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Abstract: Due to the increasing resistance of bacteria to antibiotics, scientists began seeking new
solutions against this problem. One of the most promising solutions in this field are antimicrobial
peptides (AMP). To identify antimicrobial peptides, and to aid the design and production of novel
antimicrobial peptides, there is a growing interest in the development of computational prediction
approaches, in parallel with the studies performing wet-lab experiments. The computational ap-
proaches aim to understand what controls antimicrobial activity from the perspective of machine
learning, and to uncover the biological properties that define antimicrobial activity. Throughout
this study, we aim to develop a novel prediction approach that can identify peptides with high
antimicrobial activity against selected target bacteria. Along this line, we propose a novel method
called AMP-GSM (antimicrobial peptide-grouping–scoring–modeling). AMP-GSM includes three
main components: grouping, scoring, and modeling. The grouping component creates sub-datasets
via placing the physicochemical, linguistic, sequence, and structure-based features into different
groups. The scoring component gives a score for each group according to their ability to distinguish
whether it is an antimicrobial peptide or not. As the final part of our method, the model built using
the top-ranked groups is evaluated (modeling component). The method was tested for three AMP
prediction datasets, and the prediction performance of AMP-GSM was comparatively evaluated
with several feature selection methods and several classifiers. When we used 10 features (which are
members of the physicochemical group), we obtained the highest area under curve (AUC) value for
both the Gram-negative (99%) and Gram-positive (98%) datasets. AMP-GSM investigates the most
significant feature groups that improve AMP prediction. A number of physico-chemical features from
the AMP-GSM’s final selection demonstrate how important these variables are in terms of defining
peptide characteristics and how they should be taken into account when creating models to predict
peptide activity.

Keywords: antimicrobial peptide (AMP) prediction; physico-chemical properties; grouping; scoring;
modeling (GSM); antibiotic resistance; QSAR; Gram-negative bacteria; Gram-positive bacteria

1. Introduction

Antimicrobial peptides (AMPs) are one of the most effective ways to fight against
the infections of living things that may occur due to the microorganisms living in the
environment. Hence, AMPs are an important part of the natural immune system [1]. These
peptides serve as potent broad-acting antibiotics that are capable of acting on potential
pathogens. Antimicrobial peptides have also been shown to kill Gram-negative and Gram-
positive bacteria, mycobacteria, viruses, fungi, and even altered and cancerous cells. Unlike
most ordinary antibiotics, antimicrobial peptides may also have the ability to enhance
immunity by acting as immune modifiers [1]. Antimicrobial peptides are generally short
proteins with a length varying between 12 to 50 amino acid (aa)s.

Appl. Sci. 2023, 13, 5106. https://doi.org/10.3390/app13085106 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13085106
https://doi.org/10.3390/app13085106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6602-772X
https://orcid.org/0000-0001-8780-6303
https://orcid.org/0000-0002-2272-6270
https://doi.org/10.3390/app13085106
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13085106?type=check_update&version=1


Appl. Sci. 2023, 13, 5106 2 of 17

A number of databases have been recently introduced that provide details about
AMPs and their functions. These databases include DBAASP [2], CAMP [3], YADAMP [4],
LAMP [5], and DRAMP [6].

In recent years, different computational methods have been developed to predict
antimicrobial peptides. As machine learning is utilized to solve numerous biological
problems, it has also gained popularity for AMP prediction problems. In this problem
setting, a query protein is predicted as AMP or non-AMP via analyzing its biological
features. These features can be generated from the protein sequence or protein structure.
The classification model can be used to score the peptides and hence it can help the selection
of the peptide with the highest antimicrobial activity. By selecting the best candidate AMP
before synthesis and then by testing it against pathogens in the wet lab, computational
methods aid in developing effective antimicrobial drugs.

Various machine learning algorithms have been applied to this problem, including
support vector machines (SVM) [3,7–9], random forests (RF) [3], artificial neural networks
(ANN) [3,8,10], and logistic regression [11,12]. Additionally, there are a few comprehensive
studies that employ multiple ML models simultaneously to have a better understanding of
how well ML methods work for AMP prediction [13,14]. For the prediction of AMPs in
different organisms, such as bacteria, fish, insects, plants and humans, Chung et al. [15]
built a model using amino acid compositions, amino acids pairs, and physico-chemical
characteristics as features, with RF, SVM, and k-nearest neighbor (k-NN) as the classi-
fication algorithms. They also tested the effect of different feature selection techniques.
According to their findings, RF produced the best outcome, with over 92% accuracy on
all tested organisms. Kavousi et al. designed a model called IAMPE for the prediction of
AMPs [16]. In this model, using the AMP datasets obtained from different databases, such
as CAMP [3], LAMP [5], and AntiBP [10], the classification system was built using naive
Bayes (NB), k-NN, SVM, RF, and extreme gradient boosting (XGBoost) classifiers based
on the composition and physico-chemical characteristics of peptides. On the benchmark
dataset, the combined features achieved 95% accuracy. Xu et al. [17] reported a compre-
hensive study based on ML methods to predict AMPs. Using five-fold cross-validation,
they evaluated six widely used feature selection algorithms and eleven traditional machine
learning techniques. They found that SVM, RF, and XGBoost were outstanding machine
learning techniques for AMP prediction based on a number of parameters.

