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Introduction: Food allergy is a significant public health problem with limited

treatment options. As Food Allergy Herbal Formula 2 (FAHF-2) showed potential

as a food allergy treatment, we further developed a purified version named EBF-2

and identified active compounds. We investigated the mechanisms of EBF-2 on IgE-

mediated peanut (PN) allergy and its active compound, berberine, on IgE production.

Methods: IgE plasma cell line U266 cells were cultured with EBF-2 and FAHF-2,

and their effects on IgE production were compared. EBF-2 was evaluated in a

murine PN allergy model for its effect on PN-specific IgE production, number of

IgE+ plasma cells, and PN anaphylaxis. Effects of berberine on IgE production, the

expression of transcription factors, andmitochondrial glucosemetabolism in U266

cells were evaluated.

Results: EBF-2 dose-dependently suppressed IgE production and was over 16

times more potent than FAHF-2 in IgE suppression in U266 cells. EBF-2

significantly suppressed PN-specific IgE production (70%, p<0.001) and the

number of IgE-producing plasma cells in PN allergic mice, accompanied by

100% inhibition of PN-induced anaphylaxis and plasma histamine release

(p<0.001) without affecting IgG1 or IgG2a production. Berberine markedly

suppressed IgE production, which was associated with suppression of XBP1,

BLIMP1, and STAT6 transcription factors and a reduced rate of mitochondrial

oxidation in an IgE-producing plasma cell line.
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Abbreviations: FAHF-2, Food Allergy Herbal Formula 2

Dimethyl sulfoxide; HPLC, High performance liquid chrom

acetate and butanol purified FAHF-2; BBR, berberine; FA, fo

plasma cells; PNA: peanut allergy; TCM, Traditional Chi

week or weeks; i.g., intragastrically; SPC (s), splenocyte

extract; Ab, antibody; CT, cholera toxin; ER, Endoplasmic r

binding protein; BLIMP, B lymphocyte-induced maturation

Transducer and Activator of Transcription.
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Conclusions: EBF-2 and its active compound berberine are potent IgE

suppressors, associated with cellular regulation of immunometabolism on IgE

plasma cells, and may be a potential therapy for IgE-mediated food allergy and

other allergic disorders.
KEYWORDS

berberine, IgE, food allergy, metabolism, anaphylactic allergic reaction
Introduction

Food allergy (FA) has rapidly increased over the past 2 decades

affecting 32 million Americans, with annual costs of $25 billion (1–9).

FA anaphylaxis, a potentially life-threatening condition, increased

200-400% in toddlers to teens (10) accounting for up to 81% of

pediatric anaphylaxis (1). Peanut allergies are lifelong and cause

severe reactions and there is currently no cure (1, 10–15). Common

treatments, such as prophylactic-food avoidance, or therapeutic-food

allergen oral immunotherapy (OIT) are limited and impractical (16–

22). Therefore, there is a significant need for safe, effective, and non-

food restricted therapeutics. FA is primarily mediated by food protein

specific immunoglobulin E (sIgE) (23). IgE-producing long-lived

plasma cells (IgE+LPC) cause “lifelong allergy” (24–26). Persistent

IgE is a significant barrier to FA mitigation. Omalizumab, an anti-IgE

antibody, “traps” IgE but does not target its production. OIT,

including Palforzia®, does not decrease IgE production, but in fact

may paradoxically increase IgE levels, carrying a significant immune

reaction risk (27–32). Therefore, a safe and effective therapy that

targets excess IgE production represents an important strategy for

food allergy treatment.

In recent years, a substantial number of findings have been made

in the area of immunometabolism, the changes in intracellular

metabolic pathways in immune cells that alter their function (33).

