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Abstract: This paper discusses the triple sampling inference procedures for the mean of a symmetric
distribution—the normal distribution when the coefficient of variation is known. We use the Searls’
estimator as an initial estimate for the unknown population mean rather than the classical sample
mean. In statistics literature, the normal distribution under investigation underlines almost all the
natural phenomena with applications in many fields. First, we discuss the minimum risk point
estimation problem under a squared error loss function with linear sampling cost. We obtained
all asymptotic results that enhanced finding the second-order asymptotic risk and regret. Second,
we construct a fixed-width confidence interval for the mean that satisfies at least a predetermined
nominal value and find the second-order asymptotic coverage probability. Both estimation problems
are performed under a unified optimal framework. The theoretical results reveal that the performance
of the triple sampling procedure depends on the numerical value of the coefficient of variation—the
smaller the coefficient of variation, the better the performance of the procedure.

Keywords: confidence interval; minimum risk point estimation; Searls’ estimator; triple sampling procedure

1. Introduction

Let X1, X2, . . . be a sequence of independent and identically distributed random
variables from a symmetric distribution–normal distribution N

(
µ, µ2η2), (µ 6= 0) where√

η2 is a known coefficient of variation. In usual cases, the normal distribution N
(
µ, σ2)

where σ2 does not depend on µ, the sample mean Xn = n−1 ∑n
i=1 Xi, n ≥ 1 is known to

be the uniformly minimum variance UMV unbiased estimator of µ, but in the present
case of a known coefficient of variation, the sample mean no longer achieves this property.
Searls [1] suggested an improved estimator for µ in the form µ̂n = n

(
n + η2)−1 Xn, n ≥ 1

and proved that the mean squared error of the Searls’ estimator MSE(µ̂n) =
(
n + η2)−1

σ2

is smaller than MSE
(
Xn
)

with the relative efficiency of µ̂n to Xn is
(
η2/n

)
+ 1; see Sen [2].

Several authors have intensively studied the point estimation of µ. For example, Arnholt
and Hebert [3] considered a wider class of estimators for µ when η is known and showed that
Searls’ estimator still has minimum mean squared errors among other estimators.

Sinha [4] discussed the Bayesian estimation of the mean of the symmetric distribution–
normal distribution when the coefficient of variation is known, while Gleser and Healy [5]
considered a class of Bay’s estimators against inverted Gamma priors; see also Guo and
Pal [6], Anis [7], Srisodaphol and Tongmol [8], and Hinkley [9]. Recently, fuzzy relational
inference systems for estimation have been shown in [10,11].
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The assumption of a known coefficient of variation is involved in many biological,
physical, and engineering applications. For example, for applications in agricultural
studies, see Bhat and Rao [12]; for applications in biological and medical experiments, see
Brazauskas and Ghorai [13]; see also Hald [14], and Davis and Goldsmith [15].

Despite the extensive literature on point estimation for µ, few literary works are
available for interval estimation. Niwitpong [16] proposed two confidence intervals
for the mean of the symmetric distribution–normal distribution based on Searls’ work.
Fu, Wang, and Wong [17] extended Bhat and Rao’s [12] approach and proposed the modi-
fied signed log-likelihood ratio test for the normal mean.

From a theoretical point of view, the standard inferential methods cannot be used
directly to find the inference of the normal mean since the family N

(
µ, η2µ2), (µ 6= 0)

belongs to the curved exponential family model with a two-dimensional minimal sufficient
statistic

(
Xn, S2

n
)

where S2
n = (n− 1)−1 ∑n

i=1
(
Xi − Xn

)2n ≥ 2; see Efron [18].

Sequential Sampling Procedures

Sequential sampling procedures were mainly developed for statistical inference during
and after World War II. Stein [19,20] and Cox [21] presented the two-stage procedure for
constructing a fixed-width confidence interval for the population normal mean when the
population variance is finite and unknown. It was shown from the literature that the
two-stage sampling procedure attains exact consistency and asymptotic consistency but
has asymptotic inefficiency (oversampling), especially when the pilot sample size is much
smaller than the optimal sample size. To overcome such deficiency, Anscombe [22], Ray [23],
and Chow and Robbins [24] proposed a purely sequential procedure. The procedure attains
asymptotic consistency and efficiency but lacks exact consistency and time consumption.
See Mukhopadhyay and de Silva [25].