In contrast to the typical ML techniques that need pre-existing domain expertise and
cleverly designed input features, deep neural networks (DNNs) have been employed in
numerous bioinformatics tasks and they can automatically learn high-level characteristics.
Recently, deep learning techniques have also been applied to solve the antimicrobial
peptides prediction problem [18–20]. Ahmad et al. designed a model called Deep-AntiFP
for the prediction of antifungal peptides [21]. This model includes three dense layers and
uses composite physico-chemical properties (CPP), a quasi-sequence order, and a reduced
amino acid alphabet as input features. They obtained 89.08% accuracy with their DNN
model using an independent dataset. Hussain proposed a model with three different
sequence encodings and two image-based DNNs (RESNET-50 and VGG-16) to improve
prediction accuracy of short AMPs [22]. Compared with RESNET-50, which had 96.14%
training accuracy and 83.87% testing accuracy, VGG-16 produced more accurate results,
with 98.30% training accuracy and 87.37% testing accuracy for predicting short AMPs. For
the purpose of identifying AMPs, Su et al. created a deep neural network that included
an embedding layer and many convolutional layers [23]. Their model outperformed the
current models in terms of accuracy (92%) [23]. The deep CNN approach with one-hot
encoding was suggested by Dua et al. to produce the input features for AMP identification.
They demonstrated that CNN outperformed simple RNN, long short-term memory (LSTM),
LSTM with a gated recurrent unit (GRU), and bidirectional LSTM (Bi-LSTM) [24]. Szymczak
et al. built a model called HydrAMP which is a conditional variational autoencoder [25].
This model learns a lower-dimensional, continuous chemical space containing peptides
and maintains their antimicrobial characteristics [25].
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Most of the machine learning models utilized for AMP prediction are based on the
physico-chemical properties of antimicrobial peptides, such as net charge, isoelectric point,
hydrophobic moment, penetration depth, tilt angle, etc. [8,26]. Apart from physico-chemical
properties, there are also approaches that include sequence-based features, including amino
acid composition, dipeptide composition, tripeptide composition, etc. [3,17,27], [28]. Ad-
ditionally, there are studies that involve structure-based, linguistic-based features [29–31].
In the present study, for the antimicrobial peptide prediction task, we aim to develop a
new computational approach that incorporates different types of AMP features and takes
advantage of the characteristics of these groups. We attempt to show that one can increase
the antimicrobial peptide prediction performance by using the selected groups of features
that are identified with the proposed AMP-GSM method.

2. Materials and Methods
2.1. Datasets

Within this study, we used the following three datasets.
Dataset 1: In our previous study [32] we downloaded data from DBAASP [2] web

server according to specific criteria, such as non-hemolytic, linear cationic peptides, between
20–50 amino acids in length, etc. We selected peptides active against Gram-negative and
Gram-positive bacteria separately. The complete dataset includes 231 positively labeled
(AMP) and 114 negatively labeled (non-AMP) peptides in the Gram-negative dataset, and
165 positive and 194 negative samples in the Gram-positive dataset.

Dataset 2: Veltri et al. provided a dataset containing 1778 AMPs and 1778 non-AMPs,
which are available in the APD vr.3 database (http://aps.unmc.edu/AP, accessed on
18 March 2023) [33]. AMP peptides are active against Gram-negative and/or Gram-positive
bacteria. These AMPs are filtered by removing sequences that are less than 10 amino
acids long, and those that share 90% sequence identity using the CD-HIT program [34].
Additionally, non-AMPs are filtered by removing sequences less than 10 amino acids in
length and those that share 40% sequence identity with the CD-HIT program [34]. Further
details can be found in [33].

Dataset 3: Manavalan et al. provided another dataset in [35], which is slightly different
from other antimicrobial peptide datasets, since it includes anti-inflammatory peptides
(AIPs). Using the IEDB (The Immune Epitope Database), they extracted positive and
negative linear peptides that passed experimental validation [36,37]. A positive label was
assigned to a peptide if it caused any of the anti-inflammatory cytokines to be produced in
mouse and human T-cell experiments. Anti-inflammatory cytokines testing negative for linear
peptides were regarded as negative. This dataset included 1258 AIPs and 1887 non-AIPs.

2.2. Generation of Sequence-Based, Structure-Based, and Linguistic-Based Features

A total of 1508 features were obtained for the peptide sequences in Dataset 1.
DBAASP [2] web server was used to extract 10 physico-chemical features including se-
quence length, normalized hydrophobic moment, normalized hydrophobicity, net charge,
isoelectric point, penetration depth, tilt angle, disordered conformation propensity, lin-
ear moment, and propensity to in vitro aggregation. The remaining 1408 features were
extracted using the PyProtein package [38]. These features belong to the following cate-
gories, where the numbers of features within each category is shown in parenthesis: amino
acid composition (20), dipeptide composition (400), composition–transition–distribution
(CTD) composition (21), CTD transition (21), CTD distribution (105), Moreau–Broto (M–B)
autocorrelation (240), Moran autocorrelation (240), Geary autocorrelation (240), quasi-
sequence-order descriptors (100), sequence order coupling number (60), and pseudo amino
acid composition (50).

