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ABSTRACT 

AUTOMATED PROCESSING AND CLASSIFICATION OF 

MEDICAL THERMAL IMAGES  
 

Ahmet ÖZDİL 

Ph.D. in Electrical and Computer Engineering 

Advisor: Prof. Dr. Bülent YILMAZ  

 

June 2022 

 

 The aim of this dissertation is to develop computer aided methods for processing 

and evaluating medical infrared thermal images. Throughout this study three problems 

were evaluated. The first problem was to automatically classify the body part and pose in 

the thermal images. In this study there were four classes; upper-lower body parts with 

back-front views. The first step included the segmentation of the background with Otsu’s 

thresholding method applying histogram equalization. Next, DarkNet-19 architecture was 

used to extract features from images and these features were reduced using PCA and t-

SNE methods. Finally reduced feature sets were used for classification. The second 

problem was to automatically classify liver steatosis from using thermal images. In this 

study, the classification problem was tested on an anatomical region of interest from 

abdominal images corresponding to the liver. Deep learning and texture analysis methods 

were employed for feature extraction, and then the selected feature sets were used for 

classification. The third problem was to quantify thermograms of multiple sclerosis (MS) 

patients for better assessment of the disease and monitoring the therapy. Thermal images 

of two patients and a healthy control from lower limbs were evaluated during 

experiments, and localized quantification of the effect of MS on the feet of the patients 

using thermal images method was proposed. The proposed method was fully correlated 

with the evaluations of physician. It is shown that medical thermal imaging has high 

potential in many fields of medicine as a non-invasive method for pre-diagnosis and 

follow-up. 

Keywords: Medical infrared thermal imaging, Machine learning, Deep learning, 
Classification, Image processing  
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ÖZET 

MEDİKAL TERMAL GÖRÜNTÜLERİN OTOMATİK 

OLARAK İŞLENMESİ VE SINIFLANDIRILMASI 

 
Ahmet ÖZDİL 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 

Tez Yöneticisi:  Prof. Dr. Bülent YILMAZ 

Haziran-2022 

 Bu tezin amacı, tıbbi kızılötesi termal görüntülerin işlenmesi ve değerlendirilmesi 

için bilgisayar destekli yöntemler geliştirmektir. Bu çalışma boyunca üç problem 

değerlendirilmiştir. İlk problem, termal görüntülerde vücut kısımlarını ve pozu otomatik 

olarak sınıflandırmaktı. Bu çalışmada, arka-ön ve üst-alt vücut görünümleri olan dört sınıf 

vardı. İlk adımda, Otsu'nun yöntemiyle arka plan ayrıldı ve histogram eşitleme uygulandı. 

Daha sonra, görüntülerden öznitelik çıkarmak için DarkNet-19 mimarisi kullanıldı ve bu 

öznitelikler PCA ve t-SNE yöntemleri kullanılarak azaltıldı. Son olarak, sınıflandırma 

için indirgenmiş öznitelik kümeleri kullanıldı. Üzerinde çalışılan ikinci problem, 

karaciğer yağlanmasını termal görüntüler kullanarak otomatik olarak sınıflandırmaktı. Bu 

çalışmada abdominal görüntülerden anatomik bir ilgi alanı bölütlenmiş, bu alandan 

öznitelikler çıkarıılmıştır. Öznitelik çıkarımı esnasında derin öğrenme ve doku analizi 

yöntemleri kullanışmış, seçilen en uygun öznitelikler sınıflandırmada. Son olarak bu 

tezde, multipl skleroz (MS) hastalarının tedaviye yanıt seyrini değerlendirmede 

kullanılmak üzere termogramların yerel nicelleştirilmesine dair bir yöntem önerisi 

yapıldı. Deneyler sırasında iki MS hastasının ve bir sağlıklı bireyin bacak termal 

görüntüleri değerlendirildi. Önerilen yöntemin sonuçları, hekimin değerlendirmeleri ile 

tam olarak uyuşmaktadır. Bu tezde, tıbbi termal görüntülemenin invaziv olmayan bir 

yöntem olarak ön tanı ve takip için farklı alanlarda yüksek potansiyele sahip olduğu 

gösterilmiştir. 

Anahtar kelimeler: Medikal infrared termal görüntüleme, Makine öğrenmesi, Derin 

öğrenme, Sınıflandırma, Görüntü işleme 
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Chapter 1 

Introduction 
The homeothermic structure of the human body balances the thermal distribution 

using the different systems built into it. These different systems can be perspiration-

evaporation, thermal conduction, forced and natural convection, exhalation, and infrared 

(IR) radiation to discharge the heat where vital activities produce [1]. Temperature 

differences of core or skin surface depict potential/emerging complications/diseases 

originating from anabolism or metabolism. This means that health problems that occur in 

the body can disrupt the heat balance locally or in general.  

Infrared (IR) thermography is an imaging method that displays the heat distribution 

map of the target as an image to reveal detected abnormalities by evaluating temperature 

changes in the body. An IR thermogram is an image that displays the heat distribution – 

heat map of the target. The relationship of body heat balance and illness was first 

documented in 400 BC [2]. R. Lawson, in the year 1956, applied this technique on breast 

tumors in healthcare for the first time in literature. He found out that the surface 

temperature of the skin over a tumor tissue increased more than the skin over the normal 

tissue did. There, the focus was breast cancer detection. However, this technique gained 

interest after 1995 due to improvements in IR camera technology and image processing 

algorithms [1]. Diseases such as cancer, nerve blockage, vascular problems, upper 

respiratory tract infection, hernia, skeletal system abnormalities (such as scoliosis), 

abnormal thyroid activity, liver-spleen-stomach disorders and intestinal problems can 

cause heat imbalance in various body regions and organs and their thermal reflections 

may occur on body surface. Therefore, it has been shown that IR thermography can be 

used not only for breast tumor screening but also for various kinds of abnormalities such 

as the inflammatory arthritis, osteoarthritis, soft tissue rheumatism, tennis elbow, 

fibromyalgia, complex regional pain syndrome, peripheral circulation, and fever [3]. As 

the interest of medical experts turn on to IR thermography, they expose different 

application fields. In [4], breathing cycle and cardiac pulse wave monitoring was 

performed. In Mercer et al.’s autologous transplantation work, thermal imaging was used 
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to monitor the vessels to find out which one feeds the tissue and monitor compliance after 

transplantation [5]. IR thermography has not only been applied on human subjects but 

also on animals, many different studies have been conducted on horses or other athletic 

animals to monitor injuries and inflammatory responses [6]–[9].  

Currently, researchers or physicians perform the analysis and evaluation of 

thermograms by visual inspection. Due to fast improvement in image processing 

techniques, it became possible to apply machine and deep learning techniques to various 

kind of fields. Exploring automatic processing and evaluation of thermograms by using 

newly developed methods will open new avenues to researchers in this field to apply IR 

thermography to unstudied fields, and thus more complex problems will be handled. 

When body heat map is generated, thermal differences should be examined 

throughout the body surface. Even minor differences of temperature on the body surface 

may be significant indicators for diverse spectrum of diseases beneath that area, therefore 

slight temperature changes should also be evaluated during the examination of patients 

[3]. Applying medical IR thermal imaging (MITI) in clinical practice for diagnosing or 

monitoring has been evaluated by many researchers. While integrating this tool to 

medicine, the first aim has been to apply this imaging modality as a pre-

diagnosis/interpretation tool, and by doing so, many clinics around the world have been 

using MITI as an integral part of their diagnosis process (maybe not the only tool). Since 

the number of professional physicians working with MITI is highly limited, it is 

imperative to develop new approaches and tools to help the experienced physicians in 

their efforts and even for the novice ones. MITI is a simple imaging approach that does 

not cause radiation-related risks, does not deteriorate the comfort of the patient, does not 

take long time, and is cheaper than the existing approaches such as magnetic resonance 

imaging (MRI) and computed tomography (CT) that will help the physician during the 

pre-diagnosis and screening of these diseases. In order to promote the use of this method 

there is a need for automated approaches that has high precision and is handy for the 

screening and diagnosis of different diseases. 

Many studies are focused only on one disease and have limited number of samples 

to be used in the test phase. Dr. M.M. Yılmaz Clinic is one of the largest integrative 

medicine clinics and is the first clinic that uses the thermography vastly for pre-diagnosis 

and screening of many diseases in Türkiye. In this clinic, nearly 4000 patients have been 

examined with IR thermography since 2012. Development of an automated system which 
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aims at transferring the experience of a field expert, Dr. M.M. Yılmaz who has dealt with 

numerous cases with thermographs so far, is one of the goals of this thesis work. 

The implementation of the imaging process should be demonstrated to provide a 

better understanding of the MITI. A controlled environment should be prepared while 

obtaining thermal images of a patient, because it is important to achieve better heat maps 

[10]. Patients should settle down before the image capturing begins by resting for a while 

in a controlled room. Safety measures should be considered to stabilize the conditions 

which are effective on changing the thermal conditions of the room. The dresses over the 

body are a hindrance which prevents the infrared camera from sensing the infrared 

radiations emitted from the body. Therefore, patients should be disrobed during the image 

acquisition phase. The next step is to revaluation of the camera position in accordance 

with the height and position of patient. The first images taken when patient stand still 

facing the camera, then the patient is asked to turn 90 and/or 180 degrees around his/her 

axis, and then, if necessary, raise his/her arms to show the armpits. Another action to be 

taken is to lower the altitude of the camera position to facilitate the capturing images of 

legs and feet. Fifteen to twenty images are acquired from each patient during every visit, 

and stored in a database predominantly without any labelling of disease or sufficient 

physical information. Searching through a database like this for any images with specific 

disease related diagnostic labels is not possible for now. This process is done manually 

which means for the pre-diagnosis phase the physician should go over the images one by 

one, adjust color maps manually and focus on specific regions/parts of the body visually.  

The IR thermograms may include and represent various signs about the health status 

of different body parts of a patient. However, interpreting them depends highly on the 

experience of the doctor examining the medical thermal images. Since the number of 

experienced physicians is limited in this area, it would be highly beneficial to improve 

methods to process and classify thermograms automatically. This will also help novice 

doctors or technicians to interpret them more accurately. In this study, medical 

thermograms will automatically be processed and classified to offer physicians a 

computer-aided diagnosis opportunity or a tool for pre-screening and diagnosing different 

types of diseases. This thesis work specifically focusses on the development of new 

approaches to automatically detect body parts and pose on a custom database of IR 

thermograms and detect and classify liver steatosis and multiple sclerosis (MS) diseases. 

The studies on these problems using thermal imaging are scarce or do not exist, and pre-
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diagnosing by automated processing and classification methods have not yet been 

implemented. 

1.1. Literature Overview 
Quantitative thermal image analysis is a recent topic which awaits to be explored 

and there should be a full collaboration with thermal physiology of body beneath the skin 

and of course quantitative analysis will increase the objectiveness of the interpretation of 

thermogram [11], [12]. Therefore, recently in literature, automatic processing of thermal 

images has emerged as a new field. In this new field, automatic image thresholding, 

region-of-interest (ROI) extraction, classification, and remote sensing methods have been 

focused in many different studies [13]–[28]. Deep learning (Convolutional Neural 

Networks, CNN) and conventional machine learning (Support Vector Machines, SVM) 

methods have been employed for automatization. However, these types of 

studies/methods typically need organized data, and it is necessary to pre-process and/or 

preparation or selection of the images manually. If the intent is to develop a fully 

automatic system, manual intervention should be at minimal level. Determination of the 

body part (upper or lower) and orientation of the patient (anterior or posterior pose) on 

each thermal image is currently done by the physician him/herself manually. However, 

while generating dataset to perform image processing and automatic classification, the 

physician should determine what kind of disease the image contains. In the literature, 

researchers have done this selection process manually. Unfortunately, automatic body 

part and pose determination on thermal images has not been studied so far. 

Since the first application of thermal imaging in medicine is breast tumor 

monitoring, broad amount of MITI studies focus on breast screening [18], [20], [29]–[41]. 

In [42], the sleeping position as lateral and supine of the head and body separately studied 

and deep learning methods were used for estimation. In this study, 92% level of accuracy 

was attained by employing a pre-trained CNN architecture called DarkNet-19. In [43], 

Kakileti et al. studied that comparison of semantic segmentation performance of different 

CNN architectures and found that the encoder-decoder architectures had better 

performance than the other architectures did. In [44], Bayesian based Gaussian Mixture 

Model (GMM) approach was proposed for segmenting and semi-supervised classification 

of image data, however in [45] a deterministic approach was used for data segmentation. 

Exercise-induced fatigue detection was studied by Lopez et al. [46], by processing 
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thermal images using CNN approach with an accuracy over 80%. In [47], a protocol is 

offered to detect people affected from severe acute respiratory syndrome (SARS) with 

abnormal physiological temperature. 

Different machine learning algorithms were evaluated on plantar feet thermal 

images for diabetic foot ulcer identification and k-nearest neighborhood (k-NN) with 5 

neighbors achieved 81.25% accuracy in [48]. Two different skin cancer tumors were 

classified using SVM in [49]. Histogram of oriented gradients (HOG) and random forest 

classifier methods were employed in another study [50] on thermal images for predicting 

hemodynamic shock. In [51], comparable results were achieved against the standard 

methods while testing the effect of MITI for diagnosing cardiovascular disease, and MITI 

was better when combined with standard methods in a computer aided diagnosis system. 

As an additional topic for MITI studies so far, assessment of hypertension was carried out 

in [52], they evaluated different pre-processing methods, and 89% accuracy was achieved 

by backpropagation neural network classifier. 

In [53], the symmetry of dorsal view of body is studied in which the researchers 

selected a trapezoidal region of interest (ROI), and extracted 5 features such as the 

histogram correlation coefficient (HCC), image similarity coefficient (ISC), difference of 

mean gradient vector angle (DMGVA), dorsal-ventral (DV) index, and the absolute 

difference of standard deviation (DSTD). For data preprocessing they used normalization 

and digitization. The classifier was probabilistic RAM (pRAM) neural network, consisted 

of eight-input pRAMs (or 8-PRAMS). There were two hidden layers and one output layer 

placed in a pyramidal structure. They achieved noticeable classification accuracy results 

compared to the linear Fisher algorithm. In [54], necrotizing enterocolitis (NEC) in 

newborns was detected using abdominal thermal images with a new approach. They 

extracted a rectangular area over the umbilical stump, and denoised the ROI using non-

local means denoising algorithm by considering the Gaussian noise. After denoising, they 

subdivided the ROI horizontally and vertically to obtain identical small areas. The mean 

of values of underlying pixels in the small area was calculated and set to be the small area 

value. They computed the mean, median, standard deviation (SD), median absolute 

deviation (MAD), interquartile range (IQR), total sum of squares (TSS), kurtosis, and the 

skewness. They had 80 normal and 84 NEC images. In addition, hypo and hyperthyroid 

disorder was detected using the Bayesian classifier by Mahajan and Madhe [55]. They 

classified the hypothyroid, hyperthyroid, and normal people with 81.81% accuracy, but 

their specificity was 100%. On the other hand, different skin problems can be examined 
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with thermography. In [15], the researchers used multispectral and thermal cameras to 

examine the acne vulgaris disease. Their aim was to develop a better imaging modality 

and image acquisition setup for acquiring as much information from the patient as 

possible. They used homomorphic filtering to eliminate non-uniform illumination, but 

this was not enough to produce a uniform image. Therefore, they put their effort to 

develop a better image acquisition modality. They used multispectral camera to eliminate 

unwanted wavelengths and used only those wavelengths in which the reflectance of the 

lesions was high. According to their hypothesis (based on similar theory) details of an 

acne lesion could be extracted at certain wavelengths that showed a high reflectivity. They 

planned to reduce features to two-dimensions (2D) by applying the PCA approach on 

three-dimensional (3D) hyper-spectral images. They used thermal images to find out 

whether a pixel was on a scar or on an inflammatory lesion. Another study was performed 

on skin burns [56] in which the authors classified light/severe burns using thermal images 

with standard classifiers and convolutional neural network. Nhan and Chau extracted 

features from the thermal infrared images to classify affective states of an individual with 

a genetic algorithm [57]. However, still the most popular area of thermal imaging in 

medicine is breast cancer screening.  

Backache is studied in the literature, and different approaches have been 

investigated. In [53], the back thermograms of 120 HIV patients with Kaposi's sarcoma 

are used to do a symmetry classification with pRAM neural network classifier. However, 

in [58] and [59], thermal imaging was used as the outcome measure, or in [60] 

thermogram was used to diagnose and find out the location spot of spine-related disease 

in horses manually. A dorsal view image can give information about hernia, pain centers, 

and activation of acupuncture centers. Acupuncture center activation can be observed 

throughout the whole body as well. 

Sinus inflammation detection using IR thermograms is rarely studied in the 

literature. In [61], acute maxillary rhinosinusitis detection with IR thermograms was 

studied, and they stated that the IR thermogram was not a reliable diagnosis approach. 

However, inflammation makes a temperature effect [62], where their starting point is 

different from the study in [61]. Kalaiarasi et al. studied chronic sinusitis (CS), and tested 

IR thermogram usage for diagnosing the CS. They acquired promising results that the IR 

thermogram can be beneficial for sinuses that are close to the body surface [62].  

Varicose is a disorder of blood flow, which makes it easier for IR imaging to detect. 

