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Abstract
In this paper, we consider p-Laplacian multipoint boundary value problems on time
scales. By using a generalization of the Leggett-Williams fixed point theorem due to
Bai and Ge, we prove that a boundary value problem has at least three positive
solutions. Moreover, we study existence of positive solutions of a multipoint boundary
value problem for an increasing homeomorphism and homomorphism on time
scales. By using fixed point index theory, sufficient conditions for the existence of at
least two positive solutions are provided. Examples are given to illustrate the results.
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1 Introduction
The theory of dynamic equation on time scales (ormeasure chains) was initiated by Stefan
Hilger in his PhD thesis in  [] (supervised by Bernd Aulbach) as a means of unify-
ing structure for the study of differential equations in the continuous case and study of
finite difference equations in the discrete case. In recent years, it has gained a consider-
able amount of interest and attracted the attention of many researchers, see, for example,
[–]. It is still a new area, and the research in this area is rapidly growing. The study of
time scales has led to several important applications, e.g., in the study of insect population
models, heat transfer, neural networks, phytoremediation of metals, wound healing, and
epidemic models.
p-Laplacian equations for boundary value problems (BVPs) with nonlinearity depend-

ing on the first order derivative have been studied extensively, see [–] and references
therein. However, there are few papers concerning p-Laplacian equations with nonlinear-
ity depending on the first order derivative for BVPs on time scales, see [, ].
In this paper, we study the following three boundary value problems on time scales.
() We are interested in the existence of at least three positive solutions to the following

p-Laplacian multipoint BVP on time scales

(
φp

(
u�(t)

))� + q(t)f
(
t,u(t),u�(t)

)
= , t ∈ (,T)T, (.)

u() =
n–∑
i=

αiu(ξi), φp
(
u�(T)

)
=

n–∑
i=

βiφp
(
u�(ξi)

)
, (.)
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where φp(u) is a p-Laplacian operator, i.e., φp(u) = |u|p–u, for p > , with (φp)– = φq and

p +


q = . The usual notation and terminology for time scales as can be found in [, ],

will be used here. The interesting point is that the nonlinear term f is involved with the
first order derivative explicitly and the main tool is a fixed point theorem due to Bai and
Ge. The results are even new for the special cases of difference equations and differential
equations, as well as in the general time scale setting.
The present work ismotivated by the recent papers [, ]. In [], Yang andXiao studied

the existence of multiple positive solutions for φ-Laplacian multipoint BVPs

(
φ
(
x′(t)

))′ + q(t)f
(
t,x(t),x′(t)

)
= , t ∈ (, ),

x() =
n–∑
i=

αix(ξi), φ
(
x′()

)
=

n–∑
i=

βiφ
(
x′(ξi)

)
,

where φ(·) is an odd and increasing homeomorphism, ξi ∈ (, ) with  < ξ < ξ < · · · <
ξn– < , αi and βi are nonnegative constants and f (t,x(t),x′(t)) is continuous and allowed
to change sign.
() We consider the existence of at least three positive solutions to the following

p-Laplacian multipoint boundary value problem (BVP) on time scales

(
φp

(
u�(t)

))∇ + a(t)f
(
t,u(t),u�(t)

)
= , t ∈ (,T)T, (.)

φp
(
u�()

)
=

m–∑
i=

aiφp
(
u�(ξi)

)
, u(T) =

m–∑
i=

biu(ξi), (.)

where φp(u) is p-Laplacian operator, i.e., φp(u) = |u|p–u, for p > , with (φp)– = φq and
/p + /q = .
Recently, much attention has been focused on the study of multipoint positive solutions

of BVPs on time scales. When the nonlinear term f does not depend on the first order
derivative, many researchers study multipoint boundary conditions on time scales, see
[, , –]. However, little work has been done on the existence of positive solutions
for multipoint BVP on time scales when the nonlinear term is involved in the first order
derivative explicitly, see [].
In recent papers, the authors in [, ] have investigated the existence of positive solu-

tions of the following BVP on time scales:

(
φ
(
u�(t)

))∇ + a(t)f
(
t,u(t)

)
= , t ∈ [,T],

φ
(
u�()

)
=

m–∑
i=

aiφ
(
u�(ξi)

)
, u(T) =

m–∑
i=

biu(ξi),

where φ : R → R is an increasing homeomorphism and a homomorphism and φ() = 
and

(
φ
(
u�(t)

))∇ + a(t)f
(
t,u(t)

)
= , t ∈ (,T),

u() =
m–∑
i=

aiu(ξi), φ
(
u�(T)

)
=

m–∑
i=

biφ
(
u�(ξi)

)
,
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where φ : R → R is an increasing homeomorphism and a positive homomorphism and
φ() = .
All the above-mentioned works about positive solutions were done under the assump-

tion that f is allowed to depend just on u, while the first order derivative u� is not involved
explicitly in the nonlinear term f .
Motivated by all the works above, our main results will depend on an application of a

generalization of the Leggett-Williams fixed point theorem due to Bai and Ge. Here, the
emphasis is that the nonlinear term is involved explicitly with the first order derivative.
We shall prove that the BVP (.) and (.) has at least three positive solutions.
()Wewill be concernedwith proving the existence of positive solutions to the boundary

value problem on time scale T given by

(
φ
(
u�(t)

))∇ + q(t)f
(
t,u(t)

)
= , t ∈ (,T)T, (.)

φ
(
u�()

)
= , u(T) =

m–∑
i=

aiu(ξi), (.)

where φ : R → R is an increasing homeomorphism and a homomorphism and φ() = .
A projection φ : R → R is called an increasing homeomorphism and a homomorphism

if the following conditions are satisfied:
(i) if x ≤ y, then φ(x)≤ φ(y), ∀x, y ∈ R;
(ii) φ is a continuous bijection and its inverse mapping is also continuous;
(iii) φ(xy) = φ(x)φ(y), ∀x, y ∈ R.
In recent years, much attention has been paid to the existence of positive solutions

for nonlinear boundary value problems on time scales, see [–, –] and the ref-
erence therein. On the other hand, multipoint nonlinear boundary value problems with
p-Laplacian operators on time scales have also been studied extensively in the literature
[, –]. However, to the best of our knowledge, there are few works on the increasing
homeomorphism and homomorphism on time scales [].
Su et al. [] considered the following m-point singular p-Laplacian boundary value

problem on time scales of the form

[
ϕp

(
u�(t)

)]∇ + q(t)f
(
t,u(t)

)
= , t ∈ (,T)T,

u() =
m–∑
i=

αiu(ξi), u�(T) –
m–∑
i=

ψi
(
u(ξi)