2.3. Proposed Model

In our earlier studies, in order to improve classification performance, we proposed
grouping-based feature elimination techniques, e.g., SVM RCE [39], SVM-RCE-R [40], and

http://aps.unmc.edu/AP
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SVM-RCE-R-OPT [41]. Recently, we proposed numerous tools which incorporate biological
information into the machine learning algorithm to accomplish feature selection or to
choose groups of features. maTE [42], CogNet [43], miRcorrNet [44], miRModuleNet [45],
PriPath [46], 3Mint [47], and Integrating Gene Ontology-Based Grouping and Ranking [48]
followed this strategy. This technique is known as the GSM approach [49], which is the
primary motivation for the development of our proposed approach within this study.

The workflow of the proposed approach, AMP-GSM, is presented in Figure 1. AMP-
GSM includes three main components: grouping, scoring, and modeling.
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Figure 1. AMP-GSM workflow based on grouping, scoring, and modeling.

2.3.1. Grouping Peptides Based on Physico-Chemical, Sequence-Based, Structure-Based,
and Linguistic-Based Features

The grouping component generates a list of groups where each group is composed of a
feature set. An example output of this component is shown in Table 1. In our study, we have
12 groups, including physico-chemical, amino acid composition, dipeptide composition,
physico-chemical composition, physico-chemical transition, physico-chemical distribution,
normalized Moreau–Broto autocorrelation, Moran autocorrelation, Geary autocorrelation,
sequence order coupling number, quasi-sequence order, and pseudo-amino acid composi-
tion. Each group has its own feature set. In Figure 2, the distribution of the features into
different groups are shown.

The groups created within the Grouping step are utilized to generate sub-datasets
from the initial data. Each sub-data is composed of the properties belonging to the features
within a particular group, retaining the original class labels of the peptides.

Let Groupn represent the n-th group from the Gram-negative or Gram-positive AMP
dataset, which includes x different features and is denoted as Groupn = {AMPFeature1,
AMPFeature3, . . . , AMPFeaturex, class label} and Let g_features_subdatas represent the
s-th group created by the grouping part of the AMP-GSM model, which includes a number
of groups (i), denoted as g_features_subdatas = {Group1, Group3, . . . , Groupi}.
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Table 1. A list of feature groups and the features that are associated with them, based on [2,38].

Group Feature Set Number of Features

Physico-chemical
Sequence Length, Normalized Hydrophobic Moment,
Normalized Hydrophobicity, Net Charge, Isoelectric Point,
Penetration Depth . . .

10

Amino acid composition A, C, E, D, G, F, I, H, K, M . . . 20

Dipeptide composition GW, GV, GT, GS, GR, GQ, ME, MD, MG, MF, MA, MC, MM, ML,
MN . . . 400

Physico-chemical composition _NormalizedVDWVC2, _PolarizabilityC2, _PolarizabilityC3,
_ChargeC1 . . . 21

Physico-chemical transition _SecondaryStrT13, _SecondaryStrT12, _HydrophobicityT23,
_NormalizedVDWVT23, _ChargeT12 . . . 21

Physico-chemical distribution _NormalizedVDWVD1075, _PolarityD1075, _SecondaryStrD2075,
_SolventAccessibilityD1100 . . . 105

Normalized Moreau–Broto
autocorrelation

MoreauBrotoAuto_ResidueASA28,
MoreauBrotoAuto_ResidueVol30 . . . 240

Moran autocorrelation MoranAuto_FreeEnergy8, MoranAuto_FreeEnergy9,
MoranAuto_Steric8 . . . 240

Geary autocorrelation GearyAuto_Mutability23, GearyAuto_Mutability21,
GearyAuto_FreeEnergy24, . . . 240

Sequence order coupling number QSO26, QSO27, QSO_ex50, QSO_ex24, QSO_ex18, QSO_ex19 . . . 60
Quasi-sequence-order Taugrant23, taugrant24, tausw8, tausw9, tausw6, tausw7 . . . 100
Pseudo-amino acid composition PAAC34, PAAC35, APAAC20, PAAC38, PAAC39 . . . 50
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2.3.2. Scoring the Groups

The scoring component gives a score to each group that is created by the grouping
component. At the end of this step, each group will have their own score. This score
shows how well the group can distinguish between negative and positive classes. In
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order to determine this score, a 100-fold Monte Carlo cross validation (MCCV) procedure
is used [50]. A portion of the data is chosen to serve as the training set for the MCCV
approach, while the remaining data are designated as the test set. Then, this procedure
is randomly repeated numerous times, producing new training and testing portions each
time. In our experiments, 90% of the data is used as the training set, and 10% is used as the
test set.

The scoring component produces lists of AMP groups and the features linked to
them that are slightly different after each iteration. Consequently, a prioritization strategy
needs to be applied to those lists. We applied rank aggregation techniques similar to those
proposed in miRcorrNet [43]. In this regard, the RobustRankAggreg R package [51] was
integrated into our workflow. Each element in the aggregated list was given a p-value by the
RobustRankAggreg, which indicates how well it was ranked relative to the predicted value.
The list of the groups that are ordered by scores is the final output of the scoring component.

2.3.3. Modeling Component

After defining the informative groups of features, the model can then be tested on the
group with the highest ranking, or cumulatively on the top j groups. In our experiments
we decided to use 10 for j. In other words, while maintaining the original labels, we build
sub-data using the features related to the top 10 group categories. Applying machine
learning to this new subset of data results in the creation of the model, which is then tested
using the test set. The model built using the top-ranked groups is evaluated as the final
part of our method. We used the Random Forest (RF) Classifier for the modeling part. We
split the data into 90% training and 10% testing. We applied 100-fold MCCV for evaluation.