As a compromising procedure, Hall [26] introduced the triple sampling procedure
to achieve two primary objectives, the operational savings made possible by sampling
in batches as in a two-stage procedure and the asymptotic efficiency attained by purely
sequential sampling. The procedure is based on three stages, as we describe later. The
procedure combines the efficiency of Anscombe, Chow, and Robbins’ one-by-one purely
sequential procedure and the operational saving made possible by sampling in bulk using
Stein’s group sampling techniques. It is an excellent trade-off between a purely sequential
procedure and a two-stage procedure with ease of implementation. The triple sampling
procedure was mainly developed to construct a fixed-width confidence interval for the
normal mean that satisfies a predetermined width and coverage probability when the
population variance is unknown. The procedure attains all customary measures except
exact consistency. The following lines describe the above measures as follows:

If N is the final random sample size generated by a multistage sequential procedure
and n∗ is the optimal sample size needed to estimate the parameter µ, then the procedure
is said to be:

(i) first-order asymptotically efficient if lim
n∗→∞

E(N/n∗) = 1 and

(ii) second-order asymptotically efficient if lim
n∗→∞

E(N − n∗) < ∞ ; see Ghosh

and Mukhopadhyay [27].

Moreover, if IN is the fixed-width confidence interval constructed via a multistage sampling
procedure, then the procedure is called (i) consistent or exactly consistent if P(µ ∈ IN) ≥ 1− α
while it is asymptotically (first-order) consistent if lim

n∗→∞
P(µ ∈ IN)→ 1− α ; α is the desired

nominal value in the sense of Stein [19], Mukhopadhyay [28], and Chow and Robbins [24],
respectively. Moreover, if RN is the multistage sampling risk encountered in estimating the
mean µ by the corresponding sample measure, and if Rn∗ is the optimal fixed-sample-size
risk had σ been known, then the procedure is (i) first-order asymptotically risk efficient
if lim

n∗→∞
RN/Rn∗ = 1 and (ii) second-order asymptotic regret if lim

n∗→∞
(RN − Rn∗) remains
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bounded in the sense of Ghosh and Mukhopadhyay [27]. For more details, see Mukhopad-
hyay and de Silva [25], Ghosh, Mukhopadhyay, and Sen [29].

Mukhopadhyay [30] further developed a unified framework for the triple sampling
procedure by focusing on higher-order moments of the final stopping variable
N. Mukhopadhyay et al. [31] discussed the triple sampling sequential estimation for the
normal mean. Hamdy [32] extended Hall’s results and proposed a triple sampling proce-
dure to tackle the normal mean minimum risk point estimation problem and fixed-width
confidence interval estimation problem. Meanwhile, Liu [33] extended Hall’s results to
tackle hypothesis-testing problems for the normal mean. Yousef [34] discussed the sen-
sitivity of the normal-based triple sampling sequential point estimation to the normality
assumption, considering a class of an absolutely continuous distribution whose absolute
first six moments are assumed finite but unknown. After that, he generalized the study to
find the second-order asymptotic coverage probability and the second-order characteristic
operating function for the mean. He studied the capability of the constructed confidence
interval to detect possible shifts in the actual population mean occurring outside the confi-
dence boundaries; see Yousef [35]. Son et al. [36] proposed the triple sampling procedure
that tackled a fixed-width confidence interval and a hypothesis testing for the normal
mean while controlling Type II error probability. Yousef [37] discussed the performance of
the triple sampling procedure to a broader class of underlying continuous distributions
applying the second-order Edgeworth series. Both Son et al. [36] and Yousef [35,38] pro-
vided second-order approximations of the characteristic operating function of the inference.
Yousef [39,40] tackled estimation of the normal inverse coefficient of variation using Monte
Carlo simulation. For other underlying distributions, see Yousef et al. [41,42]. For triple
sampling minimum risk point estimation for a function of a normal mean under weighted
power absolute error loss plus cost, see Banerjee and Mukhopadhyay [43].