Glycolysis is one of the major metabolic pathways involved in

immune cell regulation. Immunoglobulins are glycoproteins that

are produced, glycosylated, and secreted in the endoplasmic

reticulum (ER), requiring energy and metabolites. Mitochondria are

a highly efficient organelle for fueling the ER through ATP

consumption via oxidation (respiration) (34). Alternative energy

(ATP) production is via glycolysis though pyruvate. However, this

pathway generates less ATP than mitochondrial oxidation (3 vs. 31

ATP molecules). IgE is the most heavily glycosylated isotype, with

sugar moieties accounting for 12-14% of its molecular weight

compared to approximately 3% for IgG (35–38). As more than 90%

of glucose uptake in plasma cells (PCs) is utilized for antibody
; PN, Peanut; DMSO,

atography; EBF-2, Ethyl

od allergy; IgE+PC, IgE

nese Medicine; wk (s),
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glycosylation, IgE+PCs face greater metabolic stress compared to

other isotype PCs. It was reported that inhibition of glycosylation

essentially shuts down IgE release while IgG is largely unaffected (39,

40). Plasma cells require high energy and are regulated by specific

transcription factors. XBP1 expression, which is high in plasma cells,

is important for plasma cell differentiation (41) and secretory function

(42, 43). XBP1 promotes gene expression involved in mitochondrial

and ER biogenesis (44) and is required for antibody generation of

heavy and light chain (IgH/IgL) transcripts (45). Loss of XBP-1 is

associated with complete absence of plasma cells and circulating

immunoglobulins (46, 47). This is due to inefficient processing and

exportation of immunoglobulins and accumulation of unfolded

proteins further contributing to ER stress (48).Thus, modulating

XBP1 and mitochondrial glucose metabolism may affect IgE+ PC

antibody production and secretion (44), but direct evidence is limited.

Like FA, immunologic responses in parasite infections are

associated with excessive production of IgE. FAHF-2 derived from

Fructus mume formula, which has been used to treat parasite infection

traditionally, showed a reduction of peanut specific IgE and protected

against anaphylaxis in murine models of peanut allergy (49–53),

suggesting a possible FA treatment. A new purification method was

developed using ethyl acetate and butanol to concentrate active

ingredients. The objective of this study is to investigate the potency

of EBF-2 on IgE production in vitro and in vivo, and to understand

underlying mechanisms on immunometabolism regulation of IgE

producing cells. We first compared the effects of EBF-2 and FAHF-2

on IgE production across-multiple batches using IgE producing

plasma cells and chromatographic approaches. We also assessed

EBF-2’s effects on PN-specific IgE production, IgE+PC count, and

anaphylactic symptoms in a murine peanut allergy model.

Furthermore, we investigated the effect of the bioactive compound

berberine (BBR) on XBP1 expression and mitochondrial metabolism

in a human IgE+PC line.
Material and methods

EBF-2 constituents, and production

EBF-2 was generated by purification of FAHF-2 with a safe

solvents consisting of butanol and ethyl acetate (52). 8 herb

constituents (Prunus mume, Zanthoxylum schinifolium, Angelica

sinensis, Zingiber officinalis, Cinnamomum cassia, Phellodendron

chinense, Coptis chinensis, and Panax ginseng) were extracted using

butanol, while the Ganoderma lucidum was extracted using ethyl
frontiersin.org
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acetate and the dried extracts were combined to generate the EBF-2

powder substance. Three batches of FAHF-2 and EBF-2 were tested in

this study-manufacturing date and shelf life are listed in Supplemental

Table 1. Botanical information for individual herbs, including

geographical location, harvest season, pre-processing, heavy metal

and pesticide residues, and quality control methods, have been

published previously (54).
Cell culture and IgE measurement

The IgE-producing human plasma cell line U266 (ATCC, MD)

was grown in complete media containing RPMI 1640 medium

supplemented with 10% FBS, 1 mM sodium pyruvate, 1×10-5 M b-
ME and 0.5% penicillin-streptomycin (55, 56) at 2×104 cells/mL in 48

well plates. Three batches of FAHF-2 and 3 batches of EBF-2 at serial

dilution concentrations starting at 500 mg/mL and 120 mg/mL,

respectively, were used in culture for 6 days. Berberine

(purity>98%, Sigma Aldrich, St Louis, MO) at serial concentrations

starting at 5 mg/mL were also tested on U266 cells. Supernatants were

harvested, IgE levels were determined by ELISA (Mabtech Inc, OH)

and cell viability was evaluated by trypan blue exclusion (55).
Mice, peanut sensitization, and EFB-2
treatment