The Konstanz Information Miner (KNIME) platform was used to implement all three
components of our method [52].

2.4. Feature Selection Methods

We have a total of 1508 features in our dataset. These features have an impact on
how well the classification algorithms work. Therefore, a feature selection method is
required to lower the model’s dimension and make it simpler to classify and comprehend.
Feature selection can also be performed based on grouping with the proposed AMP-
GSM method. We wanted to compare the results we obtained with the results obtained
using certain traditional feature selection methods. Therefore, we applied conditional
mutual information maximization (CMIM) [53], minimum redundancy maximum relevance
(mRmR) [54], information gain (IG) [55], and extreme gradient boosting (XGB) [56] methods,
which are also frequently used in the literature.

Conditional mutual information maximization (CMIM) strikes a balance between
the candidate feature’s ability to forecast the future and its independence from other
characteristics that have already been chosen by using conditional mutual information to
calculate distance [57].

The mRMR algorithm is a filtering method that attempts to select the most relevant
features with the class labels, while simultaneously aiming to minimize the redundancy
between the selected features [58]. This algorithm starts with an empty set, uses mutual
information to balance the features, and then combines sequential search with forward
selection to identify the best subset of attributes.

Information gain (IG) is utilized for feature selection by assessing each variable’s gain
in relation to the target variable. For each of the independent features, we determine the
information gain. The traits are then be ranked according to their individual information
gains in descending order. We choose a cutoff point and incorporate all features above the
cutoff point into the machine learning algorithms.

Extreme gradient boosting (XGB) is another commonly used feature selection method.
Importance in XGB assigns a score based on the usefulness or value of each feature in
building the boosted decision trees within the model. An attribute’s relative relevance rises
as an increasing number of decision trees use it to make important decisions.
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2.5. Performance Metrics

The following formulas were used to calculate a number of quantitative metrics,
including accuracy, sensitivity, specificity, precision, and F1 measure, in order to assess the
performance of the RF model:

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

Recall (Sensitivity) =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

F1 =
2TP

2TP + FP + FN
(4)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
Furthermore, we used the area under the curve (AUC) for performance evaluation. The
AUC is one of the most crucial evaluation criteria for assessing the effectiveness of any
classification model. The level or measurement of separability is represented by the AUC.
It reveals how well the model can differentiate across classes. According to our study, the
higher the AUC, the better the model is at distinguishing between negative (non-AMP) and
positive (AMP) samples.

3. Results

We tested AMP-GSM for Dataset 1, which includes a Gram-negative and a Gram-
positive dataset, as mentioned above; details are presented in our previous study [32].
Furthermore, we applied different feature selection methods on those datasets. Additionally,
we ran our approach on other existing datasets (Dataset 2 and Dataset 3) to compare our
results with other methods.

3.1. Performance Evaluation of AMP-GSM on the Gram-Negative Dataset in Dataset 1

The Gram-negative dataset includes 231 positive (AMP) and 114 negative (non-AMP)
samples. Average 100-fold MCCV performance metrics of AMP-GSM for the combined
top 10 groups for the Gram-negative dataset are shown in Table 2. The first column
represents the number of groups, and the second column shows the number of cumulative
features. The performance of the top-ranked group is given in the last row, where number
of groups = 1. Using 10 features on average, we obtained 95% accuracy and 99% AUC.
The features from the initial top-ranked group and the second-highest scoring group are
combined. The tenth row of Table 2, where number of groups = 2 displays the performance
metrics derived for the top two groups cumulatively. AMP-GSM reports the cumulative
performance metrics for the top 10 groups.

Table 2. Performance results of the AMP-GSM approach on the Gram-negative dataset of Dataset 1
(for 12 groups and 100-fold MCCV) *.

#Groups #Features
(Mean) Acc (Mean) Sn (Mean) Sp (Mean) F-Measure

(Mean) AUC (Mean) Pr (Mean)

10 1039.99 0.92 0.91 0.93 0.91 0.98 0.92

9 807.19 0.93 0.93 0.92 0.92 0.98 0.91

8 714.01 0.94 0.94 0.93 0.93 0.98 0.92

7 571.08 0.92 0.93 0.92 0.91 0.98 0.90
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Table 2. Cont.

#Groups #Features
(Mean) Acc (Mean) Sn (Mean) Sp (Mean) F-Measure

(Mean) AUC (Mean) Pr (Mean)

6 439.45 0.92 0.93 0.91 0.91 0.98 0.90

5 306.47 0.92 0.94 0.90 0.91 0.98 0.89

4 190.91 0.92 0.94 0.91 0.91 0.98 0.90

3 121.25 0.93 0.95 0.91 0.92 0.98 0.90

2 60.6 0.93 0.95 0.92 0.93 0.99 0.91

1 10 0.95 0.98 0.93 0.95 0.99 0.92

* The average number of features is shown in the column #Features. Firstly, the features from the top group are
used to create a model, which is then tested using the testing part of the data. Secondly, the top one and two
groups are used to create a model, which is subsequently tested. Similarly, the model is created using the features
from the top 10 groups, and it is then tested. Acc: Accuracy, Sn: Sensitivity, Sp: Specificity, AUC: Area Under
Curve, Pr: Precision.