Chaturvedi and Tomer [44] discussed the minimum risk and bounded risk point esti-
mation problem for the normal mean when the coefficient of variation is known. They used
two sequential procedures: the triple sampling procedure of Hall [26] and the accelerated
sequential scheme Hall [45], using the Searls [1] estimator as an estimate for the normal
mean. Although we consider the same problem addressed by Chaturvedi and Tomer [44],
our approach differs in several ways. First, we combine point and confidence interval
estimation in a unified optimal decision framework. This technique utilizes all the available
data to construct quality control charts. The point estimation is for determining the center
line of the quality control chart (quality mean), and the confidence interval estimation
is for establishing the upper and the lower quality limits with a predetermined required
specification (2d), d(> 0). Second, our theorems and proofs are provided as second-ordered
approximations. Third and last, we provide more details regarding the asymptotic distribu-
tion characteristics of the final stopping time N, the estimate of the parameter µ, and its
higher-ordered moments.

2. Problem Setting

Assume a sample of size n, say, (x1, x2, . . . , xn), is available from the normal distribu-
tion with mean µ and variance σ2 = η2µ2, µ 6= 0. We use µ̂n = n

(
n + η2)−1 Xn, n ≥ 1 as

an initial estimate for the population mean µ. The aim is to discuss the minimum risk point
estimation problem for the normal population mean and construct a confidence interval
for the mean with a predetermined width and coverage probability. It has been shown
by Dantziq [46] that there is no fixed sample size n that can solve the problem except
sequentially. Therefore, we use the triple sampling procedure of Hall [26] to solve this
problem in the presence of a known coefficient of variation.



Symmetry 2023, 15, 672 4 of 13

3. Estimation of the Population Mean
3.1. Minimum Risk Point Estimation

Let Ln(A) be the loss function incurred by estimating the population mean µ by
Searls’ [1] estimator µ̂n for all n ≥ 1. That is,

Ln(A) = A|µ̂n − µ|2 + cn, (1)

where c is the cost per unit sample and assumed to be known to the experimenter, cn is the
cost of sampling, while the constant A(> 0) will be described after subsequent lines.

The risk associated with (1) is defined by

Rn(A) = AE|µ̂n − µ|2 + cn.

However,

E(µ̂n − µ)2 =
(

n + η2
)−2

n2E
(
Xn − µ

)2
+
(

n + η2
)−2

µ2η4,

substituting σ = ηµ, follows E(µ̂n − µ)2 = σ2(n + η2)−1.
Hence,

Rn(A) = Aσ2
(

n + η2
)−1

+ cn. (2)

By treating n as a continuous random variable, the minimum value for n is

n ≥
√

A/cσ− η2 = λσ− η2 = n∗, (Say) (3)

where λ =
√

A/c. As c→ 0 , λ→ ∞ . Since σ is unknown, then n∗ is unknown. It
was shown by Dantzig [46], Stein [19,20], and Seelbinder [47] that no fixed sample size
procedure exists that minimizes (2) uniformly over σ. Therefore, we propose the triple
sampling procedure of Hall [26] to estimate n∗ through estimation of σ.

The optimal risk, had σ been known, is

Rn∗(A) = 2cn∗ + cη2. (4)

To obtain further insight into the nature of A, write (3) as A = cσ−2(n∗ + η2)2 from
which we obtain the following representation of A:

A = c
(

n∗ + η2
)

I
(

n∗, σ2
)

. (5)

From (5), A is partially known (knowable) since it depends on the unknown n∗.
If we assume that A is known as mentioned in the literature on sequential estimation
(see Chaturvedi and Tomer [44], Hamdy [32], and Mukhopadhyay et al. [31]), then this
will impose restrictions on the parameter space of the population mean µ, as it can

be seen from (5) A ∝ n∗+η2

σ2 . Now c
(
n∗ + η2) is the cost of optimal sampling, and

I(n∗, θ) = σ−2(n∗ + η2) is the optimal Fisher information. Hence, we can define A as
the cost of optimal sampling information.