Blood flow has direct heat impact on body surface, and the vessels close to the skin are 
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easily detected if there is varicose due to slow blood flow [63]. In the literature there are 

different studies for diagnosing or investigating varicose [63], [64]. Bagavathiappan et al. 

investigated and found out correlation between thermal images and clinical findings on 3 

patients who have similar histories as prolonged standing [63][31]. In [64], an automatic 

system was designed to extract ROI for suspicious varicose vein areas. 

In [65], the classification performances of different sets of features were evaluated 

through support vector machines (SVM), which generated from breast infrared (IR) 

thermal images. Promising results were found which include the performance comparison 

of MITI and traditional techniques on screening cardiovascular disease [51]. In [66], IR 

images of both iris were used for diagnosing type-2 diabetes. In [67], they developed a 

treatment decision system to determine the most effective treatment method for patient 

by monitoring the wounds via MITI. A review of studies performed on different diseases 

can be found in [68]. 

An infrared camera can be integrated into another monitoring system to increase 

the performance of the system. In [69], an instant stress detection model was developed 

and a smartphone camera–based photoplethysmography (PPG) and a low-cost thermal 

camera were employed together. In [70], SVM was applied on thermal images for 

recognition of facial expressions. 
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Chapter 2 

Background 

2.1. Infrared Radiation 
Infrared (IR) is electromagnetic radiation (EMR) and its wavelength is longer than 

visible lights. Because of this, IR is invisible for human eye. Astronomer Sir William 

Herschel discovered infrared radiation in 1800. Herschel's studies presented that a little 

more than half portion of the energy from the sun land on Earth in the form of infrared. 

The climate of Earth was shaped by the absorbed and emitted infrared radiation. 

Rotational and vibrational movements of molecules cause emission or absorption 

of infrared radiation. Infrared radiation has many different application areas such as 

industrial, scientific, military, commercial, and medical applications. Detecting heat loss 

in isolated systems, monitoring temperature change over body skin surface, detecting 

overheat in the electrical components are carried out by employing infrared thermal-

imaging cameras. Target acquisition, surveillance, night vision, homing, and tracking are 

included by military and non-military use of infrared radiation. Non-military uses include 

thermal performance analysis, environmental monitoring, industrial facility investigation, 

detection of grow-ops, distant temperature sensing, short-range wireless communication, 

spectroscopy, and weather forecasting [71]. 

The spectrum of infrared radiation has no broadly accepted edges, but 700 nm to 

1mm interval can be a trustworthy interval as shown in Table 2.1.  

Table 2.1 Light comparison 

Name Wavelength Frequency (Hz)  Photon energy (eV)  

Gamma ray less than 0.01 nm more than 30 EHz more than 124 keV 
X-ray 0.01 nm – 10 nm 30 PHz – 30 EHz 124 keV – 124 eV 
Ultraviolet 10 nm – 400 nm 750 THz – 30 PHz 124 eV – 3.3 eV 
Visible 400 nm – 700 nm 430 THz – 750 THz 3.3 eV – 1.7 eV 
Infrared 700 nm – 1 mm 300 GHz – 430 THz 1.7 eV – 1.24 meV 
Microwave 1 mm – 1 meter 300 MHz – 300 GHz 1.24 meV – 1.24 μeV 
Radio 1 meter and more 300 MHz and below 1.24 μeV and below 
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There are 5,780 kelvins (5,510 °C, 9,940 °F) of temperature throughout the sun 

surface and it is composed of near-thermal-spectrum radiation. At sea level there is over 

a kilowatt irradiance, consists of 527 watts infrared, 445 watts visible light, and 32 watts 

is ultraviolet radiation. This means nearly whole portion of infrared radiation from 

sunlight is near infrared. 

Infrared radiation generally lies beyond the visible light wavelengths by human eye. 

Yet, infrared radiation is not totally invisible for human eye, where the human eye’s 

sensitivity decreases immediately but smoothly above 700nm wavelength. This means 

longer wavelengths which are classified as infrared by usual definitions, can be seen if 

they are bright enough. 

Infrared radiation is generally described as "heat radiation", still the surfaces 

become warmer when they absorb other waves like visible light or electromagnetic 

constituted from any frequency. Heating of the Earth is 49% met by infrared radiation 

from the sun and 51% met by the visible light which has longer wavelengths. At room 

temperature objects generally emit radiation around 8 to 25 μm band. This band interval 

is not so different from the visible light of incandescent objects’ and ultraviolet of hotter 

objects. Heat is energy in a transitional state that flows due to a temperature difference. 

Thermal transmission types, thermal conduction and thermal convection cannot 

propagate through a vacuum like thermal radiation [72]. 

2.2. Thermal Imaging Camera 
Thermal imaging camera generates an image by collecting infrared radiation like 

normal camera that collects visible light. Thermal imaging camera generates a heat map 

from collected infrared radiation as shown in Figure 2.1, the uppermost image was 

captured with thermal imaging camera and the below image was captured with normal 

camera from the same scene [73]. To be more specific, MITI system captures infrared 

radiation emitted from the surface of the object as temperature value of that relevant 

location and incorporate into the image as a pixel using infrared sensor arrays and 

generates a heatmap called thermogram. The temperature values in the thermal image are 

colored according to a selected color palette and the thermal image is converted to RGB 

image.  
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Figure 2.1 Thermal image and visible light image 

Thermal camera’s working principle is different on capturing mechanism, normal 

camera captures the visible light, but thermal imaging camera captures the infrared 

radiation emitted from objects due to heat. Infrared radiation has longer wavelength than 

visible light, 1 μm to 14 μm. Longer wavelength causes decrease of the resolution of the 

image captured therefore image resolutions of thermal images rages from 80 × 60 to 1280 

× 1024 pixels. Since the wavelength is longer, the infrared sensors should be larger. As a 

result, thermal imaging cameras has lower resolution compared to visible light cameras 

with same mechanical size.  

Figure 2.2, demonstrates a typical thermal imaging camera from Teledyne FLIR, 

with 320 x 256 resolution [74]. Thermal imaging cameras can detect about 0.01°C 

difference today, this sensitivity is good for medical applications. 
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Figure 2.2 FLIR A35 FOV 69 (30 Hz, ver. 2017) thermal camera 

A thermal imaging camera consists of a lens, a thermal sensor, processing 

electronics, and a mechanical housing. The lens in the thermal imaging camera collects 

and focuses infrared radiation onto the sensor array. Thermal images captured by thermal 

imaging cameras can be displayed as shades of gray values or with different color palettes. 

In Figure 2.3, color palette and gray level thermal images can be seen. Gray level images 

can be arranged as white hot or black hot, which means the hottest area will be represented 

by white or black, in Figure 2.3, white hot gray level scale is used [75].  

 

 

Figure 2.3 Different types of thermal image display 

Thermal imaging cameras are built to answer different application areas. Originally, 

thermal imaging cameras were developed for surveillance and military operations, 

however today vast number of areas like building inspections (moisture, insulation, 

roofing, etc.), firefighting, autonomous vehicles and automatic braking, skin temperature 

screening, industrial inspections, scientific research, etc. Also, it is an effective tool to 

measure skin surface temperature and identify individuals with Elevated Skin 

Temperature (EST). 
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Since there are different application areas for thermal imaging camera there are 

different specifications for applicable for specific usage: range (the entire span of 

temperatures the camera is calibrated to scan), field of view (FOV) (determined by the 

camera lens, and is total of the scene that the camera will see), IR resolution (how many 

pixels the camera has on the scene), thermal sensitivity (Noise Equivalent Temperature 

Difference, NETD) (smallest temperature difference that the camera can detect), focus 

(focused distance in scene fixed, manual, or auto), spectral range (range sensitivity in the 

electromagnetic spectrum). 

Another popular question about thermal imaging cameras is “what can thermal 

imaging camera see?”. Thermal imaging cameras cannot see through the concrete 

materials. However, they can see through smoke and in Figure 2.4 the image in the left 

was captured with visible light camera and the image on the right was captured with 

thermal imaging camera, and the man standing backward of the door can be seen in the 

image captured by thermal imaging camera [76]. The vision of thermal imaging camera 

decreases through fog or rain due to scattering of infrared radiation caused by rain 

droplets. 

 

 

Figure 2.4 How thermal imaging cameras can see through smoke 

Infrared radiation can be reflected from some surfaces like mirror or glass. 

Therefore, thermal imaging camera capture the reflection from that surface. In Figure 2.5, 

there is a glass between the thermal imaging camera and the scene in the image on the 

left side, and thermal imaging camera captures the reflection of the person who captures 

the image, not the scene [76]. Since thermal imaging camera captures the infrared 

radiation, it captures the reflected radiation from the glass surface. 
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Figure 2.5 Thermal reflection from glass 

The first thermal camera was invented by Kálmán Tihanyi in 1929 named infrared-

sensitive (night vision) electronic television camera for anti-aircraft defense in Britain 

[77]. However, civilian use of thermal camera was more possible towards to end of 1990s, 

due to dramatic decrease of the expenses.  

Throughout this study different methods have been utilized for assessment during 

investigations. In this subject, utilized methods were described briefly. 

 

2.3. Preprocessing of Images 

2.3.1. Otsu’s Thresholding Method 

In image processing it is important to select a sufficient gray level threshold to 

discriminate objects from the background. Various techniques have been proposed on this 

subject so far. The threshold value can be chosen at the bottom of a deep and sharp valley 

between two peaks that represent objects and background in an ideal histogram. However, 

for most real pictures it is often difficult to pinpoint the valley floor; especially where the 

valley is flat and wide, full of noise, or where the heights of the two hills are extremely 

different and often do not produce a traceable valley. 

Nobuyuki Otsu presented a nonparametric and unsupervised threshold selection 

approach for segmenting background from objects on digital images [78]. In order to 

maximize the separability of the classes obtained in gray levels, an optimal threshold is 

chosen by the discrimination criterion. In general, it uses the zeroth and first order 

cumulative moments of the gray level histogram. It is easy to extend the method to multi-

threshold problems. 

Otsu proposed that, since the "precision" of the threshold has not been evaluated in 

most of the methods proposed so far, it may be the right way to derive an optimal 
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thresholding method to establish a suitable criterion for evaluating the "precision" of the 

threshold from a more general point of view. Therefore, he investigated the choice of 

baseline threshold, for which only the gray-level histogram is sufficient without any other 

prior knowledge. 

The formulation of the Otsu’s method is as follows: 

If the image consists of L gray levels [1, 2, …, L], the number of pixels at level i is 

denoted by ni and total number of pixels is N = n1 + n2 + + nL. The histogram is normalized 

and regarded as a probability distribution as depicted in equations (2.1): 

  (2.1) 

Next, the pixels are divided into C0 and C1 classes (background and foreground 

respectively or vice versa) at a threshold gray level k, where C0 covers [1, 2, …, k] and 

C1 covers [k+1, …, L]. Then, the probabilities of class occurrence and the class mean 

levels, respectively, are given by equations (2.2) to (2.7): 

  (2.2) 

  (2.3) 

and  

  (2.4) 

  (2.5) 

where 

  (2.6) 

and 

  (2.7) 

are the zeroth- and the first-order cumulative moments of the histogram up to the kth 

level, respectively, and  
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  (2.8) 

is the total mean level of the original image. The relationship of the following can be 

verified for any choice of k: 

  (2.9) 

The class variances are found as follows: 

  (2.10) 

  (2.11) 

Quadratic cumulative moments (statistics) are required for these calculations. 

To assess the "goodness" of the threshold (at the k level), the following class 

separability measures used in discriminant analysis were introduced: 

  (2.12) 

where 

  (2.13) 

  (2.14) 

(due to (2.9)) and 

  (2.15) 

 are the within-class variance (equation (2.13)), between-class variance (equation (2.14)), 

and total variance of levels (equation (2.15)), respectively. Then the problem is to 

optimize the threshold k that maximizes one of the object functions in the equation (2.12). 

This perspective is motivated by the assumption that classes with good thresholds 

will segregate at gray levels, and conversely, a threshold that gives the best separation of 

classes at gray levels will be the best threshold. 

The discriminant criteria maximizing λ, K, and η, respectively, for k are, however, 

equivalent to one another; e.g., K = λ + 1 and η = λ/( λ + 1) in terms of λ, because the 

following basic relation always holds: 
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  (2.16) 

When compared by the inclusion of the threshold level k,  and  are functions of 

threshold level k, but  is independent of k. Among ,  the simplest measure 

determined as , because   based on second-order statistics (class variances) 

and the first-order statistics (class means), respectively. Thus, Otsu has chosen η as the 

criterion measure the determine the “goodness” of the threshold level k. 

The optimal threshold k* that maximizes , or , is selected in the following 

sequential search by using the simple cumulative quantities (2.6) and (2.7), or explicitly 

using (2.2)-(2.5): 

  (2.17) 

  (2.18) 

and the optimal threshold k* is 

  (2.19) 

The k range for which the maximum is sought can be limited by the following formula: 

   

This range can be called the effective range of the gray level histogram. 

From the definition in (2.14), the criterion measure  (or ) takes a minimum value 

of zero for such k as k  S - S* = {k; (k) = 0 or 1} (i.e., making all pixels either Cl or 

C0) and takes a positive and bounded value for k  S*. It is, therefore, obvious that the 

maximum always exists. 

 

2.3.2. Histogram Equalization 

Historically, the histogram equalization algorithm has been the preferred image 

enhancement algorithm because of its simplicity and efficiency. By changing the gray 

level of an image, it adjusts it according to the probability distribution function of the 

image, thereby magnifying the dynamic range of the gray-level distribution to make the 

image visually more understandable [79]. The histogram equalization algorithm performs 

the gray-level mapping of pixels in the image by processing gray level values based on 
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probability theory. Thus, it aims to improve the image by aiming its histogram to have 

uniform, smooth and clear gray levels. 

In the original image, r is the gray-level value of a pixel in the original image, r is 

in the range [0, L-1], where r = 0 represents black and r = L-1 represents white. 

Transformation can be done when r satisfied these conditions: 

  (2.20) 

where s is the gray-level intensity value of enhanced image. Assuming: 

a. T(r) is monotonically increasing function within , 

b.  for  

The inverse is: 

  (2.21) 

in this case condition (a) will be changed to  

a’. T(r) is a strictly monotonically increasing function within , 

the requirement that T(r) in condition (a) increase monotonically ensures that the output 

density values will never be less than the corresponding input values, thus avoiding the 

artifacts produced by the intensity reversal. 

The values within [0, L-1] can be considered as random variables. Probability 

density function (PDF) is among the fundamental descriptors of a random variable. 

Consider, pr(r) and ps(s) are probability density functions of r and s, respectively, if pr(r) 

and T(r) are known, and T-1(s) satisfies the condition (a) then ps(s) can be obtained using 

the following equation: 

  (2.22) 

The gray-level PDF of the input image and the chosen transformation function determines 

the PDF of s. A transform function of particular importance in image processing is as 

follows: 

  (2.23) 

ω is dummy variable of integration. The right side of (2.23) is random variable r’s 

cumulative distribution function (CDF). At this point, both conditions (a) and (b) are 

satisfied. When T(r) is given, the  can be calculated using (2.22). If Leibniz’s rule 

is applied: 
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  (2.24) 

when this result is applied to (2.22) leads to: 

  (2.25) 

The probability of occurrence of a rk gray-level in an image is estimated as follows: 

  (2.26) 

n is total number of pixels in the image,  is the number of pixels at gray level , and L 

is the gray level range. If (2.23) is discretized: 

  (2.27) 

Thus, by mapping pixels with level  to corresponding pixels with level  using (2.27) 

the output image is obtained. The transformation given in (2.27) is called histogram 

equalization or histogram linearization.  

 

Figure 2.6 Histogram equalization 

The effect of the histogram equalization on image histogram can be seen in Figure 

2.6 [80]. The method justifies the histogram in a smooth manner. 
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Subject Original image HE applied on the 

original image 

Male Upper 

Body Front 

View 

  
Male Lower 

Body Front 

View 

  

Figure 2.7 Histogram equalization of thermal gray-level images 

In Figure 2.7, sample gray-level thermal images on the left column and their 

histogram equalized counterparts can be seen. 

2.4. Machine Learning 
Machine Learning (ML) is a science, but also it can be considered as an art, of 

programming computers so they can learn by processing the data [81]. Two definitions 

of machine learning are as follows: “[Machine Learning is the] field of study that gives 

computers the ability to learn without being explicitly programmed.” (Arthur Samuel, 

1959). A more engineering-oriented definition is “A computer program is said to learn 

from experience E with respect to some task T and some performance measure P, if its 

performance on T, as measured by P, improves with experience E.” (Tom Mitchell, 1997). 

For example, a spam filter uses a machine learning system which can learn to flag 

the given emails as spam, by assessing the already flagged emails by users. The already 

flagged email set is called as “training set”, which the machine learning system uses to 

learn how to flag emails. According to Tom Mitchell’s definition, flagging new emails is 

the task T, the experience E is the training data, and the performance measure P should 

be defined by system administrators; if you evaluate the ratio of correctly classified emails 

then this particular performance measure is called accuracy and it is often used in machine 

learning systems. Machine Learning can be used for: 

• For solutions that require a lot of hand-tuning or long lists of rules, 

• When a good solution cannot be found for complex problems by traditional 

approach, 

• When there exist fluctuating environments, 
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• Assessing the large amount of data. 