3.2. Performance Evaluation of AMP-GSM on the Gram-Positive Dataset in Dataset 1

The Gram-positive dataset in Dataset 1 includes 165 positively labeled (AMP) and
194 negatively labeled (non-AMP) samples. Average 100-fold MCCV performance metrics
of AMP-GSM for the combined top 10 groups for the Gram-positive dataset are shown in
Table 3. The first column represents the number of groups, and the second column shows
the number of cumulative features. The performance of the top-ranked group is given in
the last row, where number of groups = 1. Using 10 features on average, we obtained 92%
for accuracy and 98% for AUC metric. The features from the initial top-ranked group and
the second-highest scoring group are combined. The tenth row of Table 3 where number of
groups = 2, displays the performance metrics derived for the top 2 groups cumulatively.
AMP-GSM reports the cumulative performance metrics for the top 10 groups.

Table 3. Performance results of the AMP-GSM approach on the Gram-positive dataset of Dataset 1
(for 12 groups and 100-fold MCCV) *.

#Groups #Features
(Mean) Acc (Mean) Sn (Mean) Sp (Mean) F-Measure

(Mean) AUC (Mean) Pr (Mean)

10 1026.75 0.88 0.69 0.96 0.77 0.95 0.91
9 795.75 0.88 0.72 0.96 0.79 0.95 0.90
8 657.26 0.87 0.70 0.95 0.77 0.95 0.89
7 526.35 0.88 0.73 0.94 0.78 0.95 0.88
6 351.87 0.88 0.75 0.94 0.80 0.95 0.87
5 226.48 0.89 0.78 0.94 0.82 0.96 0.88
4 160.75 0.89 0.77 0.94 0.81 0.95 0.87
3 103.51 0.90 0.80 0.95 0.83 0.96 0.89
2 44.28 0.91 0.82 0.95 0.85 0.96 0.90
1 10 0.92 0.89 0.93 0.87 0.98 0.87

* The average number of features is shown in the column #Features. Firstly, the features from the first top group
are used to create a model, which is then tested using the testing part of the data. Secondly, the top one and two
groups are used to create a model, which is subsequently tested. Similarly, the model is created using the features
from the top 10 groups for j = 10, and is then tested. Acc: Accuracy, Sn: Sensitivity, Sp: Specificity, AUC: Area
Under Curve, Pr: Precision.

It is worth noting that both for the Gram-negative and Gram-positive datasets of
Dataset 1, all members of the top scoring group originated from the physico-chemical
group, and this group showed the highest performance results. It was observed that the
scoring made using only physico-chemical features obtained much better results than the
groups formed by adding other features.
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We re-ran our method by removing this physico-chemical group from the grouping
to demonstrate how important physico-chemical properties are in antimicrobial peptide
prediction. As seen in Table 4, when the physico-chemical properties are extracted, on the
Gram-negative dataset, a single group generated by AMP-GSM includes 38.27 features
(averaged over 100-fold MCCV iterations), and this group achieves an accuracy of only
87% and an AUC value of 93%. However, when physico-chemical properties are included,
this rate was 95% for accuracy and 99% for AUC (as shown in Table 2). Likewise, for the
Gram-positive dataset of Dataset 1, when the physico-chemical properties are removed,
82% accuracy and 90% AUC were obtained (shown in Table 5) by using a single group,
including 37.67 features (averaged over 100-fold MCCV iterations), while 92% accuracy
and 98% AUC values were obtained when physico-chemical properties were included in
the analysis (shown in Table 3).

Table 4. Performance results of AMP-GSM approach for the Gram-negative dataset of Dataset 1
without using physico-chemical properties (for 11 groups and 100-fold MCCV) *.

#Groups #Features
(Mean) Acc (Mean) Sn (Mean) Sp (Mean) F-Measure

(Mean) AUC (Mean) Pr (Mean)

3 169.73 0.88 0.87 0.89 0.86 0.96 0.87
2 100.65 0.89 0.89 0.89 0.87 0.95 0.86
1 38.27 0.87 0.86 0.88 0.85 0.93 0.85

* Acc: Accuracy, Sn: Sensitivity, Sp: Specificity, AUC: Area Under Curve, Pr: Precision.

Table 5. Performance results of the AMP-GSM approach for the Gram-positive dataset of Dataset 1
without using physico-chemical properties (for 11 groups and 100-fold MCCV) *.

#Groups #Features
(Mean) Acc (Mean) Sn (Mean) Sp (Mean) F-Measure

(Mean) AUC (Mean) Pr (Mean)

3 135.41 0.85 0.69 0.92 0.74 0.92 0.81
2 85.27 0.84 0.67 0.91 0.72 0.91 0.79
1 37.67 0.82 0.63 0.91 0.68 0.90 0.78

* Acc: Accuracy, Sn: Sensitivity, Sp: Specificity, AUC: Area Under Curve, Pr: Precision.

3.3. Ranking of the Groups

We ranked the groups by the RobustRankAggreg method, applied on the Gram-
negative and Gram-positive datasets of Dataset 1. The results are presented in Supplemen-
tary Table S1.