3.2. Fixed-Width Confidence Interval Estimation

Assume we need to establish a fixed-width confidence interval for the mean of the
normal distribution with a prescribed width of 2d, d(> 0), and coverage probability of at
least (1− α), 0 < α < 1. That is, we need to find a solution to the inequality

P(| µ̂n − µ| ≤ d) ≥ 1− α. (6)
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Since n
n+η2 → 1 as n→ ∞ , in probability, then it follows from Slutsky’s Theorem as

n→ ∞ , µ̂n = n
n+η2 Xn → N

(
µ, σ2

n

)
in distribution. This leads to

P
(√

n
σ
| µ̂n − µ | ≤ d

√
n

σ

)
≥ 1− α = 2Φ(a)− 1⇒ 2Φ

(
d
√

n
σ

)
− 1 ≥ 2Φ(a)− 1,

where Φ(u) =
∫ u
−∞

(√
2π
)−1

e−y2/2dy and a = Φ−1(1− α/2).
It follows immediately that

n ≥ (a/d)2 σ2 = n0. (say) (7)

If σ is known, then n0 is the optimal fixed-sample size required to solve (6) uni-
formly over σ > 0. Consequently, the desired fixed-width confidence interval for µ is
In = (µ̂n0 − d, µ̂n0 + d ). Similarly, as in the previous section, we propose the triple sam-
pling procedure of Hall [26] to estimate n0 through estimation of σ2.

4. Triple Sampling Procedure and Asymptotic Results

The following lines describe the triple sampling procedure based on (3).
Stage 1. Fix m, η, and the design factor δ, 0 < δ < 1 and generate a pilot sample of

size m (≥ 2) from the normal distribution and compute µ̂m = m
(
m + η2)−1Xm and S2

m as
initial estimates of µ and σ2, respectively.

Stage 2. Let S∗ =
[
δ
(
λSm− η2)]+ 1, where [x] is the largest integer less than x. Calculate

N1 = max{m, S∗ }. (8)

If m ≥ S∗, then stop sampling; consequently, the experiment terminates. Otherwise,
sample extra observations (S∗ −m ) and augment them with the previous observations.
The resultant sample is of size N∗1 .

Stage 3. Let T∗ =
[(

λSN∗1
− η2

)]
+ 1. Calculate

N = max{N1, T∗}. (9)

If N1 ≥ T∗, then no further observations are needed; otherwise, sample an extra obser-
vation (T∗ − N1) and augment them with the previous sample. As a result, we propose
µ̂N = N

(
N + η2)−1XN , and σ̂ = SN are, respectively, the sequential point estimates for µ

and σ.
To proceed further, the following assumption is necessary to setup all the upcoming

theorems. This assumption was setup by Hall [26].

Assumption A. The triple sampling procedure is carried out under the choice of m such
that as m→ ∞ , n∗ = O(λr), r ≥ 1,, and lim sup(m/n∗) < δ.

4.1. Minimum Risk Point Estimation

Theorem 1. Under assumption (A), for the triple sampling procedure (8) and (9) as λ→ ∞.

(i) E
(
XN1

)
= µ− ση

δn∗ + o
(
λ−1)

(ii) E
(

X2
N1

)
= µ2 − σ2

δn∗ + o
(
λ−1)

(iii) Var
(
XN1

)
= σ2

δn∗ + o
(
λ−1)

(iv) E
(
SN1

)
= σ− ση2

δn∗ + o
(
λ−1)

(v) E
(

S2
N1

)
= σ2 − σ2η2

δn∗ + o
(
λ−1)

(vi) Var
(
SN1

)
= σ2η2

δn∗ + o
(
λ−1)
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Proof. To prove (i), we condition on the σ− f ield generated by the pilot study phase by
X1, X2, . . . , Xm, and write

E
(
XN1

)
= E

{
N−1

1 E
{(

∑N1
i=1(Xi − µ + µ)

)
|X1, X2, . . . Xm

}}
= µ + E

{
N−1

1 σE
(

∑m
i=1 Zi + ∑N1

i=m+1 Zi|Z1, Z2, . . . ., ZM

)}
,

(10)

where Zi =
Xi−µ

σ i = 1, 2, . . . , m, are i.i.d random variables distributed as N (0,1).
Provided Z1, Z2, . . . , Zm, the summation ∑m

i=1 Zi is non-random, so is N1. Therefore,

E ∑N1
i=m+1 Zi = 0. (11)

and E
(
XN1

)
= µ + σE

{
N−1

1 ∑m
i=1 Zi

}
(12)