Six-week-old female C3H/HeJ mice purchased from the Jackson

Laboratory (Bar Harbor, ME) were maintained in pathogen-free

facilities at the Mount Sinai vivarium according to standard

guidelines (57). Mice were intragastrically (i.g.) sensitized with 10
Frontiers in Immunology 03
mg of homogenized peanut (PN) in 0.5 mL PBS containing 75 mg

sodium bicarbonate, 10 µg of the mucosal adjuvant cholera toxin

(CT) (List Laboratories, Campbell, CA), and 16.5 µL (1.1 µL/g body

weight) of 80 proof Stolichnaya Vodka® (a source of food grade

ethanol) to neutralize stomach pH and increase gastrointestinal

permeability, three times during week 0 (50). Thereafter,

sensitization was done weekly as above except that the CT dose

given was 20 µg. The boosting dose of 50 mg PN was given at weeks

6 and 8 using the same gavage solution as in weeks 1 through 5.

These mice were defined as peanut allergic (PNA) mice. One day

following the last boost, at which hypersensitivity was developed

(58), PNA mice received EBF-2 treatment at 3.84 mg in 0.5 mL

drinking water, twice a day for 4 weeks. One week after completing

the treatment, mice were challenged with ground peanut (200 mg)

i.g. and again 4 weeks later. Anaphylactic reactions were accessed

(Figure 1A). Sham treated PNA mice and naïve mice (unsensitized/

untreated) were used as disease and normal controls, respectively. In

a separate experiment, to determine the persistent impact of EBF-2

on IgE producing cells by flowcytometry analysis, EBF-2 treated,

and sham treated PNA mice received periodic oral exposure of

either boiled (10 mg/mouse) or roasted peanut (200 mg/mouse)

approximately every 10-15 weeks. Mice were terminated using

ketamine/xylazine euthanasia protocol. Briefly, mice were given

over-dose (15µL/g body weight) of ketamine-xylazine mixture

(100mg/mL and 10 mg/mL respectively) intraperitoneally. After

the mice were in deep anesthetics, blood samples were collected, and

mice were sacrificed by cervical dislocation after which tissue

samples were collected. All animal experiments were approved

and performed according to the instruction and guidelines of the

Institutional Animal Care and Use Committee (IACUC) of Icahn

School of Medicine at Mount Sinai.”
TABLE 1 In vivo sub-chronic safety assessment of EBF-2.

Treatment (5x daily dose)
Reference range

Water (n=5) EBF-2 (n=5)

Morbidity 0/10 0/10 NA

Mortality 0/10 0/10 NA

ALT (U/L) 32.6±12.4 55.8±27.7 28-129

BUN (mg/dL) 18.8±3.5 23.2±1.9 7.0-28

WBC (103/µL) 5.1±1.1 6.2±1.8 3.9-13.9

RBC (103/µL) 10.4±0.7 9.9±0.9 7.14-12.2

Hb (g/dL) 13.3±1.1 12.4±1.2 10.8-19.2

PLT (103/µL) 645.6±243.2 923.6±483.2 565-2159

Neu (103/µL) 1.3±0.3 1.7±0.6 0.42-3.09

L (103/µL) 3.3±0.9 3.4±0.9 2.88-11.15

Eos (103/µL) 0.1±0.0 0.1±0.0 0.01-0.50

Bas (103/µL) 0.0±0.0 0.0±0.0 0-0.14
Naive mice were fed a therapeutic dose 5 times daily for 14 days. Sham fed mice served as controls (sham). Blood samples were collected after termination of experiments. Blood urea nitrogen (BUN)
and alanine aminotransferase (ALT) measurements for evaluation of kidney and liver functions, respectively, and complete blood count (CBC) testing were performed. ALT, Alanine Aminotransferase;
BUN, Blood Urea Nitrogen; WBC, White Blood Cells; RBC, Red Blood Cells; Hb, Hemoglobin; PLT, Platelets; Neu, Neutrophils; L, Lymphocytes; Eos, Eosinophils; Bas, Basophils; NA, Not available.
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Assessment of hypersensitivity reactions