Machine Learning systems can be classified in broad categories based on (i) 

whether they are trained with supervision (supervised, unsupervised, semi-supervised, 

and reinforcement learning), (ii) whether they can learn instantaneously or incrementally 

(online versus batch learning), and (iii) whether they work by comparing new data points 

with known data points or detect patterns in training data, and generate a predictive model 

(instance-based versus model-based learning). 

2.4.1. Batch vs. Online Learning 

If the system cannot learn incrementally, it is called batch learning, because this 

system needs to be trained using all the available data. Therefore, using all the available 

data needs a lot of time and computational resources, so it is generally done offline. First 

the system is trained, and then it is started to be used and runs without learning anymore; 

it just applies what it has learned. This is called offline learning. If a batch learning system 

needs to know about new data, the system should be trained from scratch on the full 

dataset (both the new data and the old data), then the old system is replaced with the new 

one. 

However, online learning system is trained incrementally with the data instances 

sequentially, either individually or by small groups called mini-batches. These learning 

steps are fast and cheap, so the system can be updated with new data simultaneously. 

Online learning is used when the data comes as a continuous flow and change should be 

done rapidly or autonomously. If the computing resources are limited, online learning is 

a good choice. 

2.4.2. Instance-Based vs. Model-Based Learning 

Generalization is the ability of the model that how the model enhance itself for new 

examples. Instance-based learning and model-based learning are the main generalization 

techniques. 

Instance-based learning learns examples by repetition, after that uses a similarity 

measure to generalize the model for new cases. Another way to generalize from a set of 

examples is called model-based learning, which aims to build a model of these examples, 

then use that model for generalization. 
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2.4.3. Test and Validation 

When a model is built, it should be tested on new samples to evaluate how well the 

model generalizes to new cases. One way to do this is to use the model in real practice 

and evaluate the performance, but if there are too many errors in the model, real users 

will certainly complain. The general solution is to split data into training and test sets, 

where model is trained on training set and the generalization performance is evaluated on 

test set. 

If the error rate on the training set is low, but the error rate on test set (generalization 

error) is high, this means the model is overfitting the training data. On contrary, 

underfitting occurs when model is too simple to learn the training data, and the training 

error becomes too high. 

2.4.4. Supervised vs. Unsupervised Learning 

Supervision can be provided to ML systems while training, and can be categorized 

according to the amount and type of supervision. These are supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning. 

Desired solutions are included into the training data in supervised learning, and 

these desired solutions are called labels. Classification is a typical supervised learning 

task. A spam filter is a good example for classification task. Some of the well-known 

supervised learning algorithms are k-Nearest Neighbors, Linear Regression, Logistic 

Regression, Support Vector Machines (SVMs), Decision Trees and Random Forests, and 

Neural Networks. 

In unsupervised learning, the system tries to learn without a supervision, because 

the training data is unlabeled. Some of the most important unsupervised learning 

algorithms are the following: 

• Clustering 

o K-Means 

o DBSCAN 

o Hierarchical Cluster Analysis (HCA) 

• Anomaly detection and novelty detection 

o One-class SVM 

o Isolation Forest 

• Visualization and dimensionality reduction 
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o Principal Component Analysis (PCA) 

o Kernel PCA 

o Locally-Linear Embedding (LLE) 

o t-distributed Stochastic Neighbor Embedding (t-SNE) 

• Association rule learning 

o Apriori 

o Eclat 

Some problems include partially labeled training data which means a lot of 

unlabeled data and a little bit of labeled data. Machine learning methods that deals with 

partially labeled data is called semi-supervised learning. Unsupervised and supervised 

algorithms are incorporated to build semi-supervised learning algorithms. For example, 

deep belief networks (DBNs) are built with the combination of restricted Boltzmann 

machines (RBMs) stacked on top of one another where RBMs are trained in an 

unsupervised manner, and then the whole system is fine-tuned using supervised learning 

techniques. 

Reinforcement learning is different from other types which has a learning system 

called an agent. The agent can observe the environment, select and perform actions, and 

get rewards in return (or penalties in the form of negative rewards). The system learns 

how to increase the earned reward by itself over time and develop strategies accordingly. 

These strategies are called policy and they mean what action will be taken in a given 

situation. 

2.4.5. Classification Performance Assessment 

While building classification models, assessing the performance of the model is 

another problem to tackle with. Because we must know the accuracy level of the model 

when it classified new samples. K-fold cross-validation is a frequently preferred method 

to evaluate a model. The main idea is to split data into K subsets, for K times one of the 

subsets is kept for testing and the rest for training, in the next step another subset is kept 

for testing and the rest are used for training. After K steps the results are averaged. 

Another way to evaluate performance of the model is using confusion matrix. True 

and false classification numbers are placed in the confusion table. The structure of 

confusion matrix can be seen in Table 2.2. Rows corresponds to actual class and columns 

corresponds to predicted class. 
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Table 2.2 Confusion matrix structure 

 Predicted Positive Predicted Negative 
Actual Positive True Positive (TP) False Negative (FN) 
Actual Negative False Positive (FP) True Negative (TN) 

 

Different performance metrics can be calculated using the confusion matrix. These 

performance metrics are different in characteristics and used as a measure for different 

types of applications. These metrics are error rate, accuracy, sensitivity (recall or true 

positive rate, TPR), specificity (true negative rate, TNR), false positive rate (FPR), 

precision (positive predicted value), negative predicted value, F1 score (harmonic mean 

of precision and recall) and can be calculated as follows: 

 

  (2.28) 

  (2.29) 

  (2.30) 

  (2.31) 

  (2.32) 

  (2.33) 

  (2.34) 

  (2.35) 

 

The precision is the accuracy of positive predictions, and it has a drawback when 

the model labels and ensures only one instance to be true and the rest is labeled false, then 

the precision is 100%, however, among the positive elements only one is found. 

Therefore, precision and recall are combined and F1 score metric is developed. F1 score 

is the harmonic mean of precision and recall. Since there is a tradeoff between precision 

and recall, F1 score balances this tradeoff. In Figure 2.8, the tradeoff between precision 

and recall metrics can be seen that precision really starts to fall sharply around 80% recall 
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[81]. Therefore, selecting a precision/recall tradeoff just before that drop, for example at 

around 60% recall, will be more effective, but of course the choice depends on the project. 

 

Figure 2.8 Precision vs recall tradeoff 

The receiver operating characteristic (ROC) curve is another generalized metric 

used with binary classifiers. The ROC curve is the plot of the true positive rate (another 

name for recall) against the false positive rate (FPR). The FPR is equal to one minus the 

true negative rate. The TNR is also called specificity. Hence the ROC curve plots 

sensitivity (recall) versus 1 – specificity. 

 

Figure 2.9 Receiver operating characteristic (ROC) curve 
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In Figure 2.9, a general ROC curve can be seen, and it can be observed that if TPR 

increases also FPR increases [81]. Generally, area-under-curve (AUC) of ROC is used 

for comparison of the performances of models. 

2.4.6. Classification Models 

Classification models can be divided by the number of classes they try to classify. 

If there are two classes like absence-existence of a disease, then the model is called binary 

classifier. If there are more than two classes, then the model is called multiclass classifier. 

Therefore, some classification algorithms can classify only two classes like support vector 

machines, where others can classify more than two classes like Bayes’. 

However, there are different applications of binary classification algorithms to 

multiclass classification. If a binary classification algorithm is trained to detect one class 

and refuse others, and this is repeated by the number of classes, then multiple binary 

classifiers can classify multiclass classification problems. This strategy is called one-

versus-all (OVA) or one-versus-the rest. Another strategy is classifying the classes in 

pairs. For example, if there are N classes in this strategy, classification is performed by 

distinguishing 1st class from 2nd class, then 1st class from 3rd class, 2nd class from 3rd class 

and continue to (N-1)th class to Nth class. This strategy is called one-versus-one (OVO) 

strategy. Therefore N*(N-1)/2 classifiers are trained. If N is 10, which means there are 10 

classes to be classified, then 10*9/2=45 classifiers should be trained. This seems an 

expensive way to train, but only the instances of the two target classes are included into 

training set, by doing this the training set size is reduced dramatically. 

2.4.7. Deep Learning 

Deep learning (deep structured learning) is a special field of machine learning 

family. Deep learning methods are based on artificial neural networks with representation 

learning which can be supervised, semi-supervised or unsupervised [82]. Deep learning 

is the child of machine learning and grandchild of artificial intelligence as seen in  

 

Figure 2.10 [82]. Deep learning architectures (like deep neural networks, deep 

belief networks, deep reinforcement learning, recurrent neural networks, convolutional 

neural networks, etc.) have produced competitive results and even surpassed human 

expertise when applied to vast number of different fields like computer vision, speech 
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recognition, natural language processing, machine translation, bioinformatics, drug 

design, medical image analysis, climate science, material inspection, board game 

programs, etc. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Deep learning within artificial intelligence 

 

The adjective "deep" in deep learning refers to the use of multiple layers in the 

network. Artificial neural networks (ANNs) were inspired by information processing and 

distributed communication nodes in biological systems, but there are differences from 

biological brains. Since the network is consists of layers it is called “deep”. ANNs were 

first proposed in [83] by Warren McCulloch and Walter Pitts. Multiple layers structure of 

human cortex inspiring artificial intelligence can be seen in Figure 2.11 [81]. 

 

 

Figure 2.11 Multiple layers of human cortex 

 

Deep Learning: 
A technique to perform 
machine learning 
inspired by our brain’s 
own network of neurons. 

Machine Learning: 
A technique by which a 
computer can “learn” 
from data, without 
using a complex set of 
different rules. This 
approach is mainly 
based on training a 
model from datasets. 

Artificial Intelligence: 
Mimicking the 
intelligence or 
behavioral pattern of 
humans or any other 
living entity. 
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Artificial neuron was first proposed by Warren McCulloch and Walter Pitts in their 

study as a very simple model of the biological neuron: one or more binary (on/off) inputs 

and one binary output forms the working system of it. The artificial neuron simply 

activates its output when more than a certain number of its inputs are active. The image 

in Figure 2.12, illustrates how the simple logical computations are processed within 

ANNs [81]. 

 

Figure 2.12 Logical operations of ANNs 

2.4.8. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) were first proposed by Yann LeCun et al., 

in [84], after Kunihiko Fukushima presented the Neocognitron in [85]. These studies were 

the pioneering studies for visual cortex inspired ANN architectures. Later on, different 

CNN architectures have been presented in literature.  

 

Figure 2.13 Architecture of LeNet-5 

In Figure 2.13, the architecture of LeNet-5 proposed by Yann LeCun et al., the 

model was developed for digit recognition where each plane is a feature map and the 

weights are constrained to be identical [84]. This architecture has some traditional blocks, 

such as fully connected layers and sigmoid activation functions, but convolutional layers 

and pooling layers are also introduced for the first time in literature. 
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In CNN architecture most of the work depends on the convolutional layers, 

therefore this layer is important for carrying out the process. The main idea is, all pixels 

in the input image are not connected with neurons in the first convolutional layer, but the 

neurons focus on only to pixels in their receptive fields which can be seen in Figure 2.14 

[81]. Therefore, low level features in the first hidden layer were assessed by the network 

when using this architecture, later these features were assembled into larger higher-level 

features when the next level is processing, and this process is repeated for other levels as 

well. This hierarchical structure provides CNNs to perform well in image recognition. 

 

 

Figure 2.14 CNN layers consist of rectangular local receptive fields 

The neuron weights represented as a small image the size of the interested field. 

The set of weights is also called filter or convolution kernel, because the main idea for 

CNN architecture was to apply convolutional calculations over image using these filters 

or other name kernels. In a CNN layer all neurons having the same filter produces a 

feature map. This feature map contains the information of highlighted areas that activate 

the filter more than other areas. These filters are not defined manually, during training the 

convolutional layer automatically determines the most convenient filters for targeted task, 

and upper layers combine filters into more complex forms. 

2.4.9. Weka 

Weka is a platform of machine learning algorithms for data mining tasks and 

includes tools for data preparation, classification, regression, clustering, association rules 
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mining, and visualization developed in the University of Waikato [86]. Weka is published 

under the GNU General Public License. The Weka name stands for Waikato Environment 

for Knowledge Analysis. The software needs java platform already installed in the 

system. 

The objectives of Weka project are: 

 Provide ML techniques publicly available 

 Solving problems that matter to New Zealand industry 

 Developing new ML techniques and providing them to general use 

 Improving theoretical knowledge in the literature 

The Weka software takes a data file as the input file and processes it accordingly 

the user selections of methods. The default file format which the Weka software can 

process, is called attribute-relation file format (ARFF). At the same time, comma 

separated values (CSV) file can also be processed by the software. Since the default file 

format is ARFF file, it is easier to launch the experiment with this format. 

ARFF files have two sections as the Header information, and the Data information. 

The Header section of the ARFF file consists of the relation declaration, and attributes 

declarations (the columns in the data), and their types. The relation name is declared with 

“@relation [relation name]” format where “@relation” is keyword and “[relation name]” 

is a string that defines the relation name. The relation name should be quoted if there is 

space character in it. 

The attribute declaration within the header section is more complicated than other 

sections, since the types of values are set in this section. Also, the sequence of the attribute 

declaration determines the data section’s columns correspondence to attributes. The form 

of attribute declaration is like: “@attribute [attribute-name] [datatype]”. “@attribute” is 

the keyword for attribute declaration. “[attribute-name]” is the name of corresponding 

column and its format should comply with “[relation name]” declaration as described 

above. “[datatype]” determines the corresponding column’s data type in the data section, 

and should be one of the types below: 

 numeric 

 integer is treated as numeric 

 real is treated as numeric 

 [nominal-specification] 

 string 

 date [date-format] 
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 relational for multi-instance data (for future use) 

The data section begins with the “@data” keyword, and the data lines consist of the 

observations (data instance) and the columns consist of comma separated attributes and 

the last column is the label. Since attributes are separated by comma, the floating-point 

separator should be the dot character. 

Below, there is a sample of an arff file’s header and data sections of a binary 

classification problem: 

@relation 'sample_binary_classification' 

@attribute 'attr1' numeric 

@attribute 'attr2' numeric 

@attribute 'class' {1,2} 

@data 

3.0497,21.979,1 

0.98728,21.841,1 

13.238,19.411,1 

30.115,-2.1385,2 

30.082,16.94,2 

… 

 

Figure 2.15 Weka GUI Chooser screen 

In Figure 2.15, first screen of the Weka software which serves for the different 

usage of the tool [86]. In this study “Explorer” was used for evaluations and for mass 
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calculation “weka.classifiers.Evaluation.evaluateModel” class was deployed from 

MATLAB tool [87]. 

2.5. Data Set 
In this study, medical infrared thermal images were captured during routine 

inspection in a special clinic owned by a physician (Dr. M. M. YILMAZ Clinic, Kayseri, 

Türkiye) using IRIS-XP Infrared Thermography Device (Medicore Co. Ltd., Seoul, South 

Korea). Iris-XP (please see Figure 2.16 [88]), is a Class I medical device, that can measure 

temperatures between 14.5-40℃. It has both auto and manual focus, and the resolution 

of the images is 480 (Horizontal) by 640 (Vertical) pixels. The focus range is from 40 cm 

to infinity, and the system has PACS compatibility. 

 

Figure 2.16 Medicore IRIS-XP medical infrared thermography system 

In this clinic, thermal images have been used as a pre-diagnosis tool for the last ten 

years. The images had a fixed size of 480x480 pixels. The thermal image set was 

consisting of 3764 images from 63 patients (15 female, ages between 2 - 83). Figure 2.17 

demonstrates 8 sample raw images from the database. 
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Figure 2.17 Sample raw thermal images from our database 

This study was approved by the Erciyes University Ethical Council of Clinical 

Studies, Kayseri, Türkiye (2019/524). All procedures performed in studies involving 

human participants were in accordance with the ethical standards of the institutional 

and/or national research committee and with the 1964 Helsinki declaration and its later 

amendments or comparable ethical standards. Informed consent was obtained from all 

individual participants included in the study. 

In the clinic, the thermal images are acquired in a controlled environment with 

stable thermal conditions. Patients take off their clothes during image acquisition and 

wear only underwear if it is not covering up the examination area. The camera is 

positioned and focused according to the size and position of the patient. Then, thermal 

images are captured from anterior, lateral, and posterior positions of the patients from 

head to toe. First, the patient stands still facing the camera, then turns 90 and 180 degrees 

around his/her own axis, and then raises the arms. Thus, during the image acquisition 

procedure thermal images from the upper, lower, frontal and posterior parts of the body 

were captured.  
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Chapter 3 

Automatic Body Part and Pose Detection 

in Medical Infrared Thermal Images 
Artificial intelligence needs methods that are developed for recognizing human 

actions in various scenarios for applications such as surveillance, video retrieval and 

human-computer interaction. Automatic body part and pose detection is a challenging 

task in digital imaging. There are different challenges for different imaging techniques 

like illumination, skin color, clothes, noisy images etc. [89]. Generally, the body part 

detection studies in literature are aiming to track and evaluate the postures and movements 

of individuals by evaluating the RGB images [89]–[93]. Subsequent to segmenting body 

area in the image, body key points have to be determined for tracking the movements of 

a human, which is very unpredictable [93]. Body pose estimating and tracking goes back 

to 1980’s and variety of different studies were investigated applying statistical or 

deterministic methods for single or multi view [94]. In [95], They integrate the local 

space-time features obtained from the videos with the SVM classification schemes and 

use them in classification. In [96] Ramanan et.al. presented a new approach for tracking 

the people, they developed a model of appearance of each person in the video and tracked 

that model in the frames. 