Then we expand N−1
1 in Taylor series around δn∗ as

N−1
1 = (δn∗)−1−

(
N1 − δn∗) (δn∗)−2+

(
N1 − δn∗)2 (δn∗)−3 + R1N1 ,

where R1N1 is the remainder term. Recall the second term in (12); we obtain

σE
{

N−1
1 ∑m

i=1 Zi

}
=
−σ2λδη E(∑m

i=1 Zi)
2

m(δn∗)2 +
−σλ2δ2η2 E(∑m

i=1 Zi)
3

m(δn∗)3 + E(R1N1)

= −ση
δn∗ + E(R1N1)

Now, the remainder term E(R1N1) = σλ3δ3η3E{(∑m
i=1 Zi)

3 (ν)−3}, where v is a ran-
dom variable lying in between N1 and δn∗. If N1 ≤ ν ≤ δn∗ and since m ≤ N1, we
obtain

E(R1N1) = σλ3δ3η3E{(∑m
i=1 Zi)

4
(ν)−4} ≤ σ4λ3δ3η3

m5 E(
X− µ

σ/
√

m
)

4

= 3
η3

m
= o(λ−2)

as m→ ∞ . Similarly, when δn∗ ≤ ν ≤ N1. Thus, we have

E(R1N1) = σ4λ3δ3η3E{(∑m
i=1 Zi)

4
(ν)−4} ≤ σ4λ3δ3η3

m2(δn∗)3 E(
X− µ

σ/
√

m
)

4

=o
(

λ−2
)

as m→ ∞ , where we have used the assumption that m/n∗ ≈ δ as m→ ∞ . Finally, we obtain

E
(
XN1

)
= µ− ση

δn∗
+ o(λ−1

)
,

which proves (i) of Theorem 1.
Hence, (iv) of Theorem 1 is straightforward if we write SN1= ηXN1 .
To prove (ii), we condition on the σ− f ield generated by X1, X2, . . . , Xm and write

E
(

X2
N1

)
= E

{
N−2

1 E
(

∑N1
i=1 Xi − µ + µ

)2
|X1, X2, . . . , Xm

}
= E

{
N−2

1 E{(∑N1
i=1(Xi − µ))

2
+ 2µN1 ∑N1

i=1(Xi − µ) + N2
1 µ2}|X1, X2,...Xm

}
= µ2+E{ N−2

1 E{(∑m
i=1(Xi − µ) + ∑N1

i=m+1(Xi − µ))
2
+ 2µN1 ∑m

i=1(Xi − µ)}}|X1, X2, ..., Xm

= µ2 + I + I I.

Thus,

I = E{N−2
1 E(∑m

i=1 (Xi − µ))
2}+ E{N−2

1 σ2(N1 −m)}|X1, X2, . . . , Xm. (13)
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The second term in (13)

E
{

N−2
1 σ2(N1 −m)}≤ σ2(E

(
N−1

)
= o(λ−1

)
.

Therefore, the first term in (13)

I = E{
−2
N
1
{E(∑m

i=1(Xi − µ))2 + 2 ∑m
i=1(Xi − µ)E ∑N1

i=m+1(Xi − µ)

+E(∑N1
i=m+1(Xi − µ))

2
}}|X1, X2, . . . , Xm.

Provided the σ− f ield generated by X1, X2, . . . Xm, the summation ∑m
i=1(Xi − µ) is

non-random, so is N1. Thus, similar to the arguments used above and the fact that

E ∑N1
i=m+1(Xi − µ) = 0,

and

EN−2E(∑N1
i=m+1(Xi − µ))

2
} = E{N−2

1 σ2(N1 −m)} ≤ σ2E(N−1) = o(λ−1)

provides
I = E{N−2

1 (∑m
i=1(Xi − µ))2}+ o(λ−1).

Consequently, we expand N−2
1 in Taylor series around δn∗ and substitute N1 = ηXN1 ,

to obtain

I =
E(∑m

i=1(Xi − µ))2

(δn∗)2 − 2µδλE(∑m
i=1(Xi − µ))3

(δn∗)2m
+ E(R2N1),

for the normal distribution, E(∑m
i=1(Xi − µ))3 = 0, and E(∑m

i=1(Xi − µ))2 = σ2m and
I = σ2m

(δn∗)2 + E(R2N1) by assumption A, m
n∗ ≈ δ. Furthermore, E(R2N1) = o(λ−2) by

arguments similar to those used to evaluate E(R1N1) = o
(
λ−1), and finally,

I =
σ2

δn∗
+ o

(
λ−1

)
.