)
= ,

where ϕp(u) = |u|p–u, for p > . ψi :R → R is continuous and nondecreasing  < ξ < ξ <
· · · < ξm– < ρ(T). By using the well-known Schauder fixed point theorem and upper and
lower solution method, they obtained some new existence criteria for positive solutions
of the boundary value problem.
In [], Liang and Zhang studied the existence of positive solutions of boundary value

problems on time scales:

[
ϕ
(
u�(t)

)]∇ + a(t)f
(
u(t)

)
= , t ∈ [,T]T,

u() =
m–∑
i=

αiu(ξi), u�(T) = ,
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where ϕ : R → R is an increasing homeomorphism and a positive homomorphism and
ϕ() = . They obtained the countablymany positive solutions by using a fixed point index
theory and fixed point theorem.
This work is motivated by recent papers [, ]. Existence of at least two positive solu-

tions to BVP (.) and (.) are established by means of fixed point index theory. We also
point out that when T = R, p = , (.) and (.) becomes a boundary value problem of dif-
ferential equations and is just the problem considered in []. Our main results improve
and extend the main results of [, ].

2 Preliminaries
In this section, we provide some backgroundmaterials from the theory of cones in Banach
spaces. The following definitions can be found in the book by Deimling [], as well as in
the book by Guo and Lakshmikantham [].

Definition . Let E be a real Banach space. A nonempty, closed, convex set P ⊂ E is a
cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥  imply that λx ∈ P;
(ii) x ∈ P, –x ∈ P imply that x = .

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y – x ∈ P.

Definition . A map ψ is said to be a nonnegative continuous concave functional on a
cone P of a real Banach space E if ψ : P → [,∞) is continuous and

ψ
(
tx + ( – t)y

) ≥ tψ(x) + ( – t)ψ(y)

for all x, y ∈ P and t ∈ [, ].
Similarly, we say the map α is a nonnegative continuous convex functional on a cone P

of a real Banach space E if α : P → [,∞) is continuous and

α
(
tx + ( – t)y

) ≤ tα(x) + ( – t)α(y)

for all x, y ∈ P and t ∈ [, ].
Letψ be a nonnegative continuous concave functional on P, and α and β be nonnegative

continuous convex functionals on P.
For nonnegative real numbers r, a and l, we define the following convex sets

P = (α, r;β , l) =
{
u ∈ P : α(u) < r,β(u) < l

}
,

P̄ = (α, r;β , l) =
{
u ∈ P : α(u) ≤ r,β(u)≤ l

}
,

P = (α, r;β , l;ψ ,a) =
{
u ∈ P : α(u) < r,β(u) < l,ψ(u) > a

}
,

P̄ = (α, r;β , l;ψ ,a) =
{
u ∈ P : α(u)≤ r,β(u) ≤ l,ψ(u)≥ a

}
.

To prove our main results, we need the following fixed point theorem, which comes
from Bai and Ge in [].

Lemma. [] Let P be a cone in a real Banach space E.Assume that constants r, b, d, r,
l and l satisfy  < r < b < d ≤ r and  < l ≤ l. If there exist two nonnegative continuous
convex functionals α and β on P and a nonnegative continuous concave functional ψ on P
such that

http://www.advancesindifferenceequations.com/content/2013/1/238
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(A) there existsM >  such that ‖u‖ ≤ Mmax{α(u),β(u)} for all u ∈ P;
(A) P(α, r;β , l) �= ∅ for any r >  and l > ;
(A) ψ(u)≤ α(u) for all u ∈ P̄(α, r;β , l);

and if F : P̄(α, r;β , l) → (α, r;β , l) is completely continuous operator, which satisfies
(B) {u ∈ P̄(α,d;β , l;ψ ,b) :ψ(u) > b} �= ∅, ψ(Fu) > b for u ∈ P̄(α,d;β , l;ψ ,b);
(B) α(Fu) < r, β(Fu) < l for u ∈ P̄(α, r;β , l);
(B) ψ(Fu) > b for u ∈ P̄(α, r;β , l;ψ ,b) with α(Fu) > d.

Then F has at least three different fixed points u, u and u in P̄(α, r;β , l) with

u ∈ P(α, r;β , l), u ∈ {
P̄(α, r;β , l;ψ ,b) :ψ(u) > b

}
;

and

u ∈ P̄(α, r;β , l) \
(
P̄(α, r;β , l;ψ ,b)∪ P̄(α, r;β , l)

)
.

Let the Banach space

E = C
ld
(
[,T]T

)
=

{
u | [,T]T →R | u is �-differentiable on [,T]T,

and u� is ld-continuous on [,T]T
}

be endowed with the norm

‖u‖ =max
{

sup
t∈[,T]T

∣∣u(t)∣∣, sup
t∈[,T]T

∣∣u�(t)
∣∣}.

Define

P =
{
u ∈ E | u(t) ≥ ,u�(t)≥ , and u(t) is concave on [,T]T

}
.

Clearly, P is a cone.

3 Existence of triple positive solutions to (1.1) and (1.2)
Throughout the section, we suppose that the following conditions are satisfied.
(H) ,T ∈ T,  < ξ < ξ < · · · < ξn– < ρ(T), ξi ∈ T, αi,βi ∈ [,∞) satisfy

 ≤ ∑n–
i= αi <  and  ≤ ∑n–

i= βi < ;
(H) η =min{t ∈ T : T ≤ t < T} exists;
(H) q(t) ∈ Cld([,T]T, [,∞)) with  <

∫ T
η
q(t)�t < ∞;

(H) f : (,T)T × [,∞)×R → [,∞) is continuous;
(H) q(t)f (t, , ) �≡ , f (t, , )≥  on [,T]T.

Lemma . If
∑n–

i= αi �=  and
∑n–

i= βi �= , then for h ∈ Cld[,T]T,

(
φp

(
u�(t)

))� + h(t) = , t ∈ (,T)T, (.)

u() =
n–∑
i=

αiu(ξi), φp
(
u�(T)

)
=

n–∑
i=

βiφp
(
u�(ξi)

)
(.)
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has the unique solution

u(t) =
∫ t


φq

(
A +

∫ T

s
h(τ )�τ

)
�s + B, (.)

where

A =
∑n–

i= βi
∫ T
ξi
h(τ )�τ

 –
∑n–

i= βi
, B =

∑n–
i= αi

 –
∑n–

i= αi

∫ ξi


φq

(
A +

∫ T

s
h(τ )�τ

)
�s.

Lemma . The solution of BVP (.) and (.) satisfies u ≥ , for t ∈ [,T]T.