General studies in literature focuses on the RGB images for body part and pose 

detection. However, there is no study that evaluated the thermal images for evaluating in 

this manner. In this study automatic body part and pose detection process was investigated 

on an authentic medical thermal image database that have been developed in collaboration 

with an integrative medicine clinic (Dr. M.M. YILMAZ Clinic) in Kayseri, Türkiye. 

Different thresholding and segmentation methods have been evaluated, and binarizing the 

image according to the threshold determined using Otsu’s method performed well in 

terms of performance, speed and simplicity compared to other more complex methods 

like active contours, region growing and local first-order statistics. Thus, Otsu’s 

thresholding-based ROI extraction and histogram equalization method within the selected 

ROI were used to prepare images for the feature extraction phase. Later, features were 
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extracted using DarkNet-19 and t-distributed stochastic neighbor embedding (t-SNE) and 

principal component analysis (PCA) algorithms were employed to select features from 

the images. The selected features were employed in the classification of the images for 

body part (upper/lower) and pose (front/back). As a result, an image was able to be labeled 

with its body part and pose automatically which was a crucial phase in managing 

unorganized MITI databases. All studies on thermal images need a preliminary step to 

determine if any image contains the targeted body part and/or pose. Especially the medical 

centers that investigate the whole body with MITI need an automatic approach to group 

all the images (hundreds of thousands of them) taken from the patients for the comparison 

purposes and perform queries on the automatically labeled images. 

The aim of this study is that this approach will improve the automatization process 

of thermal image processing and help physicians study the thermal images in a more user-

friendly manner than it is now. 

Significant efforts have been put forward for medical infrared thermal imaging 

(MITI) to be used as a pre-diagnosis method in a clinical setup. Automatization and 

standardization of the diagnosis process is crucial because the number of medical experts 

working with MITI is highly limited. The current studies generally need pre-processing 

and/or preparation or selection of the images manually. Fully automatic systems need 

minimal manual intervention. One of the manual operations requires physician’s 

determination of the body part and orientation of the patient on each thermal image. In 

this study automatic pose and body part detection on medical thermal images is 

investigated. The database included 957 thermal images obtained from 59 patients and 

was divided into four classes upper-lower body parts with back-front views. First, 

histogram equalization (HE) method was applied on the pixels only within the body 

determined using Otsu’s thresholding approach. Secondly, DarkNet-19 architecture was 

used for feature extraction, and principal component analysis (PCA) and t-distributed 

stochastic neighbor embedding (t-SNE) approaches for feature selection. Finally, the 

performances of up to 59 machine learning based classification methods were examined. 

Upper vs. lower body parts and back vs. front of upper body were classified with 100% 

accuracy, and back vs. front classification of lower body part success rate was 93.38%. 

This approach will improve the automatization process of thermal images to group them 

for the comparing one image with the other and to perform queries on the labeled images 

in a more user-friendly manner. 
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3.1. Materials and Methods 

3.1.1. Thermal Images 

In this study 957 thermal images from 59 patients (44 male, ages 2-68) consisting 

of different body parts and poses were used. The thermal image set was consisting of 

3764 images from 63 patients. However, the image set was not standardized due to 

working conditions of the clinic, and only 957 images were appropriate for further 

evaluations. Most of the non-standard images were eliminated, however, some images 

were kept in the image set after we successfully identified the patient as the foreground. 

For example, in several images the dress of the patient interfered in the image but was 

assigned as the background using our pre-processing approach (please see Figure 3.1). 

    

    

Figure 3.1 Sample for non-standard images 

For the pose and body part detection of this study which included four different 

classification problems four different subsets were prepared from the database. The first 

subset consisted of 4 classes as upper-back (261 images), upper-front (273 images), 

lower-back (210 images), and lower-front (213 images) which includes all classes in the 

entire image dataset. The second subset consisted of upper (534 images) and lower (423 

images) parts of the body for the second classification problem which is called upper vs. 

lower. The third subset included 210 posterior/back and 213 anterior/front poses for the 

third classification problem which is called lower back vs. lower front. The last subset 

was comprised of 261 back and 273 front images from the upper parts of the body for the 

fourth classification problem which is called upper back vs. upper front. 

3.1.2. Background Extraction with Blue Component of Image 
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An RGB image consists of three components as red, green, and blue. When these 

components are investigated, it can be observed that the blue components are gathered on 

the edges. Using blue component of the image for ROI extraction is a simple and 

computationally inexpensive method. The original RGB image and three components can 

be seen in Figure 3.2. The red, green, and blue components of the colored thermal image 

can be seen in Figure 3.2-a, Figure 3.2-b, and Figure 3.2-c, respectively. In Figure 3.2-e, 

it can be seen clearly that the body was selected in the image. This is made by applying 

erosion and dilation procedures on the image. 

 
a 

 
b 

 
c 

 
d 

 
e 

 

Figure 3.2 Blue component result on standard image (a: RGB image, b: Red 

component of RGB image, c: Green component of RGB image, d: Blue component 

of RGB image, e: Blue component edges interconnected) 

This method has high performance on standard images, but on non-standard images 

it fails to wrap around body, since the blue component spreads throughout the image as 

seen in Figure 3.3. This image is non-standard because the patient had perspired before 

the imaging was performed, also his cloth hanging on the wall was wet and this made the 

thermal image inappropriate for further processing. 
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a 

 
b 

 
c 

Figure 3.3 Blue component result on non-standard image (a: Non-standard RGB 

image, b: Non-standard RGB image blue component, c: Non-standard image blue 

component edges interconnected) 

3.1.3. Background Extraction with K-Means Clustering 

Since the background and foreground were tried to be separated, since they had 

different features, using k-means clustering (KMC) approach with two classes can give 

good results. During evaluations KMC approach showed great success on background 

extraction over blue component method. In Figure 3.4, it can clearly be seen that KMC 

method outperformed the blue component method. Especially the performances on the 

same image can be compared with figures Figure 3.3-c and Figure 3.4-f for blue 

component method and KMC method, respectively. 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

Figure 3.4 Results using k-means clustering approach to extraction the foreground 

(a & d are original RGB images, b & e are temperatures, c & f are extracted body 

images). 
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3.1.4. Background Extraction with Thresholding 

Since human body is hotter than its environment, the background can be extracted 

by thresholding the environment temperatures from the image. Since the thresholding is 

done by the temperature values non-standard images will not produce good results. The 

performance of thresholding depends on the selected thresholding method. In our first 

trial all temperatures, which are greater than a level, were set to 1 (white) and the others 

to 0 (black). This method successfully extracted human body from the background on 

standard images (Figure 3.5-c), but it failed to extract background on non-standard images 

(Figure 3.5-g). Another well-known thresholding method, Otsu’s method [78] was used 

to increase the robustness. This method depicted better performance on different kinds of 

images. It is observed that both standard and non-standard images were perfectly 

extracted from background. Figure 3.5-d shows the result for Otsu’s method on a standard 

thermal image, and Figure 3.5-h indicates a non-standard image on which a perfect 

extraction was achieved. KMC and Otsu’s method show similar performances on 

background extraction. However, when these two methods were compared in terms of 

computation speed Otsu’s method (0,00209 seconds) outperformed KMC method 

(0,08313 seconds). In this study further steps were proceeded with Otsu’s method. 

 

a b c d 

e f g h 

Figure 3.5 Results for background thresholding (a & e: original RGB images, b & f: 

temperatures, c & g: level thresholding results, and d & h: Otsu’s thresholding 

results). 



39 

 

3.1.5. Preprocessing of Thermal Images 

A thermal image consists of thermal values ranging from the lowest room 

temperature to the highest body temperature. The informative portion of the temperature 

range exists on the body temperature level, which makes lower temperatures 

uninformative. The pixels corresponding to non-body parts of the scene decrease the 

success of the histogram equalization (HE) approach, and the resulting image becomes a 

low contrast one, which makes the success of the classification process also low. For this 

reason, a different approach was prepared that the HE method should be used to equalize 

the histogram of the pixels only within the ROI in order to improve the feature selection 

procedure[97]. HE method was used to adjust the contrast by manipulating the histogram 

of the image [98]. Otsu’s approach [78], which is a well-known thresholding method for 

gray level images, was used for discriminating foreground (patient) from the background 

(non-body parts). Different thresholding and segmentation methods have been evaluated 

and binarizing the image according to the threshold determined using Otsu’s method was 

good on performance, speed and easy to apply aspects compared to other methods. After 

determining a proper threshold for each image separately with Otsu’s method, the images 

were binarized with the calculated threshold to generate the foreground mask. The 

binarized images served as masks for the body parts, which was referred to as the ROI, 

and the histogram equalization was performed on the mask of each image one-by-one. 

3.1.6. Feature Extraction and Selection 

Convolutional Neural Networks (CNNs) have recently become a popular approach 

for image processing. In this study, the pre-trained DarkNet-19 architecture was used for 

feature extraction from the thermal images. The Darknet-19, which was developed by 

Redmon et al. [99], consists of a CNN architecture with 19 layers as depicted in detail in 

Table 3.1 [99].  

1024 features were extracted using “avg1” layer of DarkNet-19 from each image. 

After the feature extraction phase, feature selection was applied to decrease the number 

of features. Principal component analysis (PCA) [100] and t-distributed stochastic 

neighbor embedding (t-SNE) [101] algorithms were applied for this purpose. PCA is a 

method to represent data, which captures most variable dimensions of data and removes 

low ones to reduce the data dimension. PCA was selected for testing due to its low cost 

in computation [100]. In contrast, t-SNE embeds high dimensional points to lower 
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dimensions by considering similarities between neighbors [101] and calculates generally 

2-3 features from the available feature set. Different number of features were selected 

using PCA and t-SNE and the effect of the number of features was investigated for each 

selection approach and classification methodology. 

Table 3.1 DarkNet-19 architecture. 

Type Filters Size/Stride Output 

Convolutional 32 3×3 224×224 

Maxpool   2x2/2 112×112 

Convolutional 64 3×3 112×112 

Maxpool   2x2/2 56×56 

Convolutional 128 3×3 56×56 

Convolutional 64 1×1 56×56 

Convolutional 128 3×3 56×56 

Maxpool   2x2/2 28×28 

Convolutional 256 3×3 28×28 

Convolutional 128 1×1 28×28 

Convolutional 256 3×3 28×28 

Maxpool   2x2/2 14×14 

Convolutional 512 3×3 14×14 

Convolutional 256 1×1 14×14 

Convolutional 512 3×3 14×14 

Convolutional 256 1×1 14×14 

Convolutional 512 3×3 14×14 

Maxpool   2x2/2 7×7 

Convolutional 1024 3×3 7×7 

Convolutional 512 1×1 7×7 

Convolutional 1024 3×3 7×7 

Convolutional 512 1×1 7×7 

Convolutional 1024 3×3 7×7 

Convolutional 1000 1×1 7×7 

Avgpool   Global 1000 

Softmax       

 

3.1.7. Classification: Pose Detection 

Different standard classification methods were applied on selected feature sets for 

four different image-subsets separately. The Waikato Environment for Knowledge 

Analysis (Weka) [86] and MATLAB were the software tools that were used for testing 
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different classification approaches. MATLAB’s “Deep Learning Toolbox” was used 

during CNN architecture evaluations. Features were extracted with DarkNet-19 

pretrained network available in that toolbox. After the feature extraction and selection 

phases, the classification methods were evaluated on Weka except for the support vector 

machines (SVM) method which was performed on MATLAB. Fifty-nine classification 

methods (please see Table 3.2) were applied to feature sets which were selected by PCA 

and t-SNE methods. These feature sets contained up to 956 features according to the 

number of samples in the datasets. For the first, second, third and fourth data sets 956, 

956, 534 and 422 different ARFF files were prepared respectively for this purpose. The 

selected methods with best performances among 59 methods were used in this study were 

Random Forest (RaF), Rotation Forest (RoF), Sequential Minimal Optimization (SMO), 

Bayesian Logistic Regression (BLR), Instance Based 1 Nearest Neighbor (IB1), Reduced 

Error Pruning Tree (REPTree), and Support Vector Machines (SVM). These methods 

were the best among the tested methods available in Weka and MATLAB in terms of 

classification accuracy. The details of these approaches can be found in [102]. The 

classification accuracy metrics used were the accuracy, true positive rate, false positive 

rate, precision, recall, and F-score. 

Table 3.2 Classifiers list employed during evaluations 

Classifier 
Family Classifiers 

functions Logistic, RBFNetwork, SimpleLogistic, SMO, SPegasos, VotedPerceptron  

Bayes 
BayesianLogisticRegression, BayesNet, DMNBtext, NaiveBayes, 

NaiveBayesUpdateable, NaiveBayesSimple 

lazy IB1, IBk, LWL  

meta 

AdaBoostM1, AttributeSelectedClassifier, Bagging, ClassificationViaClustering, 

ClassificationViaRegression, CVParameterSelection, Dagging, Decorate, END, 

FilteredClassifier, Grading, LogitBoost, MultiBoostABs, MultiClassClassifier, 

MultiScheme, OrdinalClassClassifier, RacedIncrementalLogitBoost, RandomCommittee, 

RandomSubSpace, RotationForest, Stacking, StackingC, ThresholdSelector, Vote 

misc HyperPipes, VFI 

rules ConjunctiveRule, DecisionTable, JRip, NNge, PART 

trees 
ADTree, DecisionStump, FT, J48, J48graft, LADTree, LMT, NBTree, RandomForest, 

BFTree, SimpleCart, RandomTree, REPTree 
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3.2. Results 
Figure 3.6 shows a visual comparison of different thresholding and segmentation 

methods that were evaluated in this study. Otsu’s method performed significantly better 

in terms on performance, speed and simplicity compared to other more complex methods 

like active contours region growing and local first-order statistics. As depicted in the 

figure, Otsu’s method was more successful in distinguishing the patient and the 

background than the other two approaches. 
Original Image Otsu’s Method Active Contours Region 

Growing 
Local First-Order 

Statistics 

    

Figure 3.6 Evaluation of segmentation methods 

Figure 3.7 demonstrates the outcomes of Otsu’s thresholding approach for three 

different sample images to differentiate the pixels corresponding to body parts from the 

ones corresponding to non-body parts (background). On the left column original images 

are presented and, in this column, although the room temperature was controlled, the 

clothes of the patient could be seen as part of the background, therefore a proper method 

is needed to successfully segment body parts in the image. There were several images 

like this one in our image set because the imaging procedure was not fully standardized 

due to working conditions of the clinic. The masks obtained using Otsu’s thresholding 

method indicated as the ROIs on the images (middle panel) were used to apply on the 

original image whose output can be seen on the right most column, i.e., only the intensity 

values corresponding to the pixels inside the mask were kept as they are and the intensities 

on the remaining pixels (background) were set to zero to be depicted as black. 
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Original thermal 
image 

ROI mask generated 
from the original 

image 

ROI mask applied on 
the original image 

   

   

   

Figure 3.7 Application of ROI mask generated using Otsu’s thresholding method on 

thermal images 

Figure 3.8 shows the outcomes of applying histogram equalization (HE) method on 

the original or preprocessed images. The figure demonstrates the superior performance of 

applying the HE method only for the intensity values corresponding to the binary mask 

obtained using Otsu’s thresholding approach. On the left column the sample raw thermal 

images can be seen. The second column demonstrates the results of applying the HE 

method on the original image without any masks. It is obvious that the objects on the 

background may negatively affect the feature extraction process. On the third column, the 

HE method was applied on the whole masked image (please see right-most column of 

Figure 3.8), however, the temperature/intensity details over the body parts were lost. On 

the right-most column, the HE method was applied only within the ROI which did not 

include the background pixels. It was observed that the temperature details on the body 

parts were sharpened and more obvious than the other two cases. This step was critical in 

terms of feature quality extracted from the images. Thus, it was decided to perform 

histogram equalization only on the body parts determined by the Otsu’s thresholding 

method. 

Medical thermal image analysis aims to explore the slightly thermal differences on 

body surface, even less than a half degree can be meaningful. However, there is about 10-

degree Celsius difference between body temperature and room temperature, which must 
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be excluded while processing thermal images. Since the background temperature values 

were not included in the histogram equalization process, the resulting images were better 

in terms of being able to differentiate the slight changes on the temperature values on the 

body when HE was applied on the pixels only within the mask or when HE applied on 

the whole image. This was the case not only for these sample images but also for many 

other thermal images in the database. 
Subject Original image HE applied on the 

original image 
HE applied on the 

masked image 
HE applied only 
within the ROI 

Male Upper 
Body Front 

View 

    
Female Upper 

Body Front 
View 

    
Male Upper 
Body Back 

View 

    
Male Lower 
Body Front 

View 

    

Figure 3.8 The results of histogram equalization (HE) method with and without 

focusing on the body parts as the ROI The first column: original image, second 

column: HE applied on the whole image, third column: HE applied on the whole 

masked image, and the fourth column: HE applied only within the ROI. 

