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The demand response (DR) program is a promising way to increase the ability to

balance both supply and demand, optimizing the economic efficiency of the

overall system. This study focuses on the DR participation strategy in terms of

aggregators who offer appropriate DR programs to customers with flexible

loads. DR aggregators engage in the electricity market according to customer

behavior and must make decisions that increase the profits of both DR

aggregators and customers. Customers use the DR program model, which

sends its demand reduction capabilities to a DR aggregator that bids aggregate

demand reduction to the electricity market. DR aggregators not only determine

the optimal rate of incentives to present to the customers but can also serve

customers and formulate an optimal energy storage system (ESS) operation to

reduce their demands. This study formalized the problem as a Markov decision

process (MDP) and used the reinforcement learning (RL) framework. In the RL

framework, the DR aggregator and each customer are allocated to each agent,

and the agents interact with the environment and are trained to make an

optimal decision. The proposed method was validated using actual industrial

and commercial customer demand profiles and market price profiles in South

Korea. Simulation results demonstrated that the proposed method could

optimize decisions from the perspective of the DR aggregator.
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Introduction

The demand response (DR) program can increase the ability to balance both supply

and demand, improving the economic efficiency of the overall system (Kang et al., 2018).

The utilization of DR programs can reduce operating costs by reducing additional

investments to fulfill high-peak-load situations. DR programs can be classified into
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two categories: time-based and incentive-based DR programs.

Time-based DR programs can change the demand patterns by

responding to time-varying electricity prices. Incentive-based DR

dispatches a signal to involved customers to reduce their electric

usage and provides incentives or penalties from the system

operator based on these criteria. Time-based DR

fundamentally benefits customers rather than the system

operator; however, an incentive-based DR program dispatches

a signal to reduce the demand for system operators to manage

their demand source more flexibly. Despite the advantages of DR,

participating in a DR program renders it difficult for typical

customers to access the electricity market because it involves a

complex process. Therefore, DR aggregators have emerged in the

electricity market. DR aggregators are new entities and

counterparties to the electricity market that serve as

intermediaries between market operators and customers in

DR programs (Abapour et al., 2020; Lu et al., 2020).

Therefore, the DR aggregator provides registered customers

with an easy access point to the electricity market and can

manage their customers’ demand resources; examples include

energy storage systems (ESSs).

ESSs are often used to participate effectively in DR programs

on the demand side. An ESS can not only respond quickly to

system changes but also store and supply its stored energy at a

required time (Manz et al., 2012). These abilities of ESS render it

an ideal candidate for a wide range of power system applications,

such as energy arbitrage, peak shaving, frequency regulation, and

renewable integration (Makarov et al., 2012; Gayme and Topcu,

2013; Pandžić et al., 2015; Vargas et al., 2015; Lee et al., 2018). Ref

(Pandžić et al., 2015) presented an optimal method for siting and

sizing of ESS for energy arbitrage, frequency regulation, and so

on. In (Gayme and Topcu, 2013), ESS is used to maintain

consistent power of renewable energy sources. The authors

included the charge/discharge operations of ESS in power flow

formulations and solved the formulations. Makarov at al

(Makarov et al., 2012) presented a sizing method of grid-scale

ESS to mitigate the variability of renewable energy. ESS was used

to handle the over-generation or under generation periods.

Congestion management method using ESS was proposed in

(Vargas et al., 2015). Lee at al (Lee et al., 2018) proposed a

strategy to participate DR program. The authors used the ESS

and developed an optimal scheduling algorithm. Existing

research provides insight into the attractive benefits of using

ESS. Among them, participation in the DR market is attracting

attention because of its benefits to obtain economics, system

reliability and optimized load profile (Eyer and Corey, 2010).

Several studies have used reinforcement learning (RL), with

significant interest in machine learning, to develop DR strategies

that maximize profits. Zamzam et al. (2019) discussed a control

method for energy systems comprising an ESS, a renewable

energy source, and a load using a deep Q-learning algorithm.

Xu et al. (2019) presented a method for obtaining the maximum

profit of arbitrage in the real-time electricity market using an ESS.