Symptoms were evaluated 30-40 minutes following oral PN

challenge as described previously (51, 59), and symptoms were

scored utilizing the scoring system ranging from 0 (no reaction) to

5 (fatal reactions), described previously (59). Rectal temperatures

were also measured immediately after scoring using a rectal probe

(Harvard Apparatus, Holliston, MA).
Measurement of plasma histamine levels

Blood samples were collected via sub-mandibular bleeding 30

minutes after scoring and measurement of body temperature

following oral peanut challenge. Plasma was harvested within 20

minutes after blood collection and stored at -80°C until analyzed.

Histamine was measured using a commercial enzyme immunoassay

kit (Fisher Scientific, NJ) as described by the manufacturer (58).
Measurement of serum peanut specific-IgE,
IgG1 and IgG2a

PN-specific-IgE, IgG1 and IgG2a in serum was measured as

reported previously (50, 51, 59). Briefly, microtiter plates were

coated with peanut extract (sample wells), anti-mouse IgE (BD

Biosciences, San Jose, CA, for IgE reference wells), or DNP-HSA

(Sigma-Aldrich for IgG2a and IgG1 reference wells) and incubated

overnight at 4° C. Subsequently, the plates were blocked with 2% BSA-

PBS after washing. Washed plates were incubated with diluted serum

samples, mouse IgE (BD Biosciences), anti-DNP-IgG2a, or anti-

DNP-IgG1 (Accurate Antibodies, Westbury, NY) overnight at 4°C

and later developed by using biotinylated anti-IgE, IgG2a or IgG1

detection antibodies (BD Biosciences), avidin-peroxide, and ABTS

substrate (KPL, St Paul, MN).
Flow cytometry analysis of IgE producing
plasma cells

Mice were sacrificed at week 78 of the protocol and single-cell

suspensions of splenocytes were prepared in ice cold staining buffer

(PBS including 0.5 mM EDTA, 0.05 mM sodium azide, 0.5% BSA).

First, surface staining with unlabeled anti-IgE (to block membrane

IgE), APC anti-CD138, BV711-anti-CD3, and anti-CD16/32 (Fc-

block) (all from BD Biosciences), CA was performed. Live-dead

discriminating dye (Live-Dead Aqua, Invitrogen, CA) was included.

Cells were washed and incubated with fixation/permeabilization

buffer (BD Biosciences, CA) for 15 mins, washed with

permeabilization buffer (BD Biosciences, CA), and then incubated

with FITC-anti-IgE, in permeabilization buffer. After washing, cells

were treated with Cytofix buffer (BD Biosciences, CA) for 15 mins for

post-fixation, washed, and then data were acquired on an LSRII flow

cytometer (Becton Dickinson, CA). Flow cytometry analysis was

performed using Flow Jo (Tree Star, CA) as follows. Live singlet

cells were then analyzed for IgE+ plasma cells (FITC-IgE +; APC-

CD138+ cells).
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Safety testing of EBF-2 in a mouse model

To evaluate the safety of EBF-2, the sub-chronic toxicity assay was

performed on C3H/HeJ mice as in our previous studies (52). Naïve

C3H/HeJ mice were fed 40 mg/mL of EBF-2, which is 5 times the

daily therapeutic dose, for 14 days. Sham (water) fed mice served as

controls (sham). Blood samples were collected at the end of the

experiment. Liver and kidney function and complete blood count

(CBC) were performed by ALX laboratories, NY.
High performance liquid chromatography
fingerprint analysis of EBF-2 and ex vivo
detecting EBF-2 active compound by liquid
chromatography–mass spectrometry