Now, recall I I:
I I = E{2µN−1

1 {∑
m
i=1(Xi − µ)}},

and expand N−1
1 in Taylor series expansion; while we substitute N1= ηXN1 , we obtain

I I = −2µση

δn∗
+ o
(

λ−1
)
= −2σ2

δn∗
+ o
(

λ−1
)

.

Combine terms until we finally obtain

E
(

X2
N1

)
= µ2 − σ2

δn∗
+ o
(

λ−2
)

,

which proves (ii) Theorem 1. Parts (iii), (v), and (vi) follow immediately; we omit further
details for brevity.

The following Theorem 2 provides a second-order approximation of the expectation
of a real-valued function g(> 0)o f SN1 . �

Theorem 2. Let g(>0) be a real-valued continuously differentiable and bounded function
in a neighborhood around σ, such that Sup

n≥m
g(n) = o|g′′′ (n∗)|; then, as λ→ ∞ , we obtain

Eg
(
SN1

)
= g(σ)− ση2

δn∗
g′(σ) +

σ2η2

2(δn∗)
g′′ (σ) + o(g′′′ (λ))
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Proof. By expanding g
(
SN1

)
around σ using the Taylor series and taking the expectation

over the terms we obtain

Eg
(
SN1

)
= g(σ) + g′(σ)E

(
SN1 − σ

)
+

1
2

g′′ (σ)E
(
SN1 − σ

)2
+ o(g′′′ (λ))

utilizing parts (iv) and (v) of Theorem 1, and the assumption that g′′′ is a bounded function;
the proof is complete. �

Theorem 3. Under assumption (A), for the triple sampling procedure (8) and (9), for all
fixed µ and σ2, with Ln provided by (1), we obtain, as λ→ ∞,

(i) E(N) = n∗ − η2(1+δ)
δ + 1

2 + o(1)

(ii) E(N − n∗)2 = n∗η2

δ + o(λ)
(iii) E|N − n∗|3 = o(λ2)

Proof. Part (i): We noticed N = T except possibly on a set of measures zero. That is,

ψ = {S < m} ∪
{

λSN1 − η2 < δ
(

λSm − η2
)
+ 1
}

,

where
∫

ψ NmdP = o
(
λm−1). Therefore,

Nm =
((

λSN1 − η2
)
+ βN1

)m
+ o
(

λm−1
)

,

where βN1 = 1−
{(

λSN1 − η2)− [(λSN1 − η2)]}. From Hall [26], as λ→ ∞ , βN1

D→ U(0, 1).
By setting m = 1, we obtain

E(N) = E
(

λSN1 − η2
)
+ E

(
βN1

)
+ o(1).

Part (iv) of Theorem 1 justifies (i) of Theorem 3. Next,

E(N− n∗)2 = λ2E
(
SN1 − σ

)2

Substitute (vi) of Theorem 1, and the proof of part (ii) is immediate. Part (iii) of
Theorem 3 is straightforward if we use Theorem 2 with g

(
SN1

)
= S3

N1
; we obtain

E|SN1 − σ|3 = o
(

λ−1
)

.

Part (i) of Theorem 1 shows that if η2 > δ
2(1+δ)

then we attain early stopping. �

Lemma 1 provides a second-order approximation of a real-valued continuously differ-
entiable function 〈(> 0) of the final stage stopping time N.

Lemma 1. Let 〈(>0) be a real-valued, continuously differentiable, and bounded function
around n∗, such that sup

n>m
|〈h′′′ (n)| = o|〈′′′ (n∗)|; as λ→ ∞ , then we obtain

E(〈(N)) = 〈(n∗) + 〈′(n∗)
{
−η2(1 + δ)

δ
+

1
2

}
+

n∗η2〈′′ (n∗)
2δ

+ o
(

λ2|〈′′′ (n∗)|
)

.