3.4. Comparative Evaluation of the Proposed Method with Other Feature Selection Methods
and Classifiers

We have a total of 1508 features for the sequences in Dataset 1. Feature selection
techniques attempted to eliminate redundant and unimportant features. As explained in
the Materials and Methods section, we experimented with the use of mRMR, IG, XGBoost,
and CMIM feature selection methods for the AMP prediction problem. Additionally, the
effectiveness of different classification methods, such as RF, SVM, LogitBoost, Decision
Tree, and AdaBoost, was evaluated. Since AMP-GSM selected 10 features, for the remain-
ing feature selection methods, we obtained results using their top 10 features. The top
10 features chosen by the four above-mentioned approaches were used to evaluate the
effectiveness of numerous classifiers using different metrics. Table 6 shows, compared
with other feature selection methods, how the XGBoost and IG techniques enhanced the
accuracy, sensitivity, specificity, F1 measure, and AUC values of the tested classifiers, ap-
plied on the Gram-negative dataset of Dataset 1. With the same data, it was possible to
deduce that the mRMR and CMIM feature selection methods resulted in a low accuracy
and a high sensitivity, as well as signs of poor fitting across evaluated models. On the
other hand, on the Gram-negative dataset of Dataset 1, AMP-GSM performed better than
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all tested feature selection methods, all tested classifiers, in terms of the area under curve
performance evaluation metric (as shown in Table 6, Figure 3).

Table 6. Performance metrics of different feature selection techniques with 10 features on the Gram-
negative dataset of Dataset 1, using 100-fold MCCV *.

Results for the Gram-Negative Dataset (10 Features, 100-Fold MCCV)

ML Method FS Method Accuracy Sensitivity
(Recall) Specificity Precision AUC F1

LogitBoost XGB 0.96 ± 0.03 0.99 ± 0.03 0.94 ± 0.06 0.93 ± 0.07 0.97 ± 0.02 0.95 ± 0.04
LogitBoost IG 0.96 ± 0.04 0.98 ± 0.03 0.94 ± 0.06 0.93 ± 0.07 0.97 ± 0.02 0.95 ± 0.04
Adaboost MRMR 0.52 ± 0.09 0.95 ± 0.09 0.19 ± 0.22 0.48 ± 0.07 0.50 ± 0.13 0.63 ± 0.04
RF CMIM 0.55 ± 0.11 0.97 ± 0.08 0.23 ± 0.23 0.50 ± 0.09 0.56 ± 0.14 0.65 ± 0.05
RF AMP-GSM 0.95 ± 0.04 0.98 ± 0.03 0.93 ± 0.07 0.92 ± 0.08 0.99 ± 0.006 0.95 ± 0.05

* ML: Machine Learning, FS: Feature Selection, AUC: Area Under Curve.
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Table 7 shows that compared with other feature selection methods, the IG technique
enhanced the accuracy, sensitivity, specificity, F1 measure, and AUC values of the tested
classifiers, applied on the Gram-positive dataset of Dataset 1. Although not as good as
IG, XGB provided a good estimation result on the overall. The mRMR and CMIM feature
selection approaches resulted in low accuracy and high recall values, as well as indications
of poor fitting across examined models on the same data. On the other hand, on the
Gram-positive dataset of Dataset 1, AMP-GSM performed better than all tested feature
selection methods, all tested classifiers in terms of different performance evaluation metrics
except sensitivity score (as shown in Table 7, Figure 4).

In Table 8, 10 features obtained from the feature selection method (IG-RF pairwise for
Gram-positive and XGB-Logitboost pairwise for Gram-negative) that gave the best results
and the 10 most important features selected by AMP-GSM are compared. While all of the
10 features identified by the AMP-GSM method belong to the physico-chemical group, it
can be observed from Table 8 that the features detected by the feature selection methods
belong to different groups for both Gram-negative and Gram-positive datasets.
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Table 7. Performance metrics of different feature selection techniques with 10 features on the Gram-
positive dataset of Dataset 1, using 100-fold MCCV *.

Results for the Gram-Positive Dataset (10 Features, 100-Fold MCCV)

ML Method FS Method Accuracy Sensitivity
(Recall) Specificity Precision AUC F1

RF IG 0.90 ± 0.04 0.92 ± 0.09 0.89 ± 0.07 0.81 ± 0.11 0.94 ± 0.03 0.85 ± 0.06
RF XGB 0.89 ± 0.05 0.88 ± 0.10 0.89 ± 0.08 0.81 ± 0.12 0.91 ± 0.05 0.83 ± 0.07
RF MRMR 0.49 ± 0.17 0.88 ± 0.15 0.32 ± 0.31 0.41 ± 0.14 0.55 ± 0.14 0.53 ± 0.07
RF CMIM 0.43 ± 0.14 0.94 ± 0.11 0.20 ± 0.24 0.36 ± 0.08 0.53 ± 0.11 0.51 ± 0.05
RF AMP-GSM 0.92 ± 0.04 0.89 ± 0.10 0.93 ± 0.05 0.87 ± 0.09 0.98 ± 0.02 0.87 ± 0.06

* ML: Machine Learning, FS: Feature Selection, AUC: Area Under Curve.
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Table 8. Comparison of the most important 10 features found in the first two groups in the AMP-
GSM method with the 10 most informative features identified by the feature selection methods for
Gram-negative and Gram-positive datasets.