Guan et al. (2015) used a TD-learning algorithm to determine the

optimal control policy to minimize the residential customer bill

using an ESS. Yu et al. (2020) studied a joint arbitrage of

electricity and carbon prices using double Q-learning-based

ESS arbitrage. Similarly, a Q-learning-based arbitrage strategy

was presented in (Han et al., 2021). The authors utilized an

electricity price and customer demand forecasting model to

consider their uncertainty. In (Bahrami et al., 2020), the

authors proposed the RL-based load control method during

peak time periods. Actor-critic algorithm was used to curtail

customer’s electrical load while considering the distribution

network constraints. Wang et al. (2020) presented RL-based

DR management on customer side. The authors formulated a

Markov decision process (MDP) to solve RL problem and aimed

to reduce the peak load demand and operation costs. Recently,

RL-based aggregator operation strategies were presented in

(Ghosh et al., 2019; Chuang and Chiu, 2022). Ref (Ghosh

et al., 2019) presented a RL-based aggregator decision making

method. The RL-based aggregator designed customer’s retail

tariff structure by purchasing or selling power in the

wholesale market. This aggregator plays like a distribution

system operator in local distribution system. In (Chuang and

Chiu, 2022), RL-based pricing strategy of aggregators was

proposed. In this study, the aggregator plays as an energy

trading platform so that energy producer and consumer

subscribe to aggregator, and share their energy based on the

aggregator pricing strategy.

Most of previous studies have been used RL methods to

maximize DR profit, and they considered only the demand-side

problem. Although a few aggregator-side studies have been

conducted, these studies assumed that the customers could

make optimal decisions and directly communicate the whole

sale market for DR. Nevertheless, it is difficult not only to make

optimal decisions, but also to communicate directly with the

whole market for most customers. It may be restricted customers’

participation in the DR program. In fact, customers can

effectively participate in the DR program by subscribing to

the DR aggregator and pay a certain fee to delegate decision

making and communication with the whole market. Therefore,

this study presents the aggregator side DRmanagement to reduce

the above drawback, contributing the follows:

1) This paper proposes a method for developing a DR strategy

from the perspective of a DR aggregator with RL techniques,

considering both DR aggregator and customers benefits.

2) Different with conventional DR scheduling methods, this

study utilizes a RL based decision making process to

obtain the optimal DR strategy. RL is a model free and

data-driven method, enabling automatically determines

their optimal decisions from the data without prior

knowledge for the environment.

3) This study takes into account the DR program model, which

sends its demand reduction capabilities to a DR aggregator
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that bids aggregate demand reduction to the electricity

market. In this model, the DR aggregators not only

determine the optimal rate of incentives to provide to

customers but also makes decisions for customers to

ensure optimal ESS operation to reduce demand.

4) Compared to the case of not participating in the DR

aggregator, more practical benefits can be confirmed. The

reward function in RL is designed in consideration of the

benefits for electricity and the whole sale market price,

indicating the proposed method can help not only the DR

aggregator to procure demand resources but it also shows that

it can help reduce costs for customers.

The remainder of this paper is organized as follows. Section 2

provides the fundamental background of this study. Section 3

formulates the RL problem, Section 4 describes Deep Q learning

method, Section 5 presents a numerical simulation, and Section 6

concludes the paper.

Fundamentals

DR aggregator

The fundamental role of the DR aggregator is to

communicate between the electricity market and customers.

The DR aggregator provides DR services for the market

operator, and obtains a settlement based on the electricity

market prices. However, the DR aggregator provides an

incentive for customers to procure energy resources. The DR

aggregator is usually a for-profit organization, so the aggregator

aims to maximize its profit and minimize the incentive rate that

settles on customers. Therefore, the objective of the DR

aggregator is as follows:

Ap � max⎛⎝∑N
n�1

∑H
h�1

(ps,t − pi,t)ΔRn, t
⎞⎠ (1)

where N represents the total number of customers; H is 24 h,

which is the last hour of the day; ps,t is the market price; pi,t is the

incentive price at time t; and ΔRn,t is the demand reduction for

customer n at time t.

Customers

Customers are registered in the DR aggregator to

participate in the DR program. The DR aggregator is an

easier access point for customers to obtain information

regarding the electricity market. In particular, customers

obtain incentive prices from the DR aggregator, and they

try to maximize their profits by reducing electricity

demand. Customers control their controllable loads, such

as heating, ventilation, and air conditioning (HVAC),

lighting, and energy storage systems (ESS).