The first image dataset was prepared for multi-class classification problem to 

classify four classes into: lower-back, lower-front, upper-back, and upper-front. The best 

correctly classification rate observed during experiments was 96.55% with Sequential 

Minimal Optimization SMO classifier using 103 features selected by PCA.  

Then, multi-class classification problem was changed into binary-class 

classification by increasing classification steps to improve classification accuracy. For 

this purpose, the first dataset was divided into two classes as upper and lower body parts 
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for the first step of classification, and for the second step the resulting two datasets were 

divided into front and back classes separately. In the end four classes were acquired. 

Selected features in the second image subset were successful in separating the upper and 

lower body parts. However, the selected features on the third image subset could not 

differentiate the back and front poses of the lower part of the body. For the fourth image 

subset the discrimination success increased as good as the second case. The feature 

selection results using two most features on the first, second, third, and fourth image 

subsets using PCA and t-SNE can be seen as scatter plots in Figure 3.9. PCA selected the 

two most principal components and t-SNE calculated two features.  

The results depicted in this figure clearly show that t-SNE outperforms PCA in 

terms of separating these two features and further evaluations were conducted to find out 

more-than-two-feature bundles can perform better. During evaluations for all four 

datasets features reached up to the number of images in the subsets, and 59 different 

classifiers were applied on generated feature sets using WEKA. For example, for the first 

dataset 956 different incremental ARFF files were prepared using 956 components 

selected by PCA. These 956 files consisted of the features as the following: The first 

ARFF file contains 1 feature, the second ARFF file contains 2 features and 956th ARFF 

file contains 956 features. For the second, third and fourth datasets 956, 422, and 533 

different ARFF files were generated respectively. These evaluations demonstrated that 

increased number of features perform better classification results on both PCA and t-SNE 

than low number of features do (Table 3.3). 

The second image subset was classified with 100% accuracy since upper and lower 

parts of the body have significant differences. Lower part has two legs, but upper part has 

a head, two arms and the body, which makes significant difference and automatic 

classification achieved a great success. However, the success of the back vs. front 

classification of lower and upper parts separately decreased since both parts have high 

similarity between front and back scenes. Although upper part classification on fourth 

dataset success was as good as the second dataset, lower part classification should have 

been increased by further processing techniques.  
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First image subset 

 
Second image subset 

 
Third image subset 

 
Fourth image subset 

Figure 3.9 PCA and t-SNE results on the first, second, third, and fourth image 

subsets. 

Figure 3.10 demonstrates the resemblance of lower part back view in the first row, 

and front view in the second row. One can infer that the degraded performance was caused 

by this resemblance. The high resemblance here can be reduced by using other pre-

processing approaches or by eliminating non-standard images from the image set in a 

future study. 

     

     

Figure 3.10 A visual explanation of the resemblance of the back and front views of 

the lower part of the body. Lower part back view is shown on the first row, and 

lower part front view on the second row. 
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Table 3.3 summarizes the results of automatic classification with different methods 

for abovementioned classification problems. The first column demonstrates the data set 

number used for classification. Since four different data sets were prepared from the 

thermal images set, the results of three or four methods showing the highest performances 

were reported here even though the performances of many other methods were 

investigated. Image subset 1 includes all the images divided into four classes. Image 

subset 2 also includes all images, but this time images were divided into upper vs. lower 

classes. Image subsets 3 and 4 include upper and lower images respectively, and in these 

subsets, images were divided into front vs. back classes. The second column indicates the 

best performing classification methods for each dataset indicated on the first column. The 

other columns present the associated method’s performance metrics such as the 

classification accuracy, true positive (TP) rate, false positive (FP) rate, precision, recall, 

and F-score. The right-most column includes the feature selection method (PCA or t-

SNE) and the number of selected features. SMO based classification method performed 

remarkable well when compared to other methods for all image subsets. One may argue 

that since the SMO divides the problem into smaller sub-problems and is used to solve 

quadratic functions it is better suited for the datasets in this study. 

Table 3.3 Performance metrics for different classification methods on different 

image subsets. 

Image 
subset 

Classification 
method 

Correctly 
classified % 

TP rate FP rate Precision Recall F-score Feature Set 

1 RaF 93 0.93 0.02 0.93 0.93 0.93 t-SNE 5 
1 SMO 96.55 0.97 0.01 0.97 0.97 0.97 PCA 103 
1 SVM 83.5 0.83 0.17 0.86 0.83 0.83  
2 IB1 100 1 0 1 1 1 t-SNE 2 
2 REPTree 100 1 0 1 1 1 PCA 2 
2 RoF 100 1 0 1 1 1 t-SNE 2 
2 SVM 100 1 0 1 1 1  
3 BLR 93.38 0.93 0.07 0.94 0.93 0.93 PCA 60 
3 SMO 93.14 0.93 0.07 0.93 0.93 0.93 PCA 55 
3 IB1 82.98 0.83 0.17 0.83 0.83 0.83 t-SNE 2 
3 SVM 81 0.81 0.19 0.86 0.81 0.80  
4 BLR 100 1 0 1 1 1 PCA 104 
4 IB1 97.19 0.97 0.03 0.97 0.97 0.97 t-SNE 2 
4 SMO 100 1 0 1 1 1 PCA 110 
4 SVM 85 0.85 0.16 0.86 0.84 0.84  

 

In Figure 3.11, the performance comparison of evaluated methods can be seen. The 

first dataset has relatively low success rate due to the multi-class classification problem 

it contains. The second and fourth datasets were well suited for the classification methods 
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and gained 100% performance. However, the performance on the third dataset was not as 

good as the other datasets, but it had a promising performance which was over 90% 

accuracy. Different processing methods will be considered for further studies. 

 

Figure 3.11 Summary of the classification accuracies for the best performing 

approaches on 4 different image subsets. 

3.3.  Discussion and Conclusions 
MITI is gaining an increased attention in medicine. Since it is a cheap, 

harmless/noninvasive, and nondestructive approach for medical examination, it has a 

potential to be employed more frequently as a pre-diagnostic imaging modality. Since the 

number and skills of experts using MITI in clinical practice are highly limited, automatic 

schemes might be used to close this gap. The first step for the development of computer-

aided diagnosis tool is to determine which part of the body any thermal image contains 

for further processes such as searching similar cases, creating subsets, performing 

comparisons between patients or before and after treatment images, and labeling properly. 
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However, in the literature, automatic detection of different body parts on thermal images 

automatically has not been studied so far.  

It is envisioned that one possible area of body part detection might be the proper 

labeling of huge datasets for academic use. As expected, upper and lower body parts could 

be classified with great success and classification of back vs. front of upper body part had 

same success rate (100%). The clinics employing MITI would need an automatic 

approach to group thousands of images taken from the patients that is stored in their 

databases for performing queries on the automatically labeled images and help the 

physician to compare a case with the other cases in the database. 

There are many approaches that can be used to extract features from images. These 

approaches can be grouped as follows: Low-level (edge, corner, blob, ridge detection and 

scale-invariant feature transform-SIFT), curvature, shape-based, deformable and active 

contours [98]. Another group of approaches include texture analysis such as gray-level 

co-occurrence, gray-level run length, contrast, entropy, homogeneity, etc. [98]. A 

relatively new set of techniques to extract features from the images is the deep neural 

networks (NNs) such as convolutional neural networks (CNNs) [103]. CNNs have also 

been used as the feature extractors. The filter slides along the image and generates a 

feature map. This map becomes the input of the subsequent layer. This is followed by 

other layers (pooling layers, fully connected layers, etc.). This whole process lets textural 

and spectral features to be revealed and exploited. Furthermore, there are numerous 

studies in the literature in which CNNs were used as the feature extractors [25], [104], 

[105], and in this study, it was decided to use a CNN based feature extraction approach 

to be investigated on the medical thermal images. DarkNet-19 is a CNN that is employed 

as the backbone of YOLOv2. 

One of the limitations of this study was the relatively low number of images for 

processing and classification. The clinic is in the process of collecting more thermal 

images for different diseases coming from the patients visiting the clinic. Another 

limitation of the study was that there were non-standard images in the image set. The 

posture of patients was not similar due to age variance, especially it was hard for children 

and elderly patients to stand on the right position. This may be overcome by making 

thermal camera move 360 degrees around the patient where patient stands still, but this is 

out of the scope of this study.  
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Chapter 4 

Medical Infrared Thermal Image Based 

Fatty Liver Classification using Machine 

and Deep Learning 
Non-alcoholic fatty liver disease (NAFLD) is a common disorder where there is 

accumulation of excess fat in the liver affecting people who drink little to no alcohol 

[106]. Some people with NAFLD can develop an aggressive form of fatty liver disease 

called nonalcoholic steatohepatitis (NASH). It is manifested by inflammation in the liver 

and may progress to cirrhosis and liver failure. Due to the substantial change in lifestyle 

of many people in different countries NAFLD is gaining spread as 15% in 2005 to 25% 

in 2010 [107]. In the USA approximately 100 million people are estimated to have 

NAFLD, and especially among children it is the most common form of liver disease. 

Disorders, related to blood circulation system and skin surface can be monitored 

with MITI due to their effect on skin surface temperature. A tumor in breast disturbs the 

blood circulation within the breast. Imbalanced blood circulation beneath the skin affects 

the thermal distribution on the surface. The structure of breast made it easy to apply MITI 

techniques. Therefore, vast amount of the MITI studies were done on the breast tumor 

screening. Fat accumulated within the liver also disturbs the blood circulation of liver, 

and therefore, MITI can be effective for screening liver over the skin surface. There is a 

recent study in [108] which was conducted for classifying the fatty liver disease among 

mice. They used MITI for capturing the skin temperature map over the liver and achieved 

100% classification success. 

In this study, our aim was to investigate the feasibility of MITI in automatic 

detection of NAFLD. Thermal images were evaluated using deep learning- and machine 

learning-based feature extraction, feature selection and classification methods. 

Performance comparison of convolutional neural networks (CNN)- and texture analysis-



51 

 

based feature extraction was the basis for the subsequent analysis aiming at differentiating 

healthy individuals and the ones with NAFLD. 

The main contribution of this study to literature is evaluating human abdomen 

thermal images using machine and deep learning techniques for NAFLD classification. 

To our best knowledge, no studies have been conducted in this context on human subjects 

so far. Different contributions were also made during evaluations of experiments. It was 

revealed that along with grey level co-occurrence matrix (GLCM) based texture analysis, 

which was previously shown to be feasible in NAFLD on mice, CNN architectures may 

be used for feature extraction in this context. Another contribution was to modify GLCM 

calculation methodology to find pixel co-occurrences only within the upper triangular 

region-of-interest (ROI) similar to the shape of the liver instead of a rectangular ROI 

which is more common and includes more unrelated information about the temperature 

distribution over the liver and nearby regions. 

Liver function tests are used to help diagnose and monitor liver disease or damage. 

In addition, medical imaging and rarely liver biopsy is performed during the evaluation 

process. Imaging approaches like ultrasonography (US), transient elastography, 

computed tomography (CT), and magnetic resonance imaging (MRI) are currently being 

employed in the clinical routine, however, liver biopsy is still perceived as the golden 

standard to assess progression in the disease [109]. After the biopsy, patients may 

encounter complications like bleeding, infection and puncture in biliary tract along with 

temporary pain. Early diagnosis of NAFLD can be ensured by regular follow-up of a 

patient, however, applying an invasive method like biopsy many times may cause other 

health risks.  

To accompany blood tests and medical imaging as popular non-invasive diagnosis 

and monitoring approaches, a new pre-diagnosis/scanning modality based on medical 

infrared thermal imaging (MITI) may be developed as a non-invasive, harmless, user-

friendly and cost-effective method. However, MITI is a relatively new and not a dominant 

method compared to other medical imaging approaches. 

Medical infrared thermal imaging (MITI) may be a viable alternative approach for 

pre-diagnosis and monitoring of NAFLD as a non-invasive and cost-effective method. In 

this study, the aim was to investigate the feasibility of MITI in automatic detection of 

NAFLD, and 167 MITI images from 32 patients (123 negative, 44 positive) were 

evaluated using image processing and classification methods. Three different image sets; 

unbalanced (original), balanced and upper triangular ROI applied on the unbalanced 
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dataset were prepared. Eleven different convolutional neural network (CNN) 

architectures were employed as feature extractors. Texture analysis was evaluated by 

extracting 9 different texture features. After feature selection and binary classification, 

the highest values from different setups for recall, f-score, specificity, accuracy, and area-

under-curve (AUC) were 1.00, 1.00, 0.83, 1.0, 0.94, and 0.92, respectively. The highest 

values were achieved by CNN based methods on different datasets, however, texture 

analysis method performed lower. Here, it is shown that CNN architectures have high 

potential on extracting features from thermal images. Finally, machine and deep learning 

approaches can be combined in detecting NAFLD using infrared thermal images. 

4.1. Materials and Methods 
Thermal images were captured during routine examination of patients of Dr. M.M. 

YILMAZ clinic in Kayseri, Türkiye. This clinic focuses on traditional and 

complementary medicine, and the responsible physician (Dr. Mustafa Mücahit Yılmaz) 

has been using medical thermal images as the initial step of pre-diagnosis of certain 

diseases (NAFLD is one of them) for the last 10 years. The diagnosis for NAFLD was 

confirmed with blood tests and ultrasonography performed in public or private hospitals. 

The collaboration between Abdullah Gül University and Dr. M.M. YILMAZ clinic has 

been in place since 2019. The research was conducted with the permission of Erciyes 

University Ethical Council of Clinical Studies, Kayseri, Türkiye (permission number: 

2019/524). Informed consent was obtained from all individuals (or their parents if their 

ages are below 18). 

IRIS-XP Infrared Thermography Device (Medicore Co. Ltd., Seoul, South Korea) 

is used in the clinic for acquiring the images. In the clinic, the thermal images are acquired 

in a controlled environment with stable thermal conditions. Patients stay only with their 

underwear and the camera is positioned according to his/her height. First, the patient 

stands still facing the camera, then turns 90 and 180 degrees around his/her own axis, and 

then raises the arms. Thus, during the image acquisition procedure thermal images from 

the upper, lower, frontal and posterior parts of the body were captured.  

In this study, the dataset of images consisted of 123 negative (no NAFLD) and 44 

positive (with NAFLD) infrared thermal images taken from 32 patients (31 males, ages 

from 9 to 68). Images from adult women were not included since their breasts covered up 

the region corresponding to the liver, however, one young female ages of 11 was kept for 



53 

 

further analysis. The mean +/- standard deviation of the body mass index (BMI) of 

patients who are below and above 18 years old are 19.37+/-4.71 and 28.51+/-5.62 

respectively. Only the images with upper front view were selected, and each region-of-

interest (ROI) corresponding to the anatomical location of the liver was extracted 

manually. Figure 4.1 demonstrates 3 samples from the database with the original images 

on the left column and the selected ROI on the right column. The last row depicts the 

images from an 11-year-old female participant. 

4.1.1. Pre-Processing of Thermal Images 

Thermal imaging captures the temperature values of the scene as pixel values using 

infrared sensor arrays. These pixel (temperature) values are used to color the image either 

as RGB or grey level. In this study only the grey level images (raw images) were used. In 

the beginning foreground extraction was applied to images using Otsu’s approach [78] 

for eliminating the background (uninformative temperature values) and letting us to focus 

on the trunk images of the patients. Several segmentation approaches like active contours 

region growing and local first-order statistics were investigated, and Otsu’s thresholding 

method was easy and more successful in distinguishing foreground and background than 

the other two approaches. 

  

  

 
 

Figure 4.1 Upper front view of thermal images and the corresponding liver regions 

selected manually 
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Histogram equalization (HE) method [98] was applied to the outcomes of the Otsu’s 

segmentation approach to boost slight differences in the temperature over the body. 

Thus, HE method was modified to equalize the histograms only within the body, i.e., 

Otsu’s segmentation produced a mask and HE was applied on the pixels 

corresponding to that mask [97]. When HE process was over, the anatomical 

location corresponding to the liver on each image was extracted from the image 

manually. The pre-processing steps can be seen in Figure 4.2Figure 4.2 Pre-

processing of images a: original image, b: foreground mask, c: HE applied only 

within the body, and d: ROI corresponding to the liver of the patient. 

, where the original image, the mask of foreground/body using Otsu’s approach, HE 

applied on masked image only within the body, and manually extracted liver region can 

be seen on columns a, b, c, and d respectively. In the last step of the pre-processing phase, 

selection of ROI corresponding to the liver of the patient was done manually since 

postures of the patients were not uniform. 

4.1.2. Image Datasets 

Thermal images were used to generate three different datasets for evaluating 

different methods. Dataset 1 contained all thermal images (123 negative and 44 positive). 

Dataset 2 was formed by eliminating 50% of negative subjects’ images by keeping the 

subject number constant (61 negative and 44 positive) for evaluating if the imbalance 

between negative and positive subjects has negative affect on classification performance. 

Dataset 3 was formed to improve the performance by reducing the ROI to the upper 

triangle of the thermal images and no images were removed while generating this dataset. 