Lemma . Suppose (H) holds, if h ∈ Cld[,T] and h ≥ , then the unique solution u of
(.) and (.) satisfies

inf
t∈[,T]T

u(t) ≥ γ ‖u‖,

where

γ =
∑n–

i= αiξi

T –
∑n–

i= αi(T – ξi)
.

Proof Let

ϕ(s) = φq

(∑n–
i= βi

∫ T
ξi
h(τ )�τ

 –
∑n–

i= βi
+

∫ T

s
h(τ )�τ

)
.

Clearly u�(t) = ϕ(t) ≥ . This implies that

min
t∈[,T]

u(t) = u(), ‖u‖ = u(T).

It is easy to see that u�(t) ≤ u�(t) for any t, t ∈ [,T] with t ≤ t. Hence u�(t) is a
decreasing function on [,T]. This means that the graph of u(t) is concave down on (,T).
For each i ∈ {, , . . . ,n – }, we have

u(T) – u()
T – 

≥ u(T) – u(ξi)
T – ξi

,

i.e.,

Tu(ξi) – ξiu(T) ≥ (T – ξi)u(),

so that

T
n–∑
i=

αiu(ξi) –
n–∑
i=

αiξiu(T) ≥
n–∑
i=

αi(T – ξi)u().
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With the boundary condition u() =
∑n–

i= αiu(ξi), we have

u() ≥
∑n–

i= αiξi

T –
∑n–

i= αi(T – ξi)
u(T).

This completes the proof. �

Define the operator F : P → E by

(Fu)(t) =
∫ t


φq

(∑n–
i= βi

∫ T
ξi
q(τ )f (τ ,u,u�)�τ

 –
∑n–

i= βi
+

∫ T

s
q(τ )f

(
τ ,u,u�

)
�τ

)
�s

+
∑n–

i= αi

 –
∑n–

i= αi

∫ ξi


φq

(∑n–
i= βi

∫ T
ξi
q(τ )f (τ ,u,u�)�τ

 –
∑n–

i= βi

+
∫ T

s
q(τ )f

(
τ ,u,u�

)
�τ

)
�s

for t ∈ [,T]T. By the definition of F , the monotonicity of φq(u) and the assumptions (H)-
(H), it is easy to see that for each u ∈ P, Fu ∈ P and Fu(T) is the maximum value of Fu(t).
Moreover, by direct calculation, we get that each fixed point of the operator F in P is a
positive solution of the BVP (.) and (.). It is easy to see that F : P → P is completely
continuous.
For u ∈ P, we define

α(u) = max
t∈[,T]T

∣∣u(t)∣∣ = u(T), β(u) = sup
t∈[,T]T

∣∣u�(t)
∣∣ = u�(),

ψ(u) = min
t∈[η,T]T

u(t) = u(η).

It is easy to see that α,β : P → [,∞) are nonnegative continuous convex functionals with
‖u‖ =max{α(u),β(u)};ψ : P → [,∞) is nonnegative concave functional.We haveψ(u) ≤
α(u) for u ∈ P and the assumptions (A), (A) and (A) in Lemma . hold.
For notational convenience, we denote λ, L and Q by

λ =
∫ η


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T

η

q(τ )�τ

)
�s,

L =
∫ T


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T

s
q(τ )�τ

)
�s

+
∑n–

i= αi

 –
∑n–

i= αi

∫ ξi


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T

s
q(τ )�τ

)
�s,

Q = φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T


q(τ )�τ

)
.

Theorem . Assume that (H)-(H) hold, and there exists  < r < b < b ≤ r,  < l ≤ l
such that b

λ
≤ min{r/L, l/Q}. If f satisfies the following conditions:

(D) f (t,w, v) ≤ min{φp(r/L),φp(l/Q)} for (t,w, v) ∈ [,T]T × [, r]× [–l, l];
(D) f (t,w, v) > φp(b/λ) for (t,w, v) ∈ [η,T]T × [b, b]× [–l, l];

http://www.advancesindifferenceequations.com/content/2013/1/238
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(D) f (t,w, v) <min{φp(r/L),φp(l/Q)} for (t,w, v) ∈ [,T]T × [, r]× [–l, l];
then the BVP (.) and (.) has at least three positive solutions u, u and u, which satisfy

max
t∈[,T]T

{
u(t)

}
< r, sup

t∈[,T]T

∣∣u�
 (t)

∣∣ < l;

b < min
t∈[η,T]T

{
u(t)

} ≤ max
t∈[,T]T

{
u(t)

} ≤ r, sup
t∈[,T]T

∣∣u�
 (t)

∣∣ ≤ l;

min
t∈[η,T]T

{
u(t)

}
< b, r < max

t∈[,T]T

{
u(t)

}
< b, l < sup

t∈[,T]T

∣∣u�
 (t)

∣∣ ≤ l.

Proof In order to show that Lemma . holds, it is sufficient to show that the conditions
in Lemma . are satisfied with respect to operator F .
We first prove that if the assumption (D) is satisfied, then F : P̄(α, r;β , l) → P̄(α, r;

β , l). If u ∈ P̄(α, r;β , l), then

α(u) = max
t∈[,T]T

∣∣u(t)∣∣ ≤ r, β(u) = sup
t∈[,T]T

∣∣u�(t)
∣∣ ≤ l

and assumption (D) implies that

f
(
t,u(t),u�(t)

) ≤min
{
φp(r/L),φp(l/Q)

}
, t ∈ [,T]T.

For u ∈ P, there is Fu ∈ P, therefore,

α(Fu) = max
t∈[,T]T

∣∣(Fu)(t)∣∣

=
∫ T


φq

(∑n–
i= βi

∫ T
ξi
q(τ )f (τ ,u,u�)�τ

 –
∑n–

i= βi
+

∫ T

s
q(τ )f

(
τ ,u,u�

)
�τ

)
�s

+
∑n–

i= αi

 –
∑n–

i= αi

∫ ξi


φq

(∑n–
i= βi

∫ T
ξi
q(τ )f (τ ,u,u�)�τ

 –
∑n–

i= βi

+
∫ T

s
q(τ )f

(
τ ,u,u�

)
�τ

)
�s

≤ r
L

[∫ T


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T

s
q(τ )�τ

)
�s

+
∑n–

i= αi

 –
∑n–

i= αi

∫ ξi


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T

s
q(τ )�τ

)
�s

]
= r

and

β(Fu) = sup
t∈[,T]T

∣∣(Fu)�(t)∣∣

= φq

(∑n–
i= βi

∫ T
ξi
q(τ )f (τ ,u,u�)�τ

 –
∑n–

i= βi
+

∫ T


q(τ )f

(
τ ,u,u�

)
�τ

)

≤ l
Q

φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T


q(τ )�τ

)
= l.