In this study, we assume that the customer participates in the

DR program using an ESS, which enables the storage and supply of

electrical energy at the required time. An ESS can flexibly control

demand and does not induce discomfort while controlling

customer demands. Based on the ESS, the customer can

purchase power to charge energy to the ESS and discharge the

stored energy to the grid in DR situations. The operational energy

from the ESS at each time point is denoted et. If the et is positive, et
represents the charged energy, and if the et is negative, it represents

the discharged energy. Therefore, the state of charge (SOC) at time

step t, soct, of the battery can be expressed as follows:

soct+1 � soct + etuc − et
ud

(2)

where μc ∈(0, 1] and μd ∈(0, 1] represent the charging and

discharging efficiencies, respectively, and soct has maximum

and minimum bounds by soc min ≤ soct ≤ soc max. Moreover,

the et depended on the maximum rate of the battery.

Therefore, the bound of et can be expressed as:

ucet ≤ rc,− et
ud

≤ rd (3)

where rc and rd are the maximum charging and discharging

rates, respectively. A feasible decision will be made with the above

models; if not, it is prevented by the ESS, and it will not play any

actions.

Through the ESS model above, customers participate in the

DR program and aim to maximize the profit received from the

DR aggregator. Therefore, the objectives of the customers can be

represented as follows:

Cp � max⎛⎝∑H
h�1

pi,tΔsoct⎞⎠ (4)

where Δsoct is the difference in SOC at time t. On the customer

side, the Δsoct is only considered in the case of the discharging

operation because the charging operation naturally increases

customer demand and thus cannot participate in the DR program.

DR program model

Figure 1 shows the overall DR program model. As mentioned

previously, the DR aggregator communicates with both thewholesale

electricity market and customers. In this model, customers send their

reduction to DR aggregator and the DR aggregator, which bids the

aggregated reduction to thewholesale electricitymarket, receiving the

wholesale settlement based on the wholesale electricity market price.

The wholesale settlement is distributed to customers according to the

incentive price determined by the DR aggregator. However, the

decision to reduce the number of customers can be made by itself or

by the DR aggregator. However, not all customers can make optimal
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decisions to participate in the DR program; therefore, this study

assumes that theDR aggregator can assist customer decision-making.

Therefore, customers can also send their controllable device

specification (ESS in this case), and the DR aggregator can decide

to maximize both the wholesale settlement and the customer’s

incentive settlement.

Reinforcement learning formulation

RL is a domain of machine learning concerned with how

agents make a sequence of decisions in a complex environment to

maximize profit. Figure 2 shows the architecture of RL. The agent

interacts with the environment to find an optimal policy by trial

and error, without explicitly modeling the system dynamics. In

the interacting process, the agent modifies its action strategy to

obtain the maximum return in the long run.

Markov decision process

In this study, the operational objective of the DR aggregator

is to maximize both the wholesale settlement and customer

incentive settlement. Although we designed the objective

FIGURE 1
DR Program model.

FIGURE 2
Architecture of RL.
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function for the DR aggregator and customers, the functions

cannot be directly used in the RL framework. To use the objective

function in the RL framework, we must formulate the objective

function as a MDP framework, including state, action, and

reward for the DR aggregator and customers. In other words,

the agent is provided with its surrounding environment state st
and executes a control action at that causes a state transition to

st+1. Once the state transition is completed, the agent receives

reward rt+1, for the control action. Therefore, the RL problem

consists of (st, at, st+1, rt+1), where:
s is the state space of the DR problem with finite number of

states. In this study, the state space of the DR aggregator consists

of the following components: wholesale electricity market price

and aggregated reductions at time t (sa, t), The state space of each
customer consists of the time of use (TOU) price, wholesale

electricity market price, average TOU price, average wholesale

electricity market price, and state of charge of the ESS at time t

(sc, t, n). n represents the customer index. Average prices are used

in the reward function design, which is more detailed in the

reward section.