In Figure 4.3, how upper triangular-shaped ROI was obtained from the thermal images 

can be seen on a positive sample. The left column shows the original image, and the right 

column depicts the ROI with upper triangular shape. Upper triangular ROI was 

considered to be well suited to the shape of the liver and more uninformative pixels 

(temperature pixels that do not correspond to the liver area) would be eliminated. 
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a b c d 

Figure 4.2 Pre-processing of images a: original image, b: foreground mask, c: HE 

applied only within the body, and d: ROI corresponding to the liver of the patient. 

 

  

Figure 4.3 Upper triangular ROI used in Dataset 3. 

4.1.3. Feature Extraction and Selection of Thermal Images 

Two different feature extraction approach were used in this study, texture analysis 

and CNN architectures. Texture analysis approach was similar to the one used on mice 

[108] such as mean temperature, variance, skewness, kurtosis, entropy features were 

extracted from thermal images, and contrast, correlation, energy, and homogeneity were 

calculated from gray level co-occurrence matrix (GLCM). GLCM contains the number 

of co-occurrences of 2 gray level values within a neighborhood throughout the image. In 

this study, 1-neighbor GLCM was calculated both all over the image and only within the 

upper triangular ROI of the image to compare if there would be an improvement on 

classification performance. By default, the gray levels of image are scaled into 1-to-8 
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integer interval including boundaries while calculating GLCM. In our study, GLCM 

calculation was modified and was added to performance comparison to calculate GLCM 

in 1-to-256 interval. This modification was applied not to lose the details on thermal 

images while scaling into 1-to-8 integer interval. In medicine, even 0.5-degree change 

may be an important symptom of a disease.  

Convolutional Neural Networks (CNNs) have proven themselves as a powerful tool 

for image segmentation, feature extraction and classification. In this study, different pre-

trained CNN architectures [87] were investigated for feature extraction from the thermal 

images. The number of channels in the gray level images was increased from one to three 

by copying pixel values to new channels for evaluating in CNN phase. The CNNs used 

here are listed as DarkNet-19, DarkNet-53, ResNet-18, ResNet-50, ResNet-101, 

DenseNet-201, VGG-16, GoogleNet, SqueezeNet, AlexNet, and Inception-ResNet-v2. 

These CNN architectures produced 1000 to 4096 features from different datasets. 

Two different feature selection methods were evaluated for feature selection step; 

principal component analysis (PCA) [100] and t-distributed stochastic neighbor 

embedding (t-SNE) [101] approaches. PCA is computationally low-cost approach and 

finds the most varying dimensions in the dataset [100]. Therefore, PCA was selected for 

feature selection in this study, and t-SNE was eliminated due to performance failure on 

time consumption and classification accuracy during preliminaries.  

4.1.4. Classification 

These selected feature sets were used to generate train and test files to be used in 

The Waikato Environment for Knowledge Analysis (Weka) [86] tool. Leave-one-subject-

out cross-validation method was used (n-fold cross-validation, in this case 32-fold), and 

81078 and 54052 train-test set combinations were generated during CNN and texture 

analysis steps respectively for evaluating classification methods implemented in Weka, 

which is a well-known tool for evaluating classification methods and contains numerous 

methods to investigate on. In this study up to 52 different classification methods (please 

see Table 4.1) were employed to determine the one with the best performance. The best 

performing methods and their abbreviations are listed in Table 4.3. For this reason, about 

5.000.000 different classification attempts have been made by developing an interface 

using MATLAB and through this interface Weka tool was used for automatic 

classification attempts. Actually, the experimental setup was prepared for 
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(81078+54052)x52 = 6021184 classification attempts, but some methods were eliminated 

during evaluations due to low classification accuracy and high computational cost.  

All classification results were analyzed using CCI (correctly classified instances) 

values of 32 folds of each setup, which were computed during the analysis using WEKA 

tool. These 32-fold CCI values were processed with majority voting method (if a CCI 

value of test set of a fold was greater than 50% then that subject got 1 vote else 0 vote), 

TP (true positive) and TN (true negative) values were computed by summation of these 

vote values. Then performance metrics were computed using TP and TN values. 

Classification performances were compared on recall, F-score, specificity, accuracy, and 

AUC of the results after majority voting phase. 

Table 4.1 Classifiers list employed during evaluations 

Classifier 

Family 
Classifier 

functions Logistic, RBFNetwork, SMO, SPegasos, VotedPerceptron 

Bayes BayesianLogisticRegression, BayesNet, DMNBtext, NaiveBayes, NaiveBayesUpdateable 

lazy IB1, IBk, KStar 

meta 

AdaBoostM1, AttributeSelectedClassifier, ClassificationViaClustering, 

ClassificationViaRegression, CVParameterSelection, Dagging, END, FilteredClassifier, 

Grading, LogitBoost, MultiBoostAB, MultiClassClassifier, MultiScheme, 

OrdinalClassClassifier, RacedIncrementalLogitBoost, RandomCommittee, 

RandomSubSpace, Stacking, StackingC, Vote 

misc HyperPipes, VFI 

rules ConjunctiveRule, DecisionTable, JRip, NNge, PART 

trees ADTree, DecisionStump, FT, J48, J48graft, BFTree, SimpleCart, RandomTree, REPTree 

rules OneR, Ridor, ZeroR 

4.2. Results 
In this study, the dataset of images consisted of 123 negative (no NAFLD) and 44 

positive (with NAFLD) infrared thermal images taken from 32 subjects (25 negative and 

7 positive subjects). Only one subject was female (age of 11). The ages of the subjects 

ranged from 9 to 68, and 9 subjects were below 18 years old.  The mean +/- standard 

deviation of the body mass index (BMI) of patients who are below and above 18 years 

old are 19.37+/-4.71 and 28.51+/-5.62 respectively. The average BMIs of positive and 

negative groups are 30.58 and 24.82 respectively. 
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The control group patients were selected among other patients who were seeking 

treatment for diseases other than NAFLD. The disorders the control group suffered from 

scoliosis, hypothermia-hyperthermia in extremities, neuronal blockage in extremities, 

thyroid hypoactivity-hyperactivity, hypothermic thymus, dorsal pain center, arterial 

disorder, sinusitis, and varicose. 

The feature exploration step was conducted to find out the most informative 

features. The importance of this step can be seen in Figure 4.4 where classification results 

of different feature sets (number of selected features ranged from 1 to 148 in Dataset 1) 

were displayed. If all cases were not explored, the system would converge to local 

optimum and miss global optimum. 

 

Figure 4.4 Classification accuracy of MCC classifier in which the features were 

extracted using Inception Resnet V2 extractor and selected by PCA (1 to 148 

features). 

Table 4.2 summaries the best classification performances of the evaluated 

classification attempts on different setups. Each line of the table represents a classification 

phase. The explanation of the columns of the table as follows: The first column contains 

the neural networks and texture analysis used for feature extraction. The second column 

depicts the dataset on which the feature extractor was applied. The third column displays 

the number of features used in the classification phase of that line (determined after testing 

different number of features). In columns 4 to 8 the classification method, recall, F-score, 

AUC, and average TPR (aTPR) are listed respectively. PCA method outperformed t-SNE 

Global 

Local 

Local 
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method nearly in all classification evaluations, therefore, the second feature selection 

method was not included in Table 4.2 for simplicity. 

Table 4.2 Summary of the classification attempts those with the highest 

performances. 

Setup Dataset Feature Extractor 
# of PCA 
Features Classifier Recall Specificity F-Score Accuracy AUC 

1 1 AlexNet 6 VFI 1.00 0.60 0.58 0.69 0.80 
2 1 DenseNet-201 11 VP 1.00 0.56 0.56 0.66 0.78 
3 1 Inception-ResNet-v2 79 MCC 1.00 0.84 0.78 0.88 0.92 
4 1 Inception-ResNet-v2 5 FC 0.71 1.00 0.83 0.94 0.86 
5 1 Texture-8 level 122 END 0.71 0.80 0.59 0.78 0.76 
6 1 Texture-256 level 80 CVC 0.43 1.00 0.60 0.88 0.71 
7 1 Texture-256 level 3 SPegasos 0.86 0.52 0.48 0.59 0.69 
8 2 Inception-ResNet-v2 73 MCC 1.00 0.70 0.76 0.81 0.88 
9 2 Inception-ResNet-v2 82 MCC 0.86 0.71 0.84 0.84 0.85 
10 2 AlexNet 42 BLR 0.71 0.59 0.80 0.78 0.76 
11 2 DenseNet-201 78 JRip 1.00 0.67 0.72 0.78 0.86 
12 2 Texture-8 level 55 SMO 0.71 0.55 0.76 0.75 0.74 
13 2 Texture-256 level 6 SPegasos 0.86 0.50 0.56 0.63 0.71 
14 3 AlexNet 94 SMO 0.71 0.96 0.77 0.91 0.84 
15 3 AlexNet 112 Logistic 1.00 0.72 0.67 0.78 0.86 
16 3 DenseNet-201 65 VP 0.86 0.76 0.63 0.78 0.81 
17 3 Inception-ResNet-v2 76 VP 0.71 0.80 0.59 0.78 0.76 
18 3 Inception-ResNet-v2 1 CVC 1.00 0.44 0.50 0.56 0.72 
19 3 Texture-8 level 11 VP 0.71 0.52 0.41 0.56 0.62 
20 3 Texture-256 level 134 JRip 0.43 0.96 0.55 0.84 0.69 
21 3 Texture-256 level 11 VP 0.71 0.52 0.41 0.56 0.62 

 

Table 4.3, lists the abbreviations of classification methods displayed in Table 4.2. 

The listed methods are available in Weka tool. 

Table 4.3 Abbreviations of classification methods. 

Method Name Abbreviation 

Bayesian Logistic Regression BLR 
Classification Via Clustering CVC 
Ensembles of Balanced Nested Dichotomies END 
Filtered Classifier FC 
Multi Class Classifier MCC 
Multinomial Logistic Regression Logistic 
Primal Estimated Sub-GrAdient SOlver for SVM SPegasos 
Repeated Incremental Pruning JRip 
Sequential Minimal Optimization SMO 
Voted Perceptron VP 
Voting Feature Intervals VFI 

 



60 

 

The highest recall, F-score, specificity, accuracy, and AUC values were achieved 

by different setups, which means there was no overall winning setup across all 

performance metrics. Setup 4 has the highest results on specificity, F-score, and accuracy 

with 1.00, 0.83, 0.94, respectively. However, the highest AUC score was achieved by 

setup 3 and followed by setup 9 with 0.92, and 0.86, respectively. Both texture- and CNN-

based feature extraction methods performed well, however, CNN-based methods 

outperformed texture-based methods. The 256-grey level GLCM calculation produced 

better accuracy over traditional 8-grey level GLCM computation on Dataset 1 (original 

dataset), but the AUC was decreased due to recall failure. The modified GLCM 

computation method (computation of the GLCM only within upper triangular ROI) was 

applied with both 8- and 256-grey levels on dataset 2 and depicted in Table 4.2. Texture-

256 level feature extraction method with JRip classifier outperformed texture-8 level 

except for the recall metric.  

Dataset 1 is the original set of images on which no modifications were made. This 

dataset is imbalanced between positive and negative instances. Therefore, dataset 2 was 

built to help us investigate the effect of the imbalanced nature of the original dataset. The 

highest classification accuracy results of dataset 1 and dataset 2 were tested with Kruskal-

Wallis test [110]. The result of Kruskal-Wallis test show that the results of dataset 1 and 

dataset 2 were not normally distributed, therefore the non-parametric t-test was applied 

and no significant difference was reported between the results of dataset 1 and dataset 2 

(p-value > 0.05). It is revealed in our study that the imbalance between the classes did not 

have significant or any negative effect on the classification accuracy. Dataset 3 was built 

to evaluate if the pixels that do not belong to liver on the abdomen have negative effect 

on the classification performance, and a second ROI extraction approach was applied by 

selecting an upper triangular ROI for evaluation. The highest classification accuracy 

results of dataset 1 and dataset 3 were tested with non-parametric t-test since they were 

not normally distributed. The results revealed that there was no significant difference 

between the results (p-value > 0.05). Majority voting method was applied to classification 

accuracy result of each subject as such, if accuracy is greater than 50%, it is assumed that 

the subject was classified correctly. Thus, reducing the ROI to upper triangle improved 

the success for the feature extraction methods AlexNet and DenseNet-201, however the 

performance decreased for feature extraction methods Inception-ResNet-v2 and the two 

texture methods. 
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4.3. Discussion and Conclusions 
Vast amount of MITI studies focus on breast screening [36], [65], [111]–[114]. 

There are other anomalies such as the inflammatory arthritis, osteoarthritis, soft tissue 

rheumatism, tennis elbow, fibromyalgia, complex regional pain syndrome, peripheral 

circulation, and fever [115]–[117] that MITI was proposed as the diagnosis/monitoring 

tool. Moreover, in recent years the field of quantitative analysis of thermal images 

emerged and has the potential to yield objective interpretation rather than physician-

dependent (subjective) analysis [12]. To be more specific, in [65], different sets of 

features were generated from breast infrared (IR) thermal images and their classification 

performances were evaluated using support vector machines (SVM). The study in [118] 

includes the performance comparison of MITI on screening cardiovascular disease with 

traditional techniques and found promising results. In [48], MITI was used for identifying 

diabetic foot ulcers. The researchers calculated the mean temperature of regions of 

interest by considering thermal asymmetry, and applied different machine learning (ML) 

algorithms on the calculated features. In [66], IR images of both iris were used for 

diagnosing type-2 diabetes. A decision support system was offered for predicting 

hemodynamic shock in pediatric intensive care unit and promising performance was 

achieved in [50]. In [67], burn wounded patients were monitored and a treatment decision 

system was developed to offer the patient most effective treatment method. A review of 

studies performed on different diseases can be found in [68]. 

Furthermore, attaching an infrared camera into a monitoring system is another 

beneficial use of MITI in medicine. In [69], a smartphone camera–based 

photoplethysmography (PPG) and a low-cost thermal camera were combined in an instant 

stress detection model. A facial expression recognition system, using thermal images and 

SVM, was proposed in [70]. 

Disorders, related to blood circulation system and skin surface can be monitored 

with MITI due to their effect on skin surface temperature. A tumor in breast disturbs the 

blood circulation within the breast. Imbalanced blood circulation beneath the skin affects 

the thermal distribution on the surface. The structure of breast made it easy to apply MITI 

techniques. Therefore, vast amount of the MITI studies were done on the breast tumor 

screening. Fat accumulated within the liver also disturbs the blood circulation of liver, 

and therefore, MITI can be effective for screening liver over the skin surface. There is a 

recent study in [108] which was conducted for classifying the fatty liver disease among 
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mice. They used MITI for capturing the skin temperature map over the liver and achieved 

100% classification success. 

Non-destructive methods used in medicine should be encouraged to reduce the 

harm on patients. It is well known that many screening and diagnosing techniques are 

invasive and cause some kind of harm such as frequently repeated mammograms, CT 

scans or X-ray imaging causing a risk of tumor development. Therefore, we believe that 

the use of MITI should be expanded since it has no negative effects on patients. Recently, 

many studies were conducted on employing MITI in medicine [48], [50], [67], [70], 

[108], [114], [117]. These kinds of efforts will increase the acceptance of MITI as a pre-

diagnosis and treatment follow-up method.  

Especially in the context of NAFLD, in [108] infrared thermal images were 

collected during experiments on mice and a fatty liver classification method was 

developed using machine learning techniques. The researchers extracted 9 texture 

features from every image and clustered them into 2 clusters as normal and steatosis. This 

study was inspirational for us to device this current research. 

In the literature many recent studies include machine learning methods for 

automatic processing of thermal images [68]. However, deep learning methodologies 

have not been widely explored for MITI. Deep learning CNN architectures proved 

themselves as a powerful image processing tool. In this study, the performances of the 

texture analysis and 11 different CNN architectures were cooperatively evaluated, and 

remarkable results were reported by using different combinations of deep learning or 

machine learning techniques. The results show that feature extraction with CNN can find 

more detailed features than human eye. 

The main research question of this study was to find out if deep learning methods 

as the feature extraction approach would perform well on thermal images. It was proven 

that pre-trained CNN architectures were powerful tools in MITI since these architectures 

achieved the highest classification performance over texture-based methods. The pre-

trained networks were trained using more than a million images to recognize 1000 

different objects which improves their learning capacity deeply. It was revealed in [108] 

that steatosis and inflammation affects infrared radiation release of the liver, therefore 

they analyzed texture features from the thermal images. In our study it was proven that 

deep learning architectures are better on differentiating the texture properties of thermal 

images in the NAFLD context. 
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Another question investigated in this study was the GLCM calculation of images. 

The default behavior of GLCM calculation is to scale the gray levels from 0-to-255 into 

1-to-8 integer interval, which is called binning. Since the pixel values are scaled into a 

smaller range and the new values are rounded to integer values, many details may be lost 

during this scaling. Therefore, in this study GLCM calculation was modified to use the 

images’ original gray level interval. Another default behavior of GLCM calculation is to 

cover all pixels in the image. However, in this study the region of the liver was the focus 

of our research and including non-liver area pixels into the calculations will decrease the 

steatosis information coming from liver area. Therefore, computation of the GLCM of 

the pixels that belong to liver area was proposed and applied to thermal images, which 

directs to another finding, combining 256-grey level and including only the pixels that 

belong to the liver area for GLCM calculation increased performance for AlexNet and 

DenseNet-201 methods as described in Results section. 