Therefore, F : P̄(α, r;β , l) → P̄(α, r;β , l).

http://www.advancesindifferenceequations.com/content/2013/1/238
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Similarly, if u ∈ P̄(α, r;β , l), then the assumption (D) implies that

f
(
t,u(t),u�(t)

)
<min

{
φp(r/L),φp(l/Q)

}
for t ∈ [,T]T.

We can get that F : P̄(α, r;β , l) → P(α, r;β , l).
So condition (B) of Lemma . is satisfied.
To prove condition (B) of Lemma . holds. We choose u(t) = b for t ∈ [,T]T. It is

obvious that

u(t) = b ∈ P̄(α, b;β , l;ψ ,b) and ψ(u) = b > b

and, consequently,

{
u ∈ P̄(α, b;β , l;ψ ,b) :ψ(u) > b

} �= ∅.

So, for u ∈ P̄(α, b;β , l;ψ ,b), there are b≤ u(t) ≤ b and |u�(t)| ≤ l for t ∈ [η,T]T.
Thus, from the assumption (D), we have

f
(
t,u(t),u�(t)

)
> φp(b/λ) for t ∈ [η,T]T.

From the definition of the functional ψ , we see that

ψ(Fu) = min
t∈[η,T]T

Fu(t) = Fu(η)

=
∫ η


φq

(∑n–
i= βi

∫ T
ξi
q(τ )f (τ ,u,u�)�τ

 –
∑n–

i= βi
+

∫ T

s
q(τ )f

(
τ ,u,u�

)
�τ

)
�s

+
∑n–

i= αi

 –
∑n–

i= αi

∫ ξi


φq

(∑n–
i= βi

∫ T
ξi
q(τ )f (τ ,u,u�)�τ

 –
∑n–

i= βi

+
∫ T

s
q(τ )f

(
τ ,u,u�

)
�τ

)
�s

≥
∫ η


φq

(∑n–
i= βi

∫ T
ξi
q(τ )f (τ ,u,u�)�τ

 –
∑n–

i= βi
+

∫ T

η

q(τ )f
(
τ ,u,u�

)
�τ

)
�s

>
∫ η


φq

(∑n–
i= βi

∫ T
ξi
q(τ )φp(b/λ)�τ

 –
∑n–

i= βi
+

∫ T

η

q(τ )φp(b/λ)�τ

)
�s

=
b
λ

∫ η


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T

η

q(τ )�τ

)
�s = b.

So, we get ψ(Fu) > b for u ∈ P̄(α, b;β , l;ψ ,b), and condition (B) of Lemma . holds.
Finally, we prove that condition (B) of Lemma . holds.
If u ∈ P̄(α, r;β , l;ψ ,b) and α(Fu) > b, we have

ψ(Fu) = min
t∈[η,T]T

Fu(t) = Fu(η)≥ η

T
max

t∈[,T]T
Fu(t)≥ 


α(Fu) > b.

http://www.advancesindifferenceequations.com/content/2013/1/238
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Hence, condition (B) of Lemma. is satisfied. Thenusing Lemma. and the assumption
that f (t, , ) �≡  on [,T]T, we find that there exist at least three positive solutions of (.)
and (.) such that

u ∈ P(α, r;β , l), u ∈ {
P(α, r;β , l;ψ ,b) | ψ(u) > b

}
and

u ∈ P̄(α, r;β , l) \
(
P̄(α, r;β , l;ψ ,b)∪ P̄(α, r;β , l)

)
.

Otherwise, as u satisfies α(u) ≤ ψ(u), we have maxt∈[,T]T u(t) < b. �

Example . Let T = { – (  )
N} ∪ [, ], N denotes the set of all nonnegative integers.

Take α = 
 , α = 

 , β = 
 , β = 

 , ξ =

 , ξ =


 , T = , p = q =  and q(t) ≡ , t ∈ [,T]T.

Consider the following BVP

(
u�(t)

)� + f
(
t,u(t),u�(t)

)
= , t ∈ [, ]T, (.)

u() =


u
(



)
+


u
(



)
, u�() =




(
u�

(



))
+



(
u�

(



))
, (.)

where

f (t,w, v) =

⎧⎨
⎩

t
, +

w

 + ( v
 )

, w ≤ ,
t

, +  + ( v
 )

, w > .

Clearly, the assumptions (H)-(H) hold, and f (t, , ) �≡  on [, ]T.
We choose r = /, r = , b =  and l = /, l = . So  < r < b < b < r and

 < l < l. By calculating, we obtain

λ =
∫ η


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T

η

q(τ )�τ

)
�s =




,

Q = φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T


q(τ )�τ

)
=



and

L =
∫ T


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T

s
q(τ )�τ

)
�s

+
∑n–

i= αi

 –
∑n–

i= αi

∫ ξi


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T

s
q(τ )�τ

)
�s < L̃

=
∫ T


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T


q(τ )�τ

)
�s

+
∑n–

i= αi

 –
∑n–

i= αi

∫ ξi


φq

(∑n–
i= βi

∫ T
ξi
q(τ )�τ

 –
∑n–

i= βi
+

∫ T


q(τ )�τ

)
�s =




.
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As a result, f (t,w, v) satisfies

f (t,w, v)≤ min

{
φp

(
r
L̃

)
,φp

(
l
Q

)}
≈ . <min

{
φp

(
r
L

)
,φp

(
l
Q

)}

for  ≤ t ≤ , ≤ w≤ , |v| ≤ ;

f (t,w, v) > φp

(
b
λ

)
≈ . for  ≤ t ≤ , ≤ w ≤ , |v| ≤ ;

f (t,w, v) <min

{
φp

(
r
L̃

)
,φp

(
l
Q

)}
≈ . <min

{
φp

(
r
L

)
,φp

(
l
Q

)}

for  ≤ t ≤ , ≤ w≤ 

, |v| ≤ 


.

Hence, by Theorem ., we have that the BVP (.) and (.) has at least three positive
solutions u, u and u such that

max
t∈[,]T

{
u(t)

}
<


, sup

t∈[,T]T

∣∣u�
 (t)

∣∣ < 

;

 < min
t∈[,]T

{
u(t)

} ≤ max
t∈[,]T

{
u(t)

} ≤ , sup
t∈[,]T

∣∣u�
 (t)

∣∣ ≤ ;

min
t∈[,]T

{
u(t)

}
< ,



< max

t∈[,]T

{
u(t)

}
< ,



< sup

t∈[,]T

∣∣u�
 (t)

∣∣ ≤ .