a is the action space. Given the state, the agent is required to

find the most suitable action for DR programs. Action spaces

were composed of discrete action spaces. Specifically, the action

space of the DR aggregator consisted of seven discrete linear

spaces in the range [0.3, 0.8], ai, t. The action of the DR aggregator

determines the ratio of the incentives provided to customers from

the wholesale electricity market price. In addition, the action

space of customers consists of 21 discrete linear spaces in the

range [−1, 1], ac, t. Negative actions refer to the discharge actions,

and positive actions indicate the charge action. The zero action is

that the ESS does not perform any actions, so the agent does not

receive any reward.

r is a reward function. It is used to predict the next reward by

considering the RL agent’s control action. We designed this

reward function for both the DR aggregators and customers

as follows:

rag � (ps,t − pi,t)ΔRa
t/N

rcu � ((ps − ps,t) + (pe − pe,t) + pi,t,)Δsoc + penalty

penalty �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

soc max − (soct + Δsoc)
10

if chrage

soc min + (soct + Δsoc)
10

if dischrage

(5)

where rag and rcu represent the rewards of the DR aggregator and

customer, respectively. ps,t is the current market price and pi,t is

the current incentive price. ΔRa
t is the aggregated reduction, and

N is the number of agents. N prevents revenue from being

concentrated in the DR aggregator. ps represents the average

market price in the previous n hours. pe represents the average

daily energy charge price. Δsoc is the difference between soct+1 −
soct of the ESS at time t, and a penalty term is introduced to

further control the undesirable operation of the ESS. A penalty is

assigned when the agent chooses an action that results in a

violation of the ESS operating constraints. The rationale for the

penalty is to avoid unnecessary battery operation. In other words,

the penalty is imposed when an agent chooses to act in violation

of ESS operating limit. The denominator 10 was applied to

change the penalty value to a data scale like the reward value.

The reward functions implicitly represent the DR profits of

the DR aggregator and customers. In the reward functions, the

DR aggregator simply determines the ratio of incentives to make

profits, whereas customers consider the appropriate ESS

operation. More specifically, the ESS should be charged when

the electricity prices are low or discharged when the electricity

prices are high to provide operational benefits. For this purpose,

ps and pe were introduced in rcu. Charging the ESS naturally

increases the energy charge, so that the profit of the customer is

imposed as a negative profit at the charged time. This leads to the

avoidance of charge action, rendering the ESS unable to operate

properly. By introducing ps and pe to the agent as relative prices,

the agent can perceive the current price as relatively low or high

compared to the average prices. Therefore, they are used to train

RL agents effectively. Furthermore, ESS operations can affect

energy bills; therefore, both pe,t and ps,t have been considered to

maximize DR profits and reduce energy bills.

With the above formulations, the RL agents receive the

reward with a discount factor and the sum of all discounted

rewards, which is called the return. The return can be used as a

measure of how good the policy is, so the optimal policy is the

policy that maximizes the return.

Deep Q learning

Deep Q-Network

The deep Q-network (DQN) uses a neural network and

overcomes the shortcomings of conventional RL algorithms.

For example, DQN has been shown to be successful in playing

Atari and Go games, and it is a powerful method for solving

complex control problems (Mnih et al., 2013). Q-learning

implemented with a DQN is called a deep (DQL). When

selecting the actions, DQL considers the value of the

actions. This value is called a Q-value, which is defined as

the expected return of action in the state. It measures how

good the action is in the given state for a specific action for a

specific policy π. Mathematically, the Q-value of the action-

value function is represented as follows:

Qπ(s, a) � Eπ[Gt|st � s, at � a] (6)

Moreover, we aim to obtain the maximum expected return,

which can be represented using the optimal action-value

function. The optimal action value can be calculated
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recursively using the Bellman equation as follows: In DQN, the

action-value function Q(st, at) can be updated as

Q(st, at) � rt + γmax
a

Q′(st+1, at+1) (7)

where DQL has two networks, Q-network Q and target network

Q′. The optimal Q(st, at) can be one of many cases in the

environment. In DQL, target network Q′ plays as a Q-value

approximator of optimal Q(st, at) for a given reward function.

The result of DQL could be a global optimum for specific reward

function, but a local optimum for the environment. Therefore,

the DQL agent can select the best action at a given state using a

Q-network and update the Q-value using the target network at

the given reward.

