

type and Omicron) in the 1st round docking experiments was totally 33, while it was 523 

in the 2nd round (Figure 3.3, Figure 3.4, Figure 3.8 and Figure 3.9). The effect of the newly 

developed filtration approach, which is used before scoring the 2nd round docking 

experiments and based on sdAb interaction sites and distance between receptor-ligand as 

parameters, should not be ignored. This filtration technique also contributed to a 

significant increase in the number of determined common successful sdAbs for 3 chains 

after the 2nd round docking experiments. Considering the results obtained, the addition of 

missing residues significantly increased the number of common sdAbs as a result of 

docking experiments (Figure 3.3, Figure 3.4, Figure 3.8, Figure 3.9, Figure 3.10 and 

Figure 3.11). 

In addition, several studies have reported that glycosylation affects the interactions 

of the Spike protein with other proteins [94,179,182,183]. Therefore, it is not a realistic 

approach to use only the RBD region of Spike protein without glycans. Although there is 

a fully glycosylated model for wild type Spike protein [164], it was not present in any 

model for the Omicron variant. In 2nd round docking experiment, glycosylation patterns 

were researched to create a model. In literature, there are some studies about glycosylation 

patterns of Spike proteins [184,185]. Glycosylation patterns were listed and an extra new 

site for O-glycan was added from another study [186]. Some glycosylation modelling 

tools [164,187,188] were tested but because of complex structure of Spike protein and 

inadequacy of softwares, it could not be performed. Therefore, only missing residues were 

completed for Spike protein PDB models.  

Regions out of the RBD that may be important for SARS-CoV-2 infections can be 

overlooked. For example, in cell entry of SARS-CoV-2 and releasing of maturated new 

virions process, there are significantly important proteases and cleavage sites of these 

proteases are not in the RBD region. Within the frame of this thesis study, both the use of 
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the entire trimer structure of the spike protein is an important approach to find new 

biologically functional neutralization sites on the spike protein. Moreover, addition of 

missing residues ensured realistic experimental design because 3D models on the PDB 

website have structural deficiency and effect of this application was seen in 2nd round 

docking results. In addition, if the sdAbs interact with 2 chains of Spike protein at the 

same time, interactions can weaken. In addition, if the sdAbs interact with 2 chains of 

Spike protein at the same time, interactions can weaken. This process also provided to 

test repeatability of the docking experiment because each chain of Spike protein has the 

same sequence and structure. Detection of successful common sdAbs for all 3 chains in 

two different docking experiments is the biggest indicator of this. Determination of active 

residues based on the mutation sites of the Omicron variant for docking experiments was 

ensured possibility to observe effects of the mutations on sdAbs which are successful for 

wild type.  

As a result, all approaches used during the thesis study provided a more realistic, 

rational, and repeatable screening method for creating large libraries for sdAb-large 

complex protein interactions. Structure models of 850 sdAbs were created for the new 

structure library. This library is also important for candidate sdAb screening processes 

for new variants are anticipated to emerge in the future. In addition, a consensus scoring 

approach was used which are using chemistry and mathematical algorithms such as 

HDOCK, Bluues and PRODIGY. Moreover, the new strategy developed in the thesis 

study and used for pre-filtration before the 2nd round scoring is based on molecular 

biology and evolutionary properties, unlike other scoring functions such as HDOCK, 

Bluues, PRODIGY. This application was very helpful to increase the accuracy of results. 

Omicron variant mutations effects on protein-protein docking experiments was observed. 

New regions, such as protease cleavage sites can be targeted in SARS-CoV-2 infections 

were determined. The usage of new sites as a target together with RBD regions, can 

increase neutralization of SARS-CoV-2 with sdAbs. In addition to these, it is among the 

findings obtained as a result of the thesis that the deficiencies in protein model structures 

on the PDB website can have serious negative effects on docking experiments. Finally, it 

is not possible to test the 561000 complexes obtained after the 2nd round docking 

experiment in the laboratory environment, both in terms of time and cost. As a result of 

this thesis, this number has been reduced to 2 owing to rational design and molecular 

biology-based approaches. 
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4.2 Societal Impact and Contribution to Global 

Sustainability 
The selection of heavy chain only antibodies (HcAb) or sdAbs, which are known 

for their suitability for high-scale production, have a great potential to contribute to fight 

against different diseases and developing high value-added domestic biotechnological 

drugs. Identification of SARS-CoV-2-specific HcAb or sdAbs with proteomics methods 

will enable faster development of high value-added diagnostic kits and alternative 

treatment methods (such as smart drugs, passive vaccines) against new coronavirus 

variants. These sdAbs have the potential to make a very important social and economic 

contribution to their small molecular structure, structural stability, and suitability for high-

scale production in industry. Traditional methods such as phage display and hybridoma 

have been used for antibody selection that require extreme effort and time, but the method 

which was used in this thesis makes the process easier. The roadmap has been obtained 

in terms of approach and method will enable the selection of candidate sdAbs from 

extensive databases for new variants of SARS-CoV-2 that will emerge in the future. 

Determined sequences for new variants after fast screening may be cloned to 

microorganisms such as Escherichia coli bacteria under laboratory conditions, and new 

sdAbs which have a successful neutralization rate can be produced for diagnosis or 

treatment. Moreover, some of the selected sdAbs can be involved in sdAb maturation 

processes and may be increased their affinity by performing mutations in their sequences. 

The sdAb sequence repertoire can be revealed by transcriptomic approaches, and new 

sdAbs specific to the target epitope can be identified by using proteomic methods. Due to 

all this process, time, material, and labor that would normally be spent in a laboratory 

environment can be saved. Most importantly, as a result of the identification of candidate 

sequences without the use of any animal from the Camelidae family, which is necessary 

for the production of sdAbs, these animals are prevented from being damaged in terms of 

health. 

4.3 Future Prospects 
Single domain antibodies (sdAb) with their several advantages due to size probably 

will lead the field which antibody-based neutralization is foreseeable in thefuture because 

they have all functional properties of antibodies. Especially, in diagnosis area antibodies 
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have serious a negative, dirty background problem which is undergoing because of their 

half-life. In such cases, it is inevitable to prefer sdAbs. In addition, the ability of sdAbs 

to reach some hard-to-attain regions makes them very useful for potential new targets. 

The 4 sdAbs obtained as a result of the thesis study will also use these advantages when 

testing against the Omicron variant.   

Obtained 4 sdAb structures can be tested by using molecular dynamics simulation 

with a long time against to Omicron variant. New strategies can be researched for glycan 

model of SARS-CoV-2 Spike protein Omicron variant. Possible glycan models can 

provide to perform more realistic protein-protein docking or molecular dynamics 

simulation experiments. Also, the activity of sdAbs against to Omicron variant can be 

increased by making some mutations in the complementary determining regions. 

The names and sequence information of these 4 sdAbs are already known. 

Therefore, they can be easily cloned into microorganism and produced in their expression 

system. Neutralization levels can then be verified in with experiments under laboratory 

conditions. After the necessary tests and approvals, it can be offered to humanity as a 

drug or sera. In addition, the scripting codes and methodological approach developed 

within the scope of this thesis can be used against new SARS-CoV-2 variants that may 

emerge in the future or other diseases. In silico studies can be conducted as more realistic 

when glycan structure models are included to the method process.  
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