4 Existence of triple positive solutions to (1.3) and (1.4)
The following conditions will be used in this section:
(H) ,T ∈ T,  < ξ < ξ < · · · < ξm– < ρ(T), ξi ∈ T, ai,bi ∈ [,∞) satisfy

 ≤ ∑m–
i= ai <  and  ≤ ∑m–

i= bi < ;
(H) η =min{t ∈ T : T/ ≤ t < T} exists;
(H) a(t) ∈ Cld([,T]T, [,∞)) with  <

∫ T
η
a(t)∇t < ∞;

(H) f : (,T)T × [,∞)×R → [,∞) is continuous;
(H) a(t)f (t, , ) �≡ , f (t, , ) ≥  on [,T]T.
Let the Banach space

E = C
ld
(
[,T]T

)
=

{
u | [,T]T →R | u is �-differentiable on [,T]T,

and u� is ld-continuous on [,T]T
}

be endowed with the norm

‖u‖ =max
{

sup
t∈[,T]T

∣∣u(t)∣∣, sup
t∈[,T]T

∣∣u�(t)
∣∣}.

Define

K =
{
u ∈ E | u(t) ≥ ,u�(t) ≤ , and u(t) is concave on [,T]T

}
.

Clearly, K is a cone.

http://www.advancesindifferenceequations.com/content/2013/1/238
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We note that u(t) is a solution of (.) and (.) if and only if

u(t) =
∫ T

t
φq

(∑m–
i= ai

∫ ξi
 a(r)f (r,u,u�)∇r

 –
∑m–

i= ai
+

∫ s


a(r)f

(
r,u,u�

)∇r
)

�s

+
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

φq

(∑m–
i= ai

∫ ξi
 a(r)f (r,u,u�)∇r

 –
∑m–

i= ai

+
∫ s


a(r)f

(
r,u,u�

)∇r
)

�s.

Define the operator A : K → E by

(Au)(t) =
∫ T

t
φq

(∑m–
i= ai

∫ ξi
 a(r)f (r,u,u�)∇r

 –
∑m–

i= ai
+

∫ s


a(r)f

(
r,u,u�

)∇r
)

�s

+
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

φq

(∑m–
i= ai

∫ ξi
 a(r)f (r,u,u�)∇r

 –
∑m–

i= ai

+
∫ s


a(r)f

(
r,u,u�

)∇r
)

�s

for  ≤ t ≤ T . By the definition of A, the monotonicity of φq(u) and assumptions (H)-
(H), it is easy to see that for each u ∈ K , Au ∈ K and Au() is the maximum value of
Au(t). Moreover, by direct calculation, we get that each fixed point of the operator A in K
is a positive solution of (.), (.). It is easy to see thatA : K → K is completely continuous.
For u ∈ K , we define

α(u) = max
t∈[,T]T

∣∣u(t)∣∣ = u(), β(u) = sup
t∈[,T]T

∣∣u�(t)
∣∣ = u�(T),

ψ(u) = min
t∈[η,T]T

u(t) = u(T).

It is easy to see that α,β : K → [,∞) are nonnegative continuous convex functionals
with ‖u‖ = max{α(u),β(u)}; ψ : K → [,∞) is nonnegative concave functional. We have
ψ(u) ≤ α(u) for u ∈ K and assumptions (A), (A) and (A) in Lemma . hold.
For notational convenience, we denoteM, N and Q by

M =
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

φq

(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ η


a(r)∇r

)
�s,

N =
∫ T


φq

(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ s


a(r)∇r

)
�s

+
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

φq

(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ s


a(r)∇r

)
�s,

Q = φq

(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ T


a(r)∇r

)
.

Theorem . Assume that (H)-(H) hold, and there exists  < r < b < b≤ r,  < l ≤ l
such that b/M ≤ min{r/N , l/Q}. If f satisfies the following conditions:
(D) f (t,w, v) ≤ min{φp(r/N),φp(l/Q)} for (t,w, v) ∈ [,T]T × [, r]× [–l, l];

http://www.advancesindifferenceequations.com/content/2013/1/238
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(D) f (t,w, v) > φp(b/M) for (t,w, v) ∈ [η,T]T × [b, b]× [–l, l];
(D) f (t,w, v) <min{φp(r/N),φp(l/Q)} for (t,w, v) ∈ [,T]T × [, r]× [–l, l],

then the BVP (.) and (.) has at least three positive solutions u, u and u,which satisfy

max
t∈[,T]T

{
u(t)

}
< r, sup

t∈[,T]T

∣∣u�
 (t)

∣∣ < l;

b < min
t∈[η,T]T

{
u(t)

} ≤ max
t∈[,T]T

{
u(t)

} ≤ r, sup
t∈[,T]T

∣∣u�
 (t)

∣∣ ≤ l;

min
t∈[η,T]T

{
u(t)

}
< b, max

t∈[,T]T

{
u(t)

}
< b, sup

t∈[,T]T

∣∣u�
 (t)

∣∣ ≤ l.

Proof In order to show that Lemma . holds, it is sufficient to show that the conditions
in Lemma . are satisfied with respect to the operator A.
We first prove that if the assumption (D) is satisfied, then A : P̄(α, r;β , l) → P̄(α, r;

β , l). If u ∈ P̄(α, r;β , l), then

α(u) = max
t∈[,T]T

∣∣u(t)∣∣ ≤ r, β(u) = sup
t∈[,T]T

∣∣u�(t)
∣∣ ≤ l

and assumption (D) implies that

f
(
t,u(t),u�(t)

) ≤min
{
φp(r/N),φp(l/Q)

}
, t ∈ [,T]T.

For u ∈ K , there is Au ∈ K , therefore,

α(Au) = max
t∈[,T]T

∣∣(Au)(t)∣∣
=

∫ T


φq

(∑m–
i= ai

∫ ξi
 a(r)f (r,u,u�)∇r

 –
∑m–

i= ai
+

∫ s


a(r)f

(
r,u,u�

)∇r
)

�s

+
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

φq

(∑m–
i= ai

∫ ξi
 a(r)f (r,u,u�)∇r

 –
∑m–

i= ai

+
∫ s


a(r)f

(
r,u,u�

)∇r
)

�s

<
r
N

[∫ T


φq

(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ s


a(r)∇r

)
�s

+
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

φq

(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ s


a(r)∇r

)
�s

]
= r

and

β(Au) = sup
t∈[,T]T

∣∣(Au)�(t)∣∣
= φq

(∫ T


a(r)f

(
r,u,u�

)∇r +
∑m–

i= ai
 –

∑m–
i= ai

∫ ξi


a(r)f

(
r,u,u�

)∇r
)

≤ l
Q

(
φq

(∫ T


a(r)∇r +

∑m–
i= ai

 –
∑m–

i= ai

∫ ξi


a(r)∇r

))
= l.