In this study, we applied the Bellman equation to update the

action-value function during the RL training process. This

update eventually converges to the optimal action-value

function. Furthermore, experience replay techniques have

been used to store past experiences in replay memory. A

mini-batch randomly drawn from the replay memory was

chosen to perform gradient updates in the neural network at

each update. Moreover, the DQL agent explores the environment

under ε-greedy policy to avoid getting stuck in suboptimal

solutions and to consider the unknown state transition

probability in the environment.

Training procedure

DQL has received considerable attention and has shown

successful performance in many fundamental control

problems. However, in our problem, a single DQL struggled

to explore the environment and obtain rewards. In our

environment, the DR aggregator and customers have different

states and action spaces. This makes it difficult for the agent to

explore its actions for the DR aggregator and the customer.

Therefore, multiple DQL agents have been used to create more

appropriate interactions with the environment.

A two-stage procedure is used, consisting of an aggregator

agent and two customer agents. The aggregator agent receives the

state sa, t {ps,t, ΔRa
t } and selects an incentive action ai, t. The

customer agent then selects action ac, t from sc, t
{ps , ps,t, pe, pe,t, soct}and pi, t. The ai, t provides pi, tas an

additional observation to the customers so that one can

recognize more appropriate actions for the current state sc, t, n.

In our problem, different rewards are responsible for evaluating

the actions of agents. That is, the aggregator agent aims to

maximize the cumulative rag and the customer agent aims to

maximize the cumulative rcu. Therefore, each agent has replay

memory to store its transitions. The aggregator stores the

transition (sa, t, ai,t, rag,t , sa, t+1) and the customer store

transition (sc, t, ac,t, rcu,t , sc, t+1). With these transitions, the

agents replay their experiences to update their policies, which

can be optimized using the gradient. The overall training

procedure is shown in Table 1.

Numerical simulation

Customer demand profiles

The real industrial and commercial demand for 1-year

datasets were collected for the simulation. The demand

profiles were sampled with a 1-hour frequency. Figures 3, 4

show the monthly average demand profiles for the target

customers. The industrial customer profile shows an

M-shaped pattern. This shape is representative of the demand

profile of the customers in the manufacturing industry. The

commercial customer profile, on the other hand, shows a

relatively stable pattern, except for an increase in working

hours (9 am–6 pm). This shape represents a typical demand

profile for office customers.

Wholesale market price profile

The same period as the demand profile of the wholesale

market price dataset is used for the simulation (EPSIS, 2022).

This profile was also sampled with a 1-hour frequency.

Figure 5 shows the monthly average market price profiles.

This profile shows a generally stable pattern, with relatively

high price points in January-March and June-

August, correlating to when heating and cooling demand

may increase.

Electricity tariff system

Industrial and commercial customers in South Korea follow

the electricity tariff system (Korean Electricity Bill, 2022). The

industrial customer pays electricity bills based on the industrial

load (B), high voltage (B), and option II rate plan. Commercial

customers pay electricity bills based on commercial load (A) II,

high voltage (A), and option I rate plan, as shown in Table 2.

Table 3 shows the time of use (TOU) electric rate schedule for

season and time. In Table 2, non-bracket values represent the

industrial rate plan and bracket values represent the commercial

rate plan.

ESS specification on demand-side

The installed ESS is connected to both the demand side

and power grid. A 500 kWh and 20 kWh lithium-ion battery

connected to an ESS with a power conversion system (PCS)

was used to simulate the proposed method. A total of 500 kWh
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is used on the industrial side, and 20 kWh is used on the

commercial side. The batteries were considered to operate at

an operate 1.0C-rate in the experiment. The charge/discharge

amount was defined as that operating within the maximum

rate of the ESS. The battery is assumed to operate between the

lower SOC bound (0%) and upper bound (100%) of the rated

capacity, and the efficiency of the ESS charging, and

discharging is assumed to be 95%. Table 4 summarizes the

ESS specifications for the target customers, and this

information is provided to the DR aggregator.

Simulation results

Multiple DQL agents have been developed to make decisions

for both the DR aggregator and customers. Figure 6 shows the

FIGURE 3
Monthly average industrial demand profile.