Another finding in this study was to explore the performance of all feature sets of a 

feature selection method. In Figure 4.4 it can be clearly seen that not exploring all possible 

feature combinations may converge to a local optimum. However, generally the first few 

principal components were included in classification phase which contains about 95% of 

variation information of the data, but later component may include meaningful 

information of data as depicted in Table 4.2. 

PCA has proven itself as a powerful feature selector throughout all evaluations 

against t-SNE method. The t-SNE method also produced good results that were close to 

PCA, but not better. In addition, t-SNE method’s computation cost was high. 

Due to working conditions of the clinic the thermal images are not standardized. 

Another limitation in the image collection phase was the non-standardized postures of 

patients who were mostly elderly or very young. Adult woman subjects were not included 

in this study, because the breasts cover up the liver and infrared radiation becomes 

insensible. For future studies, women subjects may be asked to raise their breasts to 

uncover the liver area, so that they would be included in such research tuned for women. 

Currently the dataset is being improved with new thermal images. New methods for 

capturing images are being offered to clinic to improve the standardization among thermal 

images. 

We believe that the findings in this research lead to new directions on MITI. New 

feature selection methods should be evaluated for different deep learning and machine 

learning methods. The main result of this study is to use different combinations of 
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methods to find out the highest performing combination. It is important to find the best 

combination of methods that show the best harmony with each other. This should guide 

researchers to develop more effective methodologies. 

The main contribution of this study is evaluating human abdomen thermal images 

using machine and deep learning techniques for NAFLD classification. To our best 

knowledge, no studies have been conducted in this context on human subjects so far. 

Different contributions were also made during evaluations of experiments. It was revealed 

that along with grey level co-occurrence matrix (GLCM) based texture analysis, which 

was previously shown to be feasible in NAFLD on mice, CNN architectures are better to 

be used for feature extraction in this context. Another contribution was to modify GLCM 

calculation methodology to find pixel co-occurrences only within the upper triangular 

region-of-interest (ROI) similar to the shape of the liver instead of a rectangular ROI 

which is more common and includes more unrelated information about the temperature 

distribution over the liver and nearby regions, thus some methods’ performances increase 

(AlexNet and DenseNet-201).   

The results in this study reveals different directions for further studies. 

Improvements and modifications can be made on new pre-processing techniques on 

thermal images, which will improve revealing deeper features in the thermal images using 

CNN architectures. For example, different supervised or unsupervised feature selection 

methods can be evaluated. Another improvement can be done in training the CNN 

architecture with one channel grey level images, i.e., original raw images. In addition, in 

this study only one offset was calculated for GLCM computation, for future studies 

different offsets should be evaluated. Another research direction can be to develop a new 

CNN architecture by combining the evaluated CNN architectures that performed well 

during this research endeavor.   
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Chapter 5 

Localized Quantification of Medical 

Infrared Thermal Images for Multiple 

Sclerosis Assessment and Monitoring 
Multiple sclerosis (MS) is an autoimmune disease that affects 2.3 million people 

worldwide (75% are women, and ages vary between 20 and 40) [119], which may result 

in progressive disability or even worse, mortality [120]. MS is a disease of central nervous 

system (CNS) and optic nerves which causes inflammation and demyelination (scar 

tissue, sclerosis) [121]. Each MS patient encounters a particular combination of 

symptoms because of the variability in the location and degree of inflammatory 

demyelination within the CNS. Several kind of symptoms, such as, failure in tactile 

sensitivity or tingling, muscle fatigue, ataxia, dysarthria, and many others [122] may be 

observed in these patients. The degeneration of myelin sheath generally affects the 

extremities of the body. In severe cases both arms and legs are affected, and the patients 

need to use wheelchair. 

Several studies in the last decade have shown that MS affects the thermal balance 

of body. In [123], it was revealed for the first time in the literature that the body core 

temperature is increased endogenously and increased fatigue. Later in 2015, a study by 

Leavitt et al. [124] demonstrated that the fatigue sensed by patient increases with elevated 

body core temperature. The findings of these studies depict that body temperature 

variations might be used to help the disease diagnosis. 

In 2016, Papaléo et al. [122] used an infrared thermography (IRT) camera and 

captured 2D thermogram images of a patient who was diagnosed with MS in 2007. Then, 

these images were evaluated in terms of a possible correlation between the hot spots on 

the vertebrae and the level of pain patient suffering which may be a clue to devastation of 

nerve or not. This is the leading study to use IRT for MS evaluation and proposed that the 
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use of thermograms would be an effective approach to assess the influence of MS disease 

symptoms on the local body temperature. 

In 2020, Pérez-Buitrago et al. [119] presented quantitative analysis of thermograms 

in which they captured IRT images of an MS patient and a healthy control and evaluated 

texture features of these images. A significant difference between the two samples was, 

especially in terms of uniformity feature. 

In addition, cardiovascular system disorders can be monitored using MITI from 

body surface, due to the blood circulation [118]. Since MITI is a handy tool for producing 

skin temperature maps by absorbing the infrared radiation emitted from the body surface, 

other body functions other than the cardiovascular system can also affect the infrared 

radiation emission like the nervous system. There is heat generation while impulse travels 

along the nerve [125]. Along these lines, when the nerve fiber is degenerated, the effect 

on the heat distribution over the skin can be observed using IRT cameras. Therefore, this 

effect can be monitored using MITI system and the conditions beneath the skin can be 

interpreted without any invasive methods like electroneuromyography (ENMG).  

Currently, Magnetic Resonance Imaging (MRI) and neurological examination are 

golden standards in monitoring MS patients. Patients come to follow-ups every one or 

two months, however MRI is performed once in a year because during follow-ups MR 

images are not fully correlated with neurological examination. 

With this motivation, the aim of this study is to investigate the feasibility of MITI 

in monitoring MS damage on the limbs and to evaluate if there is correlation among 

patients’ different images that belong to different visits/follow-ups. Thermal images were 

evaluated using different processing techniques and an adjusted image set was prepared 

for the physician to evaluate the degeneration-regeneration of the nerves. The main 

contribution of this study is to propose a novel approach in evaluating infrared 

thermography images acquired during different visits of a patient with regards to the 

disease progression or regression on limbs. To the best of our knowledge, no studies have 

been conducted in this context on human subjects so far. 

5.1. Materials and Methods 

5.1.1. Thermal Images 

In this study the thermal images of two MS patients who suffer from demyelinated 

feet and worsening life standards were evaluated and a quantification method was 
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developed to track the changes between follow-ups. A healthy control was also included 

in the study. Here, 36 IRT images of legs coming from two patients and a healthy control 

were included for analysis. The diagnosis of these patients was made by neurologists 

using traditional diagnosis methods (magnetic resonance imaging and neurological 

examination approaches), and later patients came to the integrative medicine clinic where 

Dr. Yılmaz acquired their IRT images to use at the initial screening/visit and follow-up 

examinations. 

Patient 1 has 12 images coming from three different examinations (visits) in 2018, 

2019 and 2020. Patient 2 has 16 images coming from four different visits in 2021 at every 

2 months. Healthy control has 8 images coming from two different visits in 2018 and 

2020. Both patients and healthy control are male, and their birth years are 1994, 2004 and 

1974 respectively. Patient 1 has been followed up for 10 years (only last 3 years of the 

treatment was followed up with IR thermography and he has recovered and currently 

working on a physical job), patient 2 has been monitored for 1 year, and healthy control 

for 2 years. 

5.1.2. Processing of Thermal Images 

The focus of this study was to evaluate the degeneration-regeneration of the nerves 

at the feet of two MS diagnosed patients who suffer from degeneration of nerves at their 

feet. Therefore, foot and leg parts below the knee were included in the region-of-interest 

(ROI) and rectangular coordinates containing these body parts were found on the gray 

level image manually. Gray level images were processed to extract background by 

applying Otsu’s thresholding method [78] and a proper mask was applied to all images 

semi-manually. Different segmentation methods were evaluated, and Otsu’s thresholding 

method surpassed other methods like active contours [126], region growing and local first 

order statistics. However, the images obtained in the clinic were not uniform and 

determining a threshold between foreground and background were not done fully 

automatically, few pictures, especially old ones were segmented with the help of 

MATLAB Image Segmenter. The segmented images were converted into a binary image 

where foreground and background were represented by ones and zeros respectively. The 

binarized image used as the background mask was applied onto the gray level image. The 

subsequent procedures were carried out with the masked gray level image, and 

background determined by the generated mask was not included in the following phases 

as well. 
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The first phase included properly coloring the images to be prepared for the 

evaluation of the physician. Therefore, segmented gray level images were colored using 

different level of color maps, which are available in the MATLAB tool. The 

quantification of thermal images then evaluated on raw thermal images, which the 

temperature levels were assumed as gray level intensity values. 

The gray level leg images were divided into sub-regions to evaluate each region on 

its own. Each region of a patient was compared among consecutive visits of that patient 

and the gray level value difference between the visits were used to assess the progress of 

the treatment. Each region is divided into the number of rows and columns of blocks that 

can be defined by the user to show a quantitative demonstration of the region. For this 

purpose, within a region the mean value of pixels in a block was calculated and a vector 

was formed with the mean values. This vector represents the temperature distribution 

throughout the relevant region. The calculated mean vectors were compared while 

evaluating the treatment progress throughout the consecutive visits of a patient.  

5.2. Results 
The IRT images captured during routine examinations of patients in consecutive 

visits were not standardized due to working conditions of the clinic. Therefore, in the 

analysis and quantification efforts, the first step was to determine the locations of the legs 

and feet manually on the IRT images. In Figure 5.1, the initial step for ROI determination 

can be seen as the complete image on the left and manually cropped right and left leg 

images on the right, respectively. 

   

Figure 5.1 Extracting legs and feet from an IRT image from the first visit of the first 

patient (front view) 

Secondly, segmenting the background from foreground was necessary to eliminate 

non-informative pixels from the image. In this step, segmentation using a classical 

approach called Otsu’s method [78] was successful in most of the images, however few 
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of the images were segmented semi-manually with the help of an application in MATLAB 

called Image Segmenter. As shown in Figure 5.2, the IRT images labelled as a, b and c 

were captured during the first visit (V1) of the first patient (P1), and the images labelled 

with d and e were captured during the third visit (V3) of the same patient. The image in 

Figure 5.2-b represents the result of automatic thresholding on a non-standard image 

using Otsu’s method where the foot was wrongfully assigned as the background. The 

infrared radiation acquired by the imaging system was relatively low over the skin of the 

foot due to the MS related nerve degeneration on that body part. After semi-manual 

segmentation, as depicted in Figure 5.2-c the successful segmentation of the leg and the 

foot was attained. On the other hand, as shown in Figure 5.2-e, where the same right leg 

image of patient 1 captured during the third visit, automatic thresholding was sufficient 

to obtain the leg and the foot without any manual intervention. We believe that this can 

also be an indication of the recovery/regeneration of the nerves in the foot which in turn 

caused increased heat throughout the nerve and increased IR radiation over the skin. 

a b c 

 

d e  

Figure 5.2 Automatic thresholding results (Patient 1, first row: visit 1, second row: 

visit 3) 

The thermal examination on the body is performed on specific areas related to 

specific diseases. In this study, leg images of patients were evaluated since they suffer 

from the degeneration of lower limbs. The next step after image segmentation was to 

color the images to prepare for the evaluation of the physician. Different visit images 

were placed together in the figures Figure 5.3 and Figure 5.4. Consecutive visit images 
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were placed consecutively in the figures. The first line in Figure 5.3, the images a-b-c and 

d-e-f are the three consecutive visits of patient 1’s right and left legs images, respectively, 

from the front view where the second row is from the back view in the same arrangement.  

      
a b c d e f 

      
g h i j k l 

Figure 5.3 Colored thermal images of the three visits of patient 1 (a-b-c and g-h-i 

right leg images of three visits from front and back view respectively, d-e-f and j-k-

l left leg images of three visits from front and back view respectively) 

The first line in Figure 5.4, the images a-b-c-d and e-f-g-h are the four consecutive 

visits of patient 2’s right and left legs images, respectively, from the front view where the 

second row is from the back view in the same arrangement. 

  



71 

 

        
a b c d e f g h 

        
i j k l m n o p 

Figure 5.4 Colored thermal images of the four visits of patient 2 (a-b-c-d and i-j-k-l 

right leg images of four visits from front and back view respectively, e-f-g-h and m-

n-o-p left leg images of four visits from front and back view respectively) 

In both figures Figure 5.3 and Figure 5.4, the blue parts in feet represent the extend 

of the degeneration spread. 

In the next step, the gray level leg images of patients were divided into sub-regions 

to focus only on the targeted region, in this case the feet. Each sub-region was divided 

into blocks. As a demonstrative example shown in Figure 5.5-a and b, the front view 

image of the right leg of patient 1 captured during visit 1 was divided into 3 sub-regions, 

and as in Figure 5.5-c, the sub-regions were divided into 9 blocks (3 rows and 3 columns).  

 

  

  

  
a b c 

Figure 5.5 A sample image is presented to show how the dividing image into 

subregions and blocks is performed (Patient 1, visit 1, right leg, front view) 
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Once we obtained the blocks corresponding to the feet, the mean pixel intensity 

(gray level) value of each block for each subject and each visit was computed and saved 

for further comparative analysis. Dividing into blocks made anatomical 

registration/overlaying possible, so that comparison between visits on similar, if not the 

same, parts of the foot became feasible. However, we observed that pixel-by-pixel 

comparison would mislead the procedure due to the non-standard position of the patient 

during visits. It is most likely that the pixel values of the heatmaps corresponding to 

consecutive visits would not overlap pixel-by-pixel, and different pixels would be 

compared leading to incorrect quantitative analysis outcome. Therefore, the regions were 

divided vertically and horizontally into blocks. Since sub-regions coming from 

consecutive visits were divided into the same number of blocks, the skin surface they 

covered remained similar even though the number of pixels contained in the blocks on 

the same row and column changed. To be more specific, when the foot images coming 

from the follow-up visits were divided into the same number of blocks, they still showed 

the same toe even if the number of pixels contained in the blocks showing the same toe 

was changed. Therefore, the comparison was performed by matching the pixel intensity 

means of the blocks located in the same row and column within the same region. The 

front view images of right foot from patient 1 captured during the examinations at visit 1, 

visit 2, and visit 3 are displayed in Figure 5.6-a, b, and c, respectively. The images in 

Figure 5.6 clearly supports the idea proposed in this study that dividing the regions into 

blocks would increase the comparison accuracy of the same area even they encompass 

different number of pixels. 

   
a b c 

Figure 5.6 Patient 1, right foot images acquired during different visits (a: visit 1, b: 

visit 2, and c: visit 3) 

In the next step, a vector was formed by calculating the mean gray level of the pixel 

values (Mean GLV) in the block itself, starting from the top left of the blocks in the region 

to be evaluated, in this case front view of feet images, and a 1-by-9 size vector was formed 
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since the foot region was divided into 3 rows and 3 columns. Right and left feet images 

of patient 1, patient 2 and healthy control were processed to form the “vectors of the 

blocks mean” contained in the foot region. Right and left feet mean vectors of all subjects 

can be seen in Figure 5.7. Right and left feet images were grouped together to perform a 

reasonable comparison with healthy control feet images. Therefore, the results were 

combined where the first column contains the front view of the right feet, and the second 

column contains the front view of left feet. The first, second, and third rows in the figure 

contain the results of MS patients and healthy control, respectively. Patient 1 visited the 

clinic once a year, and totally three times in 2018, 2019, and 2020. Patient 2 visited the 

clinic 4 times in 2021 in 2-month intervals. Healthy control visited the clinic two times 

in 2018 and 2020. 

 

Figure 5.7 Comparison of mean gray levels corresponding to 9 blocks of the right 

and left feet for MS patients and healthy control from front view during different 

visits. 

In this case the mean vectors of the blocks contain 9 elements, due to foot region 

was divided into 3 rows and 3 columns. Block-mean vectors of a subject, coming from 

consecutive visits, were compared with each other using visit-wise subtraction for the 

same foot from the same view. Finally, the mean of the subtraction results from the region 

(foot) was calculated. Table 5.1 and Table 5.2 summarize the subtraction results and 

means of right and left feet of subjects respectively. The progression of the MS disease 
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can be seen in Table 5.1 and Table 5.2. Patient 1 has constant increase which shows that 

he was close to full recovery. For Patient 2, there is an increase throughout consecutive 

visits except for the last visit where there is a moderate decrease that is correlated with 

the findings observed during clinical examinations. The differences obtained for healthy 

control can be considered as normal fluctuations. 