Therefore, A : P̄(α, r;β , l) → P̄(α, r;β , l).

http://www.advancesindifferenceequations.com/content/2013/1/238
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Similarly if u ∈ P̄(α, r;β , l), then the assumption (D) implies that

f
(
t,u(t),u�(t)

)
<min

{
φp(r/N),φp(l/Q)

}
for t ∈ [,T]T.

We can get that A : P̄(α, r;β , l) → P(α, r;β , l).
So condition (B) of Lemma . is satisfied.
To prove condition (B) of Lemma . holds. We choose u(t) = b for t ∈ [,T]T. It is

obvious that

u(t) = b ∈ P̄(α, b;β , l;ψ ,b) and ψ(u) = b > b,

and, consequently,

{
u ∈ P̄(α, b;β , l;ψ ,b) :ψ(u) > b

} �= ∅.

So, for u ∈ P̄(α, b;β , l;ψ ,b), there are b≤ u(t) ≤ b and |u�(t)| ≤ l for t ∈ [η,T]T.
Thus, from the assumption (D), we have

f
(
t,u(t),u�(t)

)
> φp(b/M) for t ∈ [η,T]T.

From the definition of the functional ψ , we see that

ψ(Au) = min
t∈[η,T]T

Au(t)

=
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

φq

(∑m–
i= ai

∫ ξi
 a(r)f (r,u,u�)∇r

 –
∑m–

i= ai

+
∫ s


a(r)f

(
r,u,u�

)∇r
)

�s

≥
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

φq

(∑m–
i= ai

∫ ξi
 a(r)f (r,u,u�)∇r

 –
∑m–

i= ai

+
∫ η


a(r)f

(
r,u,u�

)∇r
)

�s

>
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

φq

(∑m–
i= ai

∫ ξi
 a(r)φp(b/M)∇r

 –
∑m–

i= ai
+

∫ η


a(r)φp(b/M)∇r

)
�s

=
b
M

( ∑m–
i= bi

 –
∑m–

i= bi

∫ T

ξi

φq

(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ η


a(r)∇r

)
�s

)
= b.

So, we get ψ(Au) > b for u ∈ P̄(α, b;β , l;ψ ,b), and condition (B) of Lemma . holds.
Finally, we prove that condition (B) of Lemma . holds. If u ∈ P̄(α, r;β , l;ψ ,b) and

α(Au) > b, we have

ψ(Au) = min
t∈[η,T]T

Au(t) = Au(T) ≥ max
t∈[,T]T

Au(t) ≥ α(Au) > b > b.

Hence, condition (B) of Lemma. is satisfied. Thenusing Lemma. and the assumption
that f (t, , ) �≡  on [,T]T, we find that there exist at least three positive solutions of (.)

http://www.advancesindifferenceequations.com/content/2013/1/238
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and (.) such that

u ∈ P(α, r;β , l), u ∈ {
P(α, r;β , l;ψ ,b) | ψ(u) > b

}

and

u ∈ P̄(α, r;β , l) \
(
P̄(α, r;β , l;ψ ,b)∪ P̄(α, r;β , l)

)
.

Otherwise, as u satisfies α(u) ≤ ψ(u), we have maxt∈[,T]T u(t) < b. �

Example . Let T = { – (/)N} ∪ [, ], N denotes the set of all nonnegative integers.
Take a = /, a = /, b = /, b = /, ξ = /, ξ = /, T = , p = q =  and a(t) ≡ ,
t ∈ [,T]T. Consider the following BVP

(
u�(t)

)∇ + f
(
t,u(t),u�(t)

)
= , t ∈ [, ]T, (.)

u�() =



(
u�

(



))
+



(
u�

(



))
, u() =



u
(



)
+


u
(



)
, (.)

where

f (t,w, v) =

⎧⎨
⎩

t
, +

w

 + ( v
, )

, w≤ ,
t

, +  + ( v
, )

, w > .

Clearly, the assumptions (H)-(H) hold, and f (t, , ) �≡  on [, ]T.
We choose r = /, r = , b =  and l = /, l = . So  < r < b < b < r and

 < l < l. By calculating, we obtain

M =
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ η


a(r)∇r

)
�s = /,

Q =
∑m–

i= ai
∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ T


a(r)∇r = /

and

N =
∫ T



(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ s


a(r)∇r

)
�s

+
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ s


a(r)∇r

)
�s

< Ñ =
∫ T



(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ T


a(r)∇r

)
�s

+
∑m–

i= bi
 –

∑m–
i= bi

∫ T

ξi

(∑m–
i= ai

∫ ξi
 a(r)∇r

 –
∑m–

i= ai
+

∫ T


a(r)∇r

)
�s

= /.
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As a result, f (t,w, v) satisfies

f (t,w, v)≤ min
{
φp(r/Ñ),φp(l/Q)

}
≈ . <min

{
φp(r/N),φp(l/Q)

}
,

when  ≤ t ≤ , ≤ w ≤ ,– ≤ v ≤ ;

f (t,w, v) > φp(b/M)≈ ., when  ≤ t ≤ ,  ≤ w≤ ,– ≤ v≤ ;

f (t,w, v) <min
{
φp(r/Ñ),φp(l/Q)

}
≈ . <min

{
φp(r/N),φp(l/Q)

}
,

when  ≤ t ≤ , ≤ w ≤ /,–/≤ v ≤ /.

Then all conditions of Theorem . hold. Therefore, the BVP (.) and (.) have at least
three positive solutions u, u and u such that

max
t∈[,]T

{
u(t)

}
< /, sup

t∈[,T]T

∣∣u�
 (t)

∣∣ < /;

 < min
t∈[,]T

{
u(t)

} ≤ max
t∈[,]T

{
u(t)

} ≤ , sup
t∈[,]T

∣∣u�
 (t)

∣∣ ≤ ;

min
t∈[,]T

{
u(t)

}
< , max

t∈[,]T

{
u(t)

}
< , sup

t∈[,]T

∣∣u�
 (t)

∣∣ ≤ .

5 Existence of double positive solutions to (1.5) and (1.6)
Throughout the section, we assume that the following conditions are satisfied:
(H) ,T ∈ T,  < ξ < ξ < · · · < ξm– < ρ(T), ai ∈ [, +∞) satisfy  <

∑m–
i= ai < ;

(H) q(t) ∈ Cld([,T]T, [, +∞)) with  <
∫ ξi
 q(r)∇r < ∞;

(H) f : [,T]T × [, +∞)→ (–∞, +∞) is continuous;
(H) q(t)f (t,u(t)) �≡ , f (t, )≥  on [,T]T.

Lemma . If h ∈ Cld[,T], then

(
φ
(
u�(t)

))∇ + h(t) = , t ∈ (,T)T, (.)