Proof. The proof follows immediately by expanding 〈(N) around n∗ and taking the
expectation all over the terms; we obtain

E(〈(N)) = 〈(n∗) + 〈′(n∗)E(N − n∗) +
〈′′ (n∗)

2
E(N − n∗)2 +

1
6

E
{
〈′′′ (ρ)(N − n∗)3

}
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By utilizing Theorem 3, parts (i), (ii), and (iii), the proof is complete. �

Theorem 3. For the triple sampling procedure (8) and (9) and (1), the asymptotic risk and
regret, as λ→ ∞, is

(i) RN(A) = 2cn∗ + cη2 + c
δ η2 + o(λ)

(ii) ω(A) = c
δ η2 + o(1)

Proof. (i) It is seen that

ERN(A) = AE(µ̂N − µ)2 + cE(N),
E(µ̂n − µ)2 = ∑∞

n=m E
(
(µ̂N − µ)2|N = n

)
P(N = n).

Since the events {N = n} and µ̂N are stochastically independent for all n = m,
m + 1, . . . then,

E(µ̂n − µ)2 = ∑∞
n=m E(µ̂n − µ)2 P(N = n) = ∑∞

n=m
σ2

n + η2 P(N = n)= E
(

σ2

N + η2

)
.

It follows that

RN(A) = c
(

n∗ + η2
)2

E
(

1
N + η2

)
+ cE(N).

By using Lemma 1 and (i) of Theorem 3, we obtain

E
(

1
N + η2

)
=c
(

n∗ + η2) +
cη2(1 + δ)

δ
− c

2
+

cη2n∗

δ(n∗ + η2)
+o
(

λ−2
)

.

Hence,

RN(A) = c
(

n∗ + η2
)
+

cη2(1 + δ)

δ
− c

2
+

cη2n∗

δ(n∗ + η2)
+ o
(

λ−2
)

.

The proof of part (i) is complete.
(ii) It is known that

ω(A) = RN(A)− Rn∗(A) =
cη2n∗

δ(n∗ + η2)
+ o
(

λ−1
)

,

ω(A) =
cη2

δ

(
1− η2

n∗ + η2

)
+ o
(

λ−1
)

as λ→ ∞.

The proof of part (ii) is complete. �

Part (ii) shows that the amount of regret incurred by estimating the population mean

by the Searls’ estimator is cη2

δ

(
1− η2

n∗+η2

)
. Thus, the smaller the coefficient of variation, the

smaller the regret.

4.2. Triple Sampling Fixed-Width Confidence Interval

Recall that the triple-sampling confidence interval IN = (µ̂N − d, µ̂N + d,). Then, the
asymptotic coverage probability is

P(µε IN) =∑∞
n=m(P| µ̂N − µ| ≤ d, N = n)= ∑∞

n=m(P|µ̂N − µ| ≤ d|N = n) P(N = n)
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The results of Anscombe [48] provide the asymptotic distribution of µ̂N as stan-

dard normal,
√

N(µ̂N−µ)
σ → N (0, 1), as m→ ∞, independent of the random variable

N = m, m + 1, m + 2, . . ..
Thus,

Pη(µ ∈ IN) = ∑∞
n=m

(
P
∣∣∣∣√n

σ
(µ̂n − µ)

∣∣∣∣ ≤ d
√

n
σ

)
P(N = n) = E

{
2Φ
(

d
σ

√
N
)
− 1
}

, (14)

where Φ(a) =
a∫
−∞

1√
2π

e−t2/2σ2
dt.

By using Lemma 1 with h(N) = Φ(N) we acquire as d→ 0, we obtain

Pη(µ ∈ IN) = (1− α)− aφ(a)
4δn∗

{
η2
(

a2 + 5 + 4δ
)
− 2δ

}
+ o
(

d2
)

, (15)

where φ is the probability density function of N(0, 1).
It is evident from (15) that the performance of the asymptotic coverage probability de-

pends on the value of η2. That is, if η2 > 2δ
a2+5+4δ

, then the asymptotic coverage probability

is always less than the desired nominal value, while if η2 < 2δ
a2+5+4δ

, the procedure exceeds
the desired nominal value. This shows that the value of the coefficient of variation controls
the procedure. For example, at δ = 0.5 and for 1− α = 0.9, 0.95, and 0.99, the respective
η2 = 0.10303, 0.09224, and 0.07323. For example, the calculated coverage probability at
δ = 0.5, n∗ = 500, and for 1− α = 0.95 at η = 0.01, 0.3, and 0.5 is, respectively, 0.95011,
0.95, and 0.9498. This shows that knowing the coefficient of variation would control the
coverage probability.