Gram-Negative Dataset

FS/CLSF * Method Features Identified by FS Methods Features Identified by AMP-GSM
Common Features between the
Top Features of the FS Method

and AMP-GSM

XGB/Logitboost

Net Charge
MoranAuto_AvFlexibility8
Tilt Angle
Normalized Hydrophobic Moment
MoranAuto_Hydrophobicity15
MoranAuto_ResidueVol5
_ChargeC1
QSO_ex29
Isoelectric Point
tausw2

SequenceLength
Normalized Hydrophobic Moment
Normalized Hydrophobicity
Net Charge
Isoelectric Point
Penetration Depth
Tilt Angle
Disordered Conformation Propensity
Linear Moment
Propensity to in vitro Aggregation

Net Charge
Tilt Angle
Normalized Hydrophobic
Moment
Isoelectric Point

Gram-Positive Dataset

IG/RF

Isoelectric Point
Net Charge
Disordered Conformation Propensity
Normalized Hydrophobicity
_ChargeC1
_PolarityC3
tausw9
taugrant6
_PolarityT13
tausw6

SequenceLength
Normalized Hydrophobic Moment
Normalized Hydrophobicity
Net Charge
Isoelectric Point
Penetration Depth
Tilt Angle
Disordered Conformation Propensity
Linear Moment
Propensity to in vitro Aggregation

Normalized Hydrophobicity
Net Charge
Isoelectric Point
Disordered Conformation
Propensity

* FS: Feature Selection, CLSF: Classification.
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3.5. Testing AMP-GSM on Different Benchmark Datasets, Comparative Evaluation with
Existing Approaches

Veltri et al. proposed a model consisting of a deep neural network (DNN) structure
including convolution and LSTM layers [33]. The features are represented with a sequence-
to-vector conversion, in which peptide sequences are encoded into uniform numerical
vectors of length 200. They tested their proposed DNN on Dataset 2, where the main
characteristics of this dataset are presented in the Materials and Methods section and
further details can be found in [33].

Table 9 compares the performance metrics of one of the DNN models proposed in [33]
with the AMP-GSM model and with other feature selection methods for Dataset 2. The
methods being compared are listed in column 1 of Table 9, along with the five performance
metrics listed in columns 3 through column 7. The results in bold in Table 9 represent the
best results for a particular metric. According to Table 9, the AMP-GSM model performs
the best in terms of accuracy, sensitivity, F1 measure and AUC metrics.

Manavalan et al. proposed a model consisting of a random forest classifier and feature
selection methods [35]. They used amino acid composition, amino acid index, dipeptide
composition, physico-chemical properties, and distribution of amino acid patterns as
peptide features. They compare their results with commonly used machine learning
models, such as SVM, k-NN, and extremely randomized trees (ERT).

Table 10 compares the performance metrics of the method proposed in [35] with AMP-
GSM and other feature selection methods for Dataset 3. The methods being compared are
listed in column 1 of Table 10 along with the four performance metrics listed in columns 3
through column 6. The results in bold in Table 10 indicate the best results for a particular
metric. AMP-GSM considerably outperforms CMIM, IG, and mRMR feature selection
methods for predicting AIPs. There is a significant difference for all performance metrics.

Table 9. Performance evaluation of AMP-GSM with a DNN model for Dataset 2 [33].

Method Evaluation Sensitivity (%) Specificity (%) Accuracy (%) AUC (%) F1 Measure

DNN Model 10-fold CV 88.81 (±3.53) 94.21 (±2.68) 91.51 (±0.89) 96.58 (±0.66) -
CMIM-DT 10-fold MCCV 51.34 ± 0.17 51.40 ± 0.17 51.37 ± 0.03 51.37 ± 0.03 50.02 ± 0.09
IG-RF 10-fold MCCV 88.70 ± 0.02 91.40 ± 0.02 90.05 ± 0.01 96.36 ± 0.007 89.91 ± 0.01
mRMR-RF 10-fold MCCV 33.70 ± 0.18 67.41 ± 0.21 50.56 ± 0.03 50.80 ± 0.05 37.80 ± 0.14
AMP-GSM Model 10-fold MCCV 91.01 (±0.23) 92.97(±0.03) 91.71 (±0.13) 97.07 (±0.06) 91.59 (±0.15)

Table 10. Performance evaluation of AMP-GSM with other traditional feature selection and classifica-
tion models for Dataset 3 [35].

Method Evaluation Set Accuracy Sensitivity Specificity AUC

AIPpred 5-Fold CV 0.73 0.75 0.71 0.80
ERT 5-Fold CV 0.73 0.73 0.72 0.79
SVM 5-Fold CV 0.65 0.64 0.67 0.70
k-NN 5-Fold CV 0.64 0.51 0.77 0.69
CMIM-LogitBoost 5-Fold MCCV 0.54 0.67 0.40 0.55
IG-AdaBoost 5-Fold MCCV 0.69 0.66 0.72 0.73
mRMR-LogitBoost 5-Fold MCCV 0.50 0.79 0.20 0.50
AMP-GSM Model 5-Fold MCCV 0.99 1 0.99 1

4. Discussion

In this study, we propose AMP-GSM, a novel approach that is built on the grouping
and ranking of peptide features. The method relies on grouping the features according
to their biological characteristics, and then scoring those groups according to their impor-
tance in terms of distinguishing antimicrobial peptides from non-antimicrobial peptides.
Traditional methods often use the properties of antimicrobial peptides together rather than
grouping them. On the other hand, feature selection methods select the features that they
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identify as important, and then develop the classification models using the selected fea-
tures. However, such a selection is not a group-based selection. Based on all the attributes,
traditional feature selection methods select the most important ones. Studies in this area
are mostly aimed at classification by taking feature groups individually or collectively, or
by using a set of features selected by traditional feature selection methods [59–61].