φ
(
u�()

)
= , u(T) =

m–∑
i=

aiu(ξi) (.)

has the unique solution

u(t) = –
∫ t


φ–

(∫ s


h(r)∇r

)
�s

+


 –
∑m–

i= ai

[
–

m–∑
i=

ai
∫ ξi


φ–

(∫ s


h(r)∇r

)
�s

+
∫ T


φ–

(∫ s


h(r)∇r

)
�s

]
. (.)

Lemma . Assume that (H) holds, for h ∈ Cld[,T] and h≥ , then the unique solution
u of (.) and (.) satisfies

u(t) ≥  for t ∈ [,T]T.
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Lemma . Assume that (H) holds, if h ∈ Cld[,T] and h≥ , then the unique solution u
of (.) and (.) satisfies

inf
t∈[,T]

u(t)≥ γ ‖u‖,

where

γ =
∑m–

i= ai(T – ξi)
T –

∑m–
i= aiξi

, ‖u‖ = max
t∈[,T]

∣∣u(t)∣∣.
Let E = Cld([,T],R) be the set of all ld-continuous functions from [,T] to R, and let

the norm on Cld([,T]) be the maximum. Then the Cld([,T],R) is a Banach space. We
define three cones by

P =
{
u : u ∈ E,u(t)≥ ,∀t ∈ [,T]T

}
,

P′ =
{
u : u ∈ E,u(t) is nonnegative, concave and decreasing on [,T]T

}
and

K =
{
u : u ∈ E,u(t) is nonnegative and decreasing on [,T]T, inf

t∈[,T]T
u(t) ≥ γ ‖u‖

}
,

where γ is the same as in Lemma .. It is easy to see that the BVP (.) and (.) has a
solution u = u(t) if and only if u solves the equation

u(t) = –
∫ t


φ–

(∫ s


q(r)f

(
r,u(r)

)∇r
)

�s

+


 –
∑m–

i= ai

[
–

m–∑
i=

ai
∫ ξi


φ–

(∫ s


q(r)f

(
r,u(r)

)∇r
)

�s

+
∫ T


φ–

(∫ s


q(r)f

(
r,u(r)

)∇r
)

�s

]
.

We define the operators A : P → E, T : P′ → E and S : K → E as follows:

(Au)(t) = –
∫ t


φ–

(∫ s


q(r)f

(
r,u(r)

)∇r
)

�s

+


 –
∑m–

i= ai

[
–

m–∑
i=

ai
∫ ξi


φ–

(∫ s


q(r)f

(
r,u(r)

)∇r
)

�s

+
∫ T


φ–

(∫ s


q(r)f

(
r,u(r)

)∇r
)

�s

]
,

(Tu)(t) =

(
–

∫ t


φ–

(∫ s


q(r)f

(
r,u(r)

)∇r
)

�s

+


 –
∑m–

i= ai

[
–

m–∑
i=

ai
∫ ξi


φ–

(∫ s


q(r)f

(
r,u(r)

)∇r
)

�s
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+
∫ T


φ–

(∫ s


q(r)f

(
r,u(r)

)∇r
)

�s

])+

,

(Su)(t) = –
∫ t


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

+


 –
∑m–

i= ai

[
–

m–∑
i=

ai
∫ ξi


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

+
∫ T


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

]
, (.)

where

(C)+ =max{C, }, f +
(
t,u(t)

)
=max

{
f
(
t,u(t)

)
, 

}
, t ∈ [,T]T.

Lemma . S : K → K is completely continuous.

Proof It is obvious that K is a cone in E. By f + ≥ , we get

∫ s


q(r)f +

(
r,u(r)

)∇r ≥ .

Consequently,

φ–
(∫ s


q(r)f +

(
r,u(r)

)∇r
)

≥ .

This together with (.) imply that (Su)(t) ≥  and Su is decreasing on [,T]T. From

(Su)�(t) = –φ–
(∫ t


q(r)f +

(
r,u(r)

)∇r
)

≥ ,

we see that (Su)� is decreasing on [,T]
TK .

(i) If t is a left-scattered point, we have

(Su)�∇ =
(Su)�(ρ(t)) – (Su)�(t)

ρ(t) – t
≤ .

(ii) If t is a left-dense point, we have

(Su)�∇ = lim
s→t

(Su)�(t) – (Su)�(s)
t – s

≤ .

By (i) and (ii), we have (Su)�∇ ≤ , t ∈ [,T]
TK∩TK . Hence, Lemma . implies that S :

K → K .
We now prove that S is completely continuous.
(a) From the continuity of f and q(t) ∈ Cld([,T]T, [, +∞)), we find that S is

continuous.
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(b) Let D be a bounded subset of K , and letM >  be the constant such that ‖u‖ ≤ M
for u ∈D. The continuity of f + guarantees that there is a L >  such that

∫ s


q(r)f +

(
r,u(r)

)∇r ≤
∫ T


q(r)f +

(
r,u(r)

)∇r ≤ φ(L).

Thus,

‖Su‖ = Su()

=


 –
∑m–

i= ai

[
–

m–∑
i=

ai
∫ ξi


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

+
∫ T


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

]

≤
∫ T
 φ–(

∫ s
 q(r)f

+(r,u(r))∇r)�s
 –

∑m–
i= ai

≤
∫ T
 φ–(

∫ T
 q(r)f +(r,u(r))∇r)�s
 –

∑m–
i= ai

≤ LT
 –

∑m–
i= ai

.

(c) Let t, t ∈ [,T]T, and let u ∈D. Then we have

∣∣(Su)(t) – (Su)(t)
∣∣

=
∣∣∣∣–

∫ t


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s +
∫ t


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s
∣∣∣∣

=
∣∣∣∣
∫ t

t
φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s
∣∣∣∣ ≤ L|t – t|.

From (a)-(c) together with the Arzela-Ascoli theorem on time scales, we can find that
S : K → K is completely continuous. This proof is complete. �

The following fixed point index theory will play an important role in the proof our re-
sults.

Lemma . ([, ]) Let E be a Banach space, and let K be a cone in E. For r > , define
Kr = {u ∈ K : ‖u‖ < r}. Assume that S : K̄r → K is a completely continuous operator such
that Tu �= u for u ∈ ∂Kr = {u ∈ K : ‖u‖ = r}.
(a) If ‖Tu‖ ≤ ‖u‖ for all u ∈ ∂Kr , then i(T ,Kr ,K) = .
(b) If ‖Tu‖ ≥ ‖u‖ for all u ∈ ∂Kr , then i(T ,Kr ,K) = .