FIGURE 4
Monthly average commercial demand profile.
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hyperparameters and structure of agents used to model RL

agents. In the simulation, we used the same parameters for

each agent; however, the parameters could be tuned for better

results. Each agent was trained for 500 iterations. For ε-greedy,
the agents used the linear annealing method with ε-decay value,
3e-3, and minimum ε is set as 1e-2.

FIGURE 5
Monthly average market price profile.

TABLE 1 Training algorithm.

TABLE 2 Electricity rate plan

Demand Charge (KRW/kW) Energy Charge (KRW/kWh)

7,380 (7,170) Period Summer Spring/Fall Winter

Off-peak 56.2 (57.7) 56.2 (57.7) 63.2 (66.4)

Mid-peak 108.5 (108.9) 78.5 (65.1) 108.5 (96.8)

On-Peak 189.7 (131.4) 108.8 (76.4) 164.7 (111.6)
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Furthermore, we compare the proposed method with the

conventional DR strategy (Kang et al., 2018; Lee et al., 2018). The

conventional DR strategy designed to maintain its self-

consumption at a minimum so that the ESS can participate in

the DR program as much as possible on the demand side. For

aggregator side, we utilized conventional ZI (zero intelligence)

strategy (Friedman, 2018). ZI strategy set its incentive price as a

random value from its valuation, based on a uniform distribution

from a specified range. ZI is a fundamental and popular strategy

adopted in market environment. By combining these two

TABLE 4 Summary of ESS specification

ESS Specification Industrial Commercial

Rated Battery Capacity 500 kWh 20 kWh

PCS Output Power 500 kW 20 kW

Upper bound of SOC 100% 100%

Lower bound of SOC 0% 0%

Charging Efficiency 95% 95%

Discharging efficiency 95% 95%

FIGURE 6
DQL agent structure and hyperparameters.

TABLE 3 Electricity rate schedule

Summer (June—August) Spring
(March—May)/Fall (September—October)

Winter (November—February)

Off-peak 23:00–09:00 23:00–09:00 23:00–09:00

Mid-peak 09:00–10:00 09:00–10:00 09:00–10:00

12:00–13:00 12:00–13:00 12:00–17:00

17:00–23:00 17:00–23:00 20:00–22:00

On-peak 10:00–12:00 10:00–12:00 10:00–12:00

13:00–17:00 13:00–17:00 17:00–20:00

22:00–23:00
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strategies, conventional algorithm can response to both DR

aggregator and customers. Thus, this conventional algorithm

can be used as a baseline model to demonstrate the superiority of

the RL algorithm.

Figure 7 shows the expected returns for each episode. The

shaded area represents the reward per episode, and the solid line

represents the 5-rolling average. Total rewards per episode

represent the sum of all agents, while others represent the

cumulative rewards of individual agents. Base in parentheses

indicates the baseline model. In the figure, the reward received by

the DQL agent gradually increased according to the episode, and

the accumulated reward after 300 episodes stably converged. The

figure shows that the proposed method has a higher expected

return than the baseline. This implicates that agent can properly

learn about the DR aggregator and customer decisions.

Figures 8, 9 show the results of the actions of trained agents.

The customer demand and electricity prices were normalized to

show the graph in similar scale. In these figures, the incentive

price is determined by the DR aggregator agent. Figure 10 shows

the probability distribution of the prices. In this figure, Incentive

prices, unlike market prices, have a skewed distribution pattern

to the right. This is because the incentive price is determined

based on the DR aggregator action space, and the incentive price

is distributed with a minimum value of 0.3 × market price and a

maximum value of 0.8 × market price. Incentive distribution is

more distributed at lower price points. This is because the agent’s

FIGURE 7
Performance of RL agents.

FIGURE 8
Industrial Customer operation profile.
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action tends to set incentives low for their own benefit. The ESS

operation can be determined by the customer agent provided by

the DR aggregator. In the reward function rcu, the agent

considers the TOU and electricity market prices. Therefore,

the agent seeks to charge at a lower TOU price and market

price, and discharge at a higher TOU price and market price. The

figures show the operating patterns of the ESS. During off-peak

times, the customer’s agent repeatedly charges and discharges the

ESS to obtain profits through incentives. However, when the

TOU and incentive prices are high, it refrains from charging and

tries discharging. Consequently, customer agents make decisions

that reduce energy bills and maximize DR benefits.