In this study, structure-based, sequence-based, and physico-chemical features were
grouped and their effects on classification performance were evaluated. We analyzed a
comprehensive set of features, including amino acid composition, dipeptide composition,
pseudo amino acid composition, CTD of physico-chemical properties, various autocorre-
lations, quasi-sequence-order descriptors, and sequence order coupling number. These
features are generated for each peptide within the Gram-positive and Gram-negative
datasets separately. Separately for the Gram-positive and Gram-negative datasets, we com-
pared the performances of the models that apply the proposed AMP-GSM technique and
alternative feature selection strategies. As shown in Figures 3 and 4, AMP-GSM resulted in
higher AUC values on both Gram-negative and Gram-positive dataset.

An AMP prediction system has a very high number of potential input features, and
the decisions made regarding which features to use for antimicrobial prediction greatly
affect prediction performance in terms of accuracy and AUC. Finding novel antimicrobial
descriptors that may be connected to physico-chemical properties could reduce the wide
accuracy range of the prediction algorithms, and aid in identifying the real significance of
characteristics related to antimicrobial activities.

Ten of the 1508 factors displayed statistically significant variations in positive and
negative datasets separately. Compared with the known feature selection algorithms, these
ten features are effective antimicrobial peptide descriptors that produce higher accuracy
when used with the AMP-GSM approach. As seen in Table 8, all 10 features belong to
the physico-chemical group. Additionally, when we removed the physico-chemical group
from the dataset and run our approach, it was observed that accuracy and AUC values
significantly decreased for both Gram-negative and Gram-positive datasets.

We also used two other benchmark datasets in order to make a comparison between
different approaches. In Dataset 2, there are 1778 AMPs and 1778 non-AMPs. Using the
whole dataset with 10-fold MCCV, for some performance metrics, AMP-GSM outperformed
the DNN model with LSTM and convolutional layers, as proposed in [33]. As seen in Table 9,
we obtained higher performance metrics for sensitivity, accuracy, and AUC compared
to the DNN model with LSTM and convolutional layers [33]. Another dataset that we
analyzed (Dataset 3) was provided by Manavalan et al. in [35]. This dataset consists of anti-
inflammatory peptides (AIP). It includes 1258 AIPs and 1887 non-AIPs. Their model consists
of a feature selection part with RF. Using Dataset3, we obtained higher performance metrics
(99% accuracy, 100% AUC) compared with their method and traditional machine learning
approaches, such as SVM and k-NN (as seen in Table 10). Hence, we can conclude that
the novel approach developed in this study can be used to predict not only antimicrobial
peptides, but also anti-inflammatory peptides by considering group characteristics.

Our technique performs well and provides better categorization of AMPs based on
different types of information (physico-chemical, sequence-based, etc.). However, AMPs
can be hazardous and inefficient as a medicine, which is undesirable. Studies on the
synthesis and modification of AMPs have shown that even small modifications can impact
how well they work. This approach does not take into account the functional traits of
AMPs, but instead, it can only identify AMPs. It is possible to undertake additional studies
in accordance with the roles played by AMPs, which will improve our comprehension of
their method of action and our ability to forecast their behaviors.

Another issue regarding the design of AMPs is that toxicity, stability, and bacterial
resistance must all be addressed concurrently in the rational design of AMP-based thera-
peutics [62]. To achieve this, it is essential to determine the key attributes that a peptide
contains in order to be effective against various bacterial species. To rationally develop
antimicrobial peptides that target certain bacteria, this study offers a feature selection
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method based on grouping that is specific to bacteria. It will be crucial to test our study
using larger datasets active against bacteria.

5. Conclusions

We create a novel approach based on grouping, scoring, and modeling to accurately
predict the antimicrobial peptides. To determine key properties involved in the prediction
of antimicrobial peptides, we used different types of feature groups. Each group has its own
feature set. The group including physico-chemical features is identified as the best group in
terms of predicting AMP activity. We observed that estimating antimicrobial peptides using
only physico-chemical properties generated the best score. It has been demonstrated that
physico-chemical properties play a significant impact in peptide prediction, and should be
taken into account while developing novel models.

It is crucial to compare our novel approach with benchmark datasets in this area. Our
findings demonstrate how effective and discriminating the AMP-GSM model is. In-depth
evaluations of AMP-GSM against other traditional feature selection techniques for AMP
prediction place it among one of the best predictors.

To sum up, AMPs are thought to be the most promising antibiotic substitutes. Con-
sequently, precise antimicrobial peptide prediction aids in the development of cheaper,
more efficient peptides. Additionally, they gained popularity in this industry since com-
putational prediction approaches minimize losses during production phases. This study’s
grouping methodology will be beneficial to precise prediction and the design of antimicro-
bial peptides that are extremely efficient against particular bacterial infections. Although
the categorization method we have created here is only applicable to antimicrobial and
anti-inflammatory peptides, it could be used in future research to predict antifungal, antivi-
ral, antiprotozoal, and anticancer drugs. Additionally, it is possible to expand our current
work by adding more groups for future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13085106/s1, Table S1. Ranking of the Groups by the Robus-
tRankAggreg method on Gram-negative and Gram-positive datasets of Dataset 1.
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