For notational convenience, we introduce the following notations. Let

R = φ–
(∫ T


q(r)∇r

)(
T –

∑m–
i= aiξi

 –
∑m–

i= ai

)
,

Q =


 –
∑m–

i= ai

[
φ–

(∫ ξi


q(r)∇r

)
T –

m–∑
i=

aiφ–
(∫ ξi


q(r)∇r

)
ξi

]
.
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Theorem . Assume that conditions (H), (H), (H) and (H) are satisfied, there exist
b, c,d >  such that  < d

γ
< c < γ b < b. Assume further that f (t,u) satisfies the following

conditions:
(i) f (t,u) ≥ , t ∈ [,T]T, u ∈ [d,b];
(ii) f (t,u) < φ( cR ), t ∈ [,T]T, u ∈ [, c];
(iii) f (t,u) > φ( bQ ), t ∈ [,T]T, u ∈ [γ b,b].

Then (.) and (.) has at least two positive solutions u and u.

Proof We first verify that T has a fixed point u ∈ K with c > ‖u‖ > . By condition (ii),
we have for all u(t) ∈ ∂Kc,

∫ s


q(r)f

(
r,u(r)

)∇r < φ

(
c
R

)∫ s


q(r)∇r,

so that

φ–
(∫ s


q(r)f

(
r,u(r)

)∇r
)
<
c
R

φ–
(∫ s


q(r)∇r

)
<
c
R

φ–
(∫ T


q(r)∇r

)
.

Therefore,

‖Tu‖ = max
t∈[,T]T

(
–

∫ t


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

+


 –
∑m–

i= ai

[
–

m–∑
i=

ai
∫ ξi


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

+
∫ T


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

])+

=


 –
∑m–

i= ai

[
–

m–∑
i=

ai
∫ ξi


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

+
∫ T


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

]

<
c
R

φ–
(∫ T


q(r)∇r

)(
T –

∑m–
i= aiξi

 –
∑m–

i= ai

)

= c = ‖u‖.

This implies that ‖Tu‖ < ‖u‖ for u(t) ∈ ∂Kc. By Lemma .(a), we have i(T ,Kc,K) = .
So, T has a fixed point u in Kc. By assumptions (H), (H) and (H), we know that u is

also a fixed point of A in Kc. As a result, u is a solution of problem (.), (.).
Next, we verify thatA has another fixed point u such that c < ‖u‖ ≤ b. Using condition

(ii), we have for u(t) ∈ ∂Pc

‖Su‖ < c
R

φ–
(∫ T


q(r)∇r

)(
T –

∑m–
i= aiξi

 –
∑m–

i= ai

)
= c = ‖u‖.
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For t ∈ [,T]T, we have γ b ≤ u(t) ≤ b. By condition (iii), we find for u(t) ∈ ∂Pb

∫ s


q(r)f +

(
r,u(r)

)∇r > φ

(
b
Q

)∫ s


q(r)∇r

so that

φ–
(∫ s


q(r)f +

(
r,u(r)

)∇r
)
>
b
Q

φ–
(∫ s


q(r)∇r

)
.

Moreover, we get

‖Su‖ = (Su)()

=


 –
∑m–

i= ai

[∫ T


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

–
m–∑
i=

ai
∫ ξi


φ–

(∫ s


q(r)f +

(
r,u(r)

)∇r
)

�s

]

>
b
Q

∫ T
 φ–(

∫ s
 q(r)∇r)�s – b

Q
∑m–

i= ai
∫ ξi
 φ–(

∫ s
 q(r)∇r)�s

 –
∑m–

i= ai

>
b
Qφ–(

∫ ξi
 q(r)∇r)T – b

Q
∑m–

i= aiφ–(
∫ ξi
 q(r)∇r)ξi

 –
∑m–

i= ai
= b = ‖u‖.

It follows from Lemma . that i(S,Pc,P) = , i(S,Pb,P) = .
Thus, i(S,Pb \ P̄c,P) = –. Hence, S has a fixed point in Pb \ P̄c such that c < ‖u‖ ≤ b.
In the end, we show that u is also a fixed point of A in Pb \ P̄c. We only have to verify

that Au = Su, ∀u(t) ∈ (Pb \ P̄c) ∩ {u : Su = u}, and we get u() = ‖u‖ > c. By Lemma .,
we find that

inf
t∈[,T]T

u(t)≥ γ ‖u‖ > γ c > d.

Hence, b ≥ u(t) ≥ d for t ∈ [,T]T. Using condition (i), we understand that f +(t,u(t)) =
f (t,u(t)). This implies that Au = Su = u. It means that u is a positive solution with
b ≥ ‖u‖ > c. This completes the proof. �

Example . Let T = { – (  )
N} ∪ { 

 , }, where N denotes the set of all nonnegative
integers. Take a = 

 , ξ =

 , T =  and q(t) ≡ , t ∈ [,T]T. Consider the following BVP

on time scales

(
φ
(
u�(t)

))∇ + f
(
t,u(t)

)
= , t ∈ [,T]T, (.)

φ
(
u�()

)
= , u(T) =



u
(



)
, (.)
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where

φ(u) = u,

f (t,u) := f (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

–u +  for  ≤ u≤ 
 ,

u –  for 
 ≤ u ≤ ,


 (u – ) +  for  ≤ u≤ ,

( – ×
 )(u – ) + ×

 +  for ≤ u ≤ ,

–(u – ) + ( – ×
 ) + ×

 +  for u ≥ .

By calculating, we find

γ =
∑m–

i= ai(T – ξi)
T –

∑m–
i= aiξi

=
a( – ξ)
 – aξ

=

 ( –


 )

 – 
 · 


=


,

R = φ–
(∫ T


q(r)∇r

)(
T –

∑m–
i= aiξi

 –
∑m–

i= ai

)
= φ–

(∫ 


∇r

)(
 – aξ
 – a

)
=



and

Q =


 –
∑m–

i= ai

[
φ–

(∫ ξi


q(r)∇r

)
T –

m–∑
i=

aiφ–
(∫ ξi


q(r)∇r

)
ξi

]

=


 – a

[
φ–

(∫ ξ


∇r

)
– aφ–

(∫ ξ


∇r

)
ξ

]
=


.

Let b = , c = , d = , then  < d
γ
= 



= 

 < c =  < γ b = 
 ·  =  < b = , and f

satisfies
() f (t,u) = f (u) ≥ , d =  ≤ u≤ b = ;
() f (t,u) = f (u) < φ( cR ) =




= ,  ≤ u≤ c = ;

() f (t,u) = f (u) > φ( bQ ) =



= , γ b =  ≤ u≤ b = .

So all the conditions of Theorem . hold. Thus, by Theorem ., problems (.) and
(.) have at least two positive solutions.
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