Furthermore, we analyzed the effect of the economic benefits

and action results that can be achieved when participating in the DR

program. Table 5 shows the overall DR benefits. A total profit of

aggregator was obtained 61,550,864 KRW through the DR program

during the simulation period. Industrial customers earned

46,083,785 KRW of DR profit and saved 17,459,190 KRW in

electricity bills. In the case of commercial customers,

2,412,555 KRW of DR profit was obtained, and 1,342,46 KRW

of the electricity bill was saved. Base in parentheses indicates the

baseline model. The proposed method outperforms baseline in

terms of economic evaluation overall.

Figure 11 shows the distribution of DR benefits for each

agent. The benefits of the DR aggregator account for the largest

portion, followed by that of industrial customers. Commercial

customers are the least profitable, as they have less capacity to

participate in DR programs. Aggregators seem to generate

tremendous profits because they want to offer as few

incentives as possible to increase profits. Notably, the energy

bill savings of customers are relatively small, and the DR benefits

are large. As the main purpose of the agent is to maximize profits

FIGURE 9
Commercial customer operation profile.

FIGURE 10
Probability distribution of the prices.
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through DR participation, the agent is viewed as making an

appropriate decision.

Overall, the simulation results show that the proposed method

makes optimal decisions for the DR programs. Hence, the proposed

method can be utilized to operate DR programs from the perspective

of DR aggregators. Even if the aggregator supports the customer’s

decision-making as in this paper, sufficient profits can be obtained.

This is expected tomotivate customers to engage with the aggregator

and attract more customers.

Conclusions

This study presents a method for developing a DR strategy

from the perspective of a DR aggregator. Customers use the DR

programmodel, which sends its demand reduction capabilities to

a DR aggregator that bids aggregate demand reduction to the

electricity market. DR aggregators not only determine the

optimal rate of incentives to provide to customers but can

also induce the customers to make an optimal ESS operation

to reduce their demands. This study formalized the problem as an

MDP and used the RL framework. In the RL framework, the DR

aggregator and each customer are allocated to each agent, and the

agents interact with the environment and are trained to make the

optimal decision.

The simulation results show that A total profit of aggregator

was obtained 61,550,864 KRW through the DR program during

the simulation period. Industrial customers earned

46,083,785 KRW of DR profit and saved 17,459,190 KRW in

electricity bills. In the case of commercial customers,

2,412,555 KRW of DR profit was obtained, and

1,342,46 KRW of the electricity bill was saved. In addition,

the distribution of DR profit is 48.6% for the DR aggregator

and 51.4% for customers, showing a suitable profit-sharing

structure. Overall, the simulation results show that the

proposed method makes optimal decisions for the DR

programs. Therefore, the proposed method can be utilized to

operate DR programs from the perspective of DR aggregators.

In the future, we will develop a demand and market price

forecasting model. Current state information includes customer

demand and market prices. In a real system, the market price and

customer demand are unknown values at the time the agentmakes a

TABLE 5 Overall DR benefits (in KRW).

Category Aggregator Industrial Commercial

Cost saving with ESS - 17,459,190 242,168

12,614,150 (Base) 217,462 (Base)

Incentive Benefits - 46,083,785 1,342,460

48,815,652 (Base) 745,256 (Base)

Aggregator Benefits 61,550,864 60,548,883 2,412,555

46,061,748 (Base) 45,059,767 (Base) 1,001,981 (Base)

Daily net cost saving - 54,053 749

39,053 (Base) 673 (Base)

Daily net incentive benefits - 142,674 4,156

151,132 (Base) 2,307 (Base)

Daily net Aggregator benefits 194,926 187,457 7,469

142,605 (Base) 139,503 (Base) 3,102 (Base)

FIGURE 11
The distribution of the DR benefits for each agent.
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decision. To address this uncertainty, an accurate forecasting model

should be developed in future studies. Furthermore, we plan to

develop a bidding strategy for the DR programs. In this study, the

probability of winning a bid was assumed to be 100%, which does

not equal the actual winning rate. Therefore, there is a need for

developing a detailed bidding strategy for DR.
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