For the triple sampling coverage probability for µ using the classical sample mean as
an estimator of the mean and with unknown η as d→ 0, see Hall [26] and Yousef [35,37].

P(µ ∈ In) = (1− α)− aφ(a)
2δn∗

(
a2 − δ + 5

)
+ o
(

d2
)

(16)

It is evident from (16) that the asymptotic coverage probability is always less than
(1− α) and attains the nominal value only asymptotically.

5. Monte Carlo Simulation

To visualize the asymptotic results obtained in the above theorems, wrote FORTRAN
codes and ran them using Microsoft Developer Studio software with IMSL. We generated a
pilot sample of size m from the normal distribution with mean µ and variance σ2 = η2µ2.
We took n∗ = 24, 43, 61, 76, 96, 125, 171, 246, and 500; see Hall [26]. Such selected
values of the optimal sample size allowed us to explore the procedure’s performance as the
optimal sample size increased. For brevity, we took µ = 2, δ = 0.5, m = 15, 1− α = 95%,
and η = 0.3. The number of replications was taken at 50,000. For more details about the
simulation methodology, see Yousef [37,40].

The estimates were as follows: N was the simulated estimate for n∗ with standard
errors S

(
N
)
; µ̂ was the simulated estimate for the population mean with standard errors

S(µ̂); σ̂ was the simulated estimate for the population variance with standard errors S(σ̂);
ω̂ was the simulated estimate for the asymptotic regret; and finally, 1− α̂ was the simulated
estimate for the asymptotic coverage probability. Table 1 shows that, as the optimal sample
size increased, N was always less than n∗ (early stopping), with standard errors decreasing.
µ̂ approached the actual value of the mean, with standard errors decreasing. σ̂ approached
the actual value of 0.6, with standard error decreasing. ω̂ was finite and positive (positive
regret). The simulated coverage probability 1− α̂ was always less than the targeted value
and attained it only asymptotically. This means the triple sampling procedure attains all
the above customary measures except exact consistency and provides good estimates in
the presence of η.
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Table 1. The simulated estimates of the triple sampling procedure at η = 0.3.

n* N S (N) µ̂ S (µ̂) σ̂ S (σ̂) ω̂ 1 − α̂

24 19.36 0.037 1.9901 0.0006 0.5700 0.0004 4.27 0.9062

43 38.22 0.068 1.9937 0.0005 0.5660 0.0004 13.59 0.9040

61 56.55 0.080 1.9960 0.0004 0.5773 0.0003 12.43 0.9218

76 71.65 0.088 1.9971 0.0003 0.5838 0.0003 11.43 0.9279

96 91.81 0.098 1.9982 0.0003 0.5889 0.0002 9.81 0.9344

125 120.95 0.112 1.9985 0.0003 0.5923 0.0002 8.02 0.9380

171 166.99 0.130 1.9984 0.0002 0.5949 0.0002 4.60 0.9433

246 242.39 0.154 1.9992 0.0002 0.5968 0.0001 7.62 0.9445

500 496.57 0.222 1.9996 0.0001 0.5985 0.0001 11.04 0.9474

6. Conclusions

We discussed the triple sampling estimation for the mean of the symmetric distribution–
normal distribution when the coefficient of variation is known. We used the Searls’ estima-
tor as an initial estimator for the mean. Such a problem can be used in quality control. We
studied the minimum risk point estimation under a squared error loss function with linear
sampling cost and found the asymptotic risk and regret. Then, we utilized the asymptotic
results to construct a confidence interval with a precise width and coverage probability.
We found the region where the asymptotic coverage probability was either less than or
exceeded the desired nominal value. The theoretical results show that the procedure is
sensitive to the choice of the coefficient of variation. Finally, a series of simulation results
were conducted to explore the performance of the estimates as the optimal sample size
increased, and these agreed with the theoretical results.
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