Table 5.1 Differences of block-mean vectors for the right feet 

 Visit difference Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Mean 

Patient 1 Visit 2-1 10.86 13.21 9.49 22.41 19.23 14.28 30.12 36.74 30.82 20.80 

Patient 1 Visit 3-2 14.79 14.06 13.73 18.59 14.31 14.33 27.37 24.81 18.37 17.82 

Patient 2 Visit 2-1 34.92 37.95 50.29 51.57 43.04 48.81 62.11 34.03 28.49 43.47 

Patient 2 Visit 3-2 2.68 7.51 4.36 8.68 8.30 0.40 11.56 14.42 10.30 7.58 

Patient 2 Visit 4-3 -6.90 -11.28 -9.34 -17.12 -19.02 -13.04 -17.26 -25.97 -17.05 -15.22 

Healthy Visit 2-1 1.61 -0.40 1.84 -3.57 -3.71 5.32 -13.05 -14.48 -2.88 -3.26 

 

Table 5.2 Differences of block-mean vectors for the left feet 

 Visit difference Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Mean 

Patient 1 Visit 2-1 17.49 22.3 18.49 25.36 30.58 36.74 39.31 50.91 43.91 31.68 

Patient 1 Visit 3-2 9.72 6.62 8.54 3.85 1.60 2.55 5.37 4.44 10.43 5.90 

Patient 2 Visit 2-1 68.99 44.60 30.54 68.15 48.36 41.41 45.72 20.71 36.36 44.98 

Patient 2 Visit 3-2 2.14 4.05 2.21 -2.12 3.90 4.96 5.20 11.59 11.46 4.82 

Patient 2 Visit 4-3 -2.72 -9.71 -9.21 -7.52 -14.13 -18.97 -10.38 -20.84 -22.82 -12.92 

Healthy Visit 2-1 10.97 11.03 7.30 10.95 10.13 4.89 0.77 -7.16 1.01 5.54 

5.3. Discussion and Conclusions 
Multiple sclerosis is caused by the body’s immune response attacks against central 

nervous system which degenerate the myelin sheath covering the axon. Action potentials 

are the electrical signals by which the nerves communicate with each other. The 

communication via action potentials between nerves is deteriorated when the myelin 

sheath is degenerated (demyelination). Regeneration of demyelinated nerves is a subject 

that needs to be addressed further. 

MS patients generally suffer from degeneration that occurs on extremities. Both 

patient 1 and patient 2 came to Dr. M.M. YILMAZ Integrative Medicine Clinic with 

similar complaints after being diagnosed with MS disease in 2011 and 2021, respectively. 

Both patients had degenerations on their lower extremities, loss of balance and suffer 
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from hyperactive deep tendon reflexes. Patient 1 was unable to walk at the beginning of 

the treatment process but was able to fully recover. Patient 2 visited the clinic for the first 

time in 2021 and currently pursuing the treatment. 

In the clinic different treatment and examination processes were applied to the 

patients such as the magnetic field treatments (peripheral magnetic stimulation [127], 

transcranial magnetic stimulation [128]), electro acupuncture [129], herbal treatments 

(oral and IV-intravenous), systemic ozone therapy (major auto haemo therapy) [130]. The 

cerebrospinal fluid (CSF) was (and is being for patient 2) provoked with magnetic field 

treatments, and herbal treatments were applied to regenerate the damaged (demyelinated-

degenerated) nerve fibers. The progression of regeneration, degeneration or stability was 

(and is) followed up by combination of anamnesis, capturing thermal images using 

thermograph and neurological examination [131]. It is important that the three of them, 

anamnesis, thermal images, and neurological examination overlap and support each other. 

CSF pressure was (and is being) measured with craniosacral therapy [132] during follow-

ups, because a decrease on CSF pressure is a bad sign for MS patients. 

Currently MS disease is diagnosed with a combination of anamnesis, standard blood 

tests, medicated brain and spinal cord magnetic resonance (MR) imaging and CSF 

examination. However, treatment procedure is not easy and well defined. Generally, three 

different goals are aimed [133]. The first aim is to treat the patient who comes with a 

sudden attack, high-dose cortisone treatment is given intravenously for 3-10 days or 

sometimes a blood exchange called plasmapheresis [134] is performed during this attack 

period. The second aim is to stop the attacks and to try to prevent the progression of the 

disease. For this purpose, sometimes injections and pills can be given for a long time. The 

third aim is to treat the complaints of patients whose quality of life is impaired due to the 

disease. There are physical therapy methods, different muscle relaxants, pain killers, 

drugs to prevent urinary incontinence, drugs used in sexual dysfunction to ease the 

complaints of the patients. During follow-ups, interval between patient visits are 1-2 

months and MR images are captured once in a year. Because during follow-ups MR is 

not fully correlated with neurological examination [135]. 

Skin temperature decreases towards to the end of the extremities. In Figure 5.7, the 

temperature decrease can be seen throughout the mean vector, since the first block is at 

the top left of the image higher order blocks (blocks 7, 8, and 9) represents the end of the 

extremity. There are fluctuations on the first visit of patient 2, which means there is a 

pathological disorder, however there is no such fluctuations for patient 1. Because the last 
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part of the treatment of patient 1 was followed up with IR thermography when stability 

was maintained, and the patient was close to full recovery. Also, there is stabilization for 

patient 2 at the following visits’ graphs, which means the patient responded well to 

treatment. 

There is certain amount of decrease in the heat generated by the nerve if it is 

damaged, which makes it possible to monitor the state of the disease with the IR 

thermography if the clinical examinations like neurological examinations, blood tests etc. 

support the same findings. Therefore, increase, decrease, and stabilization of the 

temperature means increase, decrease, and stability of regeneration process, respectively. 

In this study thermal images of two patients and a healthy control were captured in 

a private integrative medicine clinic were evaluated. The aim of this study was to quantify 

the thermal images of MS diagnosed patients and make it possible to provide a numerical 

measurement to physician to quantify what he/she sees on the image. This will allow 

physicians to do evaluation in a more objective and generic manner. Since they evaluate 

the numbers not the images, the decision will be easier to discuss.  

In figures Figure 5.3 and Figure 5.4, the thermal images of the two patients were 

colored which will enable physician to investigate the images and assess the disease with 

better accuracy. However, the thermal images can be quantified better when the thermal 

information in the image is further processed. It is necessary to extract meaningful 

information from the raw data to present to the physician to assess the disease properly. 

In Figure 5.7, the right and left feet images of subjects were displayed as means’ 

vectors of blocks. The healthy control images were taken with two-year intervals, and 

both mean vectors were highly correlated which means there was no substantial 

difference between the visits. When figures from patients 1 and 2 were compared to 

healthy control figures, the thermal difference of figures apparently proves that healthy 

and unhealthy thermograms have different characteristics. 

MS treatment of patient 1 was performed between the years 2011 and 2020, 

however, thermograms were acquired and recorded only in the last three years of 

treatment, because in the clinic thermography-based monitoring of MS treatment started 

in 2018. Therefore, the graphs of patient 1 are stable and there is a constant temperature 

increase which means there is regeneration in the nerve fibers that were affected by the 

MS disease.  

The treatment of patient 2 started in 2021 and is currently underway. In the 

beginning of the treatment, he was not able to lift his toe. It can be seen in Figure 5.7 (the 
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front view images of the right foot from the first visit of patient 2) that 7th block that 

corresponds to the patient’s toe has the lowest mean value. There are significant variations 

among different blocks in the first visit, especially on the front view vectors of both feet. 

However, the vectors of consecutive visits do not have such variations as it is in visit 1 

due to the positive response obtained during treatment. There is a small decrease of means 

when the patient 2 came to the 4th visit which is also in parallel with the clinical 

observations of the physician. This situation indicates that change towards improvement, 

worsening, or stabilization can be observed using IR thermogram images. 

In this study different patients with different visit intervals were evaluated, patient 

1 has one year, patient 2 has 2 months, and healthy control has 2 years between visits. It 

is observed that quantitative analysis of thermal images can be informative and may have 

additional value for the assessment of MS patients in conjunction with examinations and 

tests that the physicians are routinely using in their clinical practice. The assessment of 

thermograms requires a certain level of expertise which is not common in traditional and 

integrative medicine clinics. Interpreting the thermal images in addition to the clinical 

findings can help physicians monitor the progress of patients. The physicians have to 

know how to adjust certain colormaps to correctly visualize the thermal image, focus on 

the regions related to a specific disease under consideration and know how to interpret 

what he/she sees in the image. Raw thermal images are gray level images which can be 

seen in Figure 5.1 and the gray level image is not informative for the human eye. 

Therefore, the image should be colored, and necessary details in the image should be 

revealed by adjusting the image properties such as colormaps and temperature range. 

Special colormaps should be applied to image to make the targeted pathology visible. 

Even with the colored and adjusted image human eye may not clearly quantify the 

difference and may not precisely determine the stage of a disease. The method proposed 

in this study quantifies the local thermal properties of the patient by presenting numbers 

such as the mean intensity value which will help physician to interpret the findings in the 

thermal image. We believe that findings in this study revealed the promising future of IR 

based thermal imaging in medicine for pre-diagnosis/screening and follow-up procedures. 

Therefore, thermal imaging may be a feasible alternative to invasive and costly (both 

money- and time-wise) screening methods. 

The thermal images analyzed in this study were not uniform and standard, therefore 

it was a challenge while processing images automatically. One of the consequences of 

this condition was that the fully automatic segmentation approaches did not perform well, 
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and semi-automatic segmentation was applied to some of the non-standard images. 

Different view images may help to improve the performance of investigation and may 

provide more information for evaluation. In this case lateral view of foot may provide 

extra information. 
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Chapter 6 

Conclusions and Future Prospects  

6.1. Conclusions 
Diagnosis method should give minimum or no harm to the patient. However, many 

diagnosis methods may cause some sort of damage to the patient. For example, 

mammogram is the standard diagnosis method for breast cancer, but this test itself can 

cause the initiation of a tumor in the breast due to the ionizing radiation used during the 

test. It is an urgent need to develop more harmless methods for patient’s comfort and 

wellbeing. The IR thermographs do not contain any harmful radiation, but they only 

absorb infrared radiation naturally emitted from the body. Even no contact is needed for 

this approach. This makes the thermal imaging method a valuable adjunct diagnosis 

method due to its harmless nature. One of the collaborators in this research is Dr. M.M. 

Yılmaz Clinic, which is one of the biggest traditional and complementary medicine clinics 

in Türkiye, and the main physician in this clinic is the first doctor in the country that used 

thermographs for pre-diagnosis. The doctor (Dr. Mustafa Mücahit Yılmaz) examined 

almost 4000 patients since 2012. It is important to introduce this huge experience to other 

interested physicians. Yet this method did not gain enough interest among medical world. 

Experienced medical experts are scarce, so smart systems are needed to help 

unexperienced doctors and technicians for gaining the knowledge of medical thermal 

imaging faster and easier. With this motivation the aim of this study was to develop 

automated processing and classification methods for evaluation of medical thermal 

images. 

Medical infrared thermal imaging is a non-invasive, low cost and easily applied to 

patients without any restriction. Due to these advantages this method will gain the 

attention of physicians and as well as the experts in other fields. Human body is 

homeothermic, it can generate and evacuate heat, that is why this working principle of 

body is fully correlated with MITI. The heat distribution of a healthy individual’s body is 

balanced. Health problems that occur in body can break down the heat balance locally or 
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in general. The relationship of body heat balance and illness was first documented in 400 

BC. An infrared (IR) thermogram is a heat map that displays the heat distribution of the 

target as an image. The IR thermography in healthcare was first used in late 1950s. In 

1956, R. Lawson found out that a tumor tissue increased surface temperature of the skin 

over itself more than the skin over the normal tissue did [136]. The focus was the breast 

cancer detection. Since 1995 there has been an increased interest for the IR thermography 

due to the improvements in IR camera technology and image processing algorithms [1]. 

The first application area of the thermography in medicine is breast cancer screening, a 

sample of latest studies can be found in [137]–[146], [147]–[156], [111], [113], [157]–

[163]. There are different application areas in medicine other than the breast cancer that 

the IR thermography is used, the following references can be investigated for further 

information: [164]–[173], [174]–[183], [184]–[193], [194]–[203], [204]–[213], [214]–

[223], [224]–[234], [235]–[244]. Therefore, the emergence of improved image processing 

techniques has given chance to apply infrared thermal imaging to more complex areas. 

Since MITI is a relatively new area, the experts who have experience on evaluating 

the thermograms are low in numbers. One of the goals of this study is to quantify the 

experience of the experts which will allow this experience becoming commonly available. 

This will also allow the common experience growing of MITI to gain pace. 

6.2. Societal Impact and Contribution to Global 

Sustainability 
Today, social problems and global sustainability are among major problems which 

threatens the life on our planet. This is because of the greedy life style of the last century. 

Therefore, it is important to reverse this situation by prioritizing the social problems and 

global sustainability in the developing projects. 

Developing non-invasive and radiation free methods in medicine is an important 

subject for this goal. Many different monitoring methods are invasive and contains 

harmful materials, like x-rays. Thermal diagnosis is a promising monitoring technique for 

healthcare due to its harmless nature. Since no radiation or any other harmful material is 

used in this method, there is no limit for the frequency or amount of usage for patient’s 

health. For example, the generally accepted diagnosis method for breast cancer is 

mammogram, but in this method, radiation is used to examine the patient. It is possible 

to expand the use of IR thermography in general hospitals for pre-diagnosis of certain 
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diseases. The diseases should be focused which are highly frequent in the population. The 

economic impact will be higher when expensive techniques are replaced with cheaper 

techniques used on highly frequent diseases. 

This study is mostly related with the United Nations Sustainable Development 

Goals of number 3, “Good Health and Well-Being”. Since the method is easy to apply 

and cheap for installation, it can be set up to many medical centers where it will be easy 

for many people to reach a harmless and cheap complementary diagnosis method. It is 

also more or less related with other goals, like economic goals, because you can get a 

sustainable and harmless diagnosis method without spending much money. Since this 

method is radiation free, it will also contribute to the goals related to clean energy and 

climate. This cheap method will also improve the health service accessibility in low 

income countries. 

6.3. Future Prospects 
The results of this study reveal different directions for further studies. Current and 

future research efforts are aiming and will aim at studying different aspects of MITI for 

it to become an accepted pre-diagnosis tool for certain diseases and conditions in clinical 

practice. Many researchers believe that this technology has this potential and there are 

many clinics and experts around the world that employ MITI in their diagnosis (or pre-

diagnosis) process. It is obvious that the automatization and standardization of the 

diagnosis is highly necessary. Along these lines several parallel studies are underway 

aiming at the automatic detection of certain diseases using conventional machine learning 

and deep learning approaches from medical thermal images. Possible research directions 

include the detection of pain centers from the dorsal view of the upper body or finding 

the varicose vein extension on the legs using thermal images, etc. 

Improvements and modifications can be made on new pre-processing techniques 

on thermal images, which will improve revealing deeper features in the thermal images 

using CNN architectures. For example, different supervised or unsupervised feature 

selection methods can be evaluated. Another improvement can be done in training the 

CNN architecture with one channel gray level images, i.e., original raw images. In 

addition, in liver steatosis classification study only one offset was calculated for GLCM 

calculation, for future studies different offsets should be evaluated. Another research 
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direction can be to develop a new CNN architecture by combining the evaluated CNN 

architectures that performed well during this research endeavor.  

For MS assessment study, further studies should include lateral view thermogram 

of the feet for assessing the disease comprehensively. Another aspect for further studies 

is to focus on other body parts who suffer from MS disease and have degeneration on 

associated nerves. In MS assessment study degenerated nerves in the feet were 

investigated, and the regeneration was quantified in accordance with clinical findings. 

Another aspect for the new studies should be evaluating different diseases that are 

relevant with body temperature. Such diseases can be interpretable and easily trackable 

when heatmaps of the body parts are generated with thermal imaging and these maps are 

tracked during consecutive visits using quantification approach as it is proposed in this 

study. Comparing thermograms may provide an easy and non-invasive method for 

assessing the status of the disease.  

The methods evaluated during this study should be applied to different health 

problems that are related with heat balance of the body. With this motivation, computer-

aided methods should be developed for the disorders like backache, sinus inflammation, 

liver steatosis, varicose, thymus gland irregularities, and multiple sclerosis. 
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APPENDIX 

Diagnosis Form 
This form is filled by Dr. Mustafa Mücahit Yılmaz while evaluating the 

thermograms of patients. 
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Informed Volunteer Consent Forms 
The following two forms were used to obtain signed informed consent from 

volunteers during their visit to the clinic. The first and second consent forms were 

prepared to obtain permission for processing the archived and new thermogram data of 

the patients, respectively. 

  





108 

 

 





110 

 

 
  



111 

 

CURRICULUM VITAE 

2002 – 2008 B.Sc., Computer Engineering,  

Yıldız Technical University, İstanbul, TÜRKİYE 

2013 – 2015 M.Sc., Electrical and Computer Engineering,  

Melikşah University, Kayseri, TÜRKİYE 

2016 – 2022 Ph.D., Electrical and Computer Engineering,  

Abdullah Gül University, Kayseri, TÜRKİYE 

2009 – 2012 Software Engineer 

AKEAD Bilişim, İstanbul, TÜRKİYE 

2012 – 2019 Research Assistant, Computer Engineering,  

Abdullah Gül University, Kayseri, TÜRKİYE 

2019 – present Research Assistant, Computer Engineering,  

Kırşehir Ahi Evran University, Kırşehir, TÜRKİYE 

  

SELECTED PUBLICATIONS AND PRESENTATIONS 

J1) A. Özdil, B. Yılmaz, Automatic body part and pose detection in medical infrared 

thermal images, published in QIRT Journal, DOI: 10.1080/17686733.2021.1947595. 

J2) A. Özdil, B. Yılmaz, Medical infrared thermal image based fatty liver classification 

using machine and deep learning, published in.  

J3) A. Özdil, B. Yılmaz, Localized quantification of medical infrared thermal images for 

multiple sclerosis assessment and monitoring, published in. 

 