HPLC analysis was performed on a Waters 2690 HPLC system

coupled with a 2996 PDA detector (Waters, Milford, MA) for each

batch of FAHF-2 and EBF-2 using the method described previously

(52). Each sample was first dissolved in 2 mL of the mixture of mobile

phases at a 1:1 ratio and centrifuged at 10,000 rpm for 10 mins. The

sample amount injected for HPLC fingerprint analysis was based on

the human daily dose used (1:200 of human daily dose). FAHF-2’s

human daily dosage is 19.8g, therefore the concentration of FAHF-2

injected was 99mg/mL. For EBF-2, the human daily dose is 4.58g,

therefore the concentration of EBF-2 injected to HPLC was 22.9mg/

mL. 10 µL of the supernatant was injected into the HPLC system and

separated on a ZORBAX SB-C18 (5 µm, 150 mm x 4.6 mm, column

(Agilent, Santa Clara, CA). Aqueous formic acid (0.1%) was used as

mobile phase A, while acetonitrile (Fisher Scientific, NJ) served as

mobile phase B. The separation was performed using a linear gradient

elution of 2% to 25% mobile phase B in 45 min, 25% to 35% in the

following 25 mins, 35% to 55% in the next 15 mins, and 55% to 75%

in the final 10 mins. The flowrate was maintained at 1 mL/min. Data

was collected and processed using Waters Empower software.

EBF-2 active compound in tissue samples were analyzed using

LC-MS system. Briefly, tissue samples were cut into small pieces and

soaked in methanol. The extracts were analyzed on an Agilent 1200

HPLC instrument with an Agilent Eclipse Plus-C18 column (5 mm,

250 mm × 4.6 mm), coupled with an Agilent 6130 Single Quad Mass

Spectrometry. The samples were eluted with acetonitrile-water (5-

95%) containing 0.1% formic acid (v/v) over 100 mins.
Real time polymerase chain reaction

U266 cells (1.0 × 106 cells/mL) were incubated with or without

berberine for 3 days. Cells were harvested and total RNA was isolated

using Trizol (Gibco BRL, Rockville, MD). The RNA concentrations

were quantified by triplicate optical density (OD) readings (Bio-Rad

SmartSpect 3000; Bio-Rad, Hercules, CA). Reverse transcription was

performed to yield cDNA using ImProm-II™ Reverse Transcriptase

(Promega Corporation, Madison, WI) as per the manufacturer’s

instructions. The RT-PCR amplification was performed using

Maxima™ SYBR Green qPCR Master Mix (2X) kit (Fisher

Scientific, Pittsburgh, PA). Primer sequences of XBP1, BLIMP1,

STAT-6, BCL-6 and GAPDH were from previously published

literature and listed in Supplemental Table 2 (55, 60–62).
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Seahorse mitochondrial stress assay

To determine the effect of EBF-2’s active compound berberine on

mitochondrial metabolism of an IgE producing plasma cell line, we

used the Seahorse mitochondrial stress assay. XF cell Mito stress test

kits were obtained from Agilent (Santa Clara, CA). Each well of the

XF24 cell culture plates was coated with 50 µL of Corning Cell-Tak

cell and tissue adhesive at a density of 3.5 µg/cm2 for 20 mins followed

by washing with 200 µL water and 20 min of drying. Fresh assay

medium was prepared by supplementing 2 mM glutamine into XF cell

base medium, DMEM with an adjusted pH of 7.4. Next, 1 × 105 of

U266 cells resuspended in 100 µL of assay medium were seeded into

each well of the coated plate by centrifugation in a swing-bucket rotor

at 450 rpm for 1 min without braking. After reversing the orientation

of the plates, they were centrifuged again at 650 rpm for 1 min

without braking. Plates were transferred to a 37°C incubator not

supplemented with CO2 and incubated for 25-30 mins. Then, 500 µL

of warm assay medium, containing DMSO or various concentrations

of BBR was slowly and gently added into the wells. After a 15 mins

CO2-free incubation, the cells were ready for the assay on a Seahorse

XFe24 Analyzer. Oligomycin (3 µM final concentration), carbonyl

cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP, 3 µM final

concentration) and rotenone and antimycin (3 µM and 1 µM final

concentration, respectively) were diluted in the assay medium and

loaded into ports A, B, and C of the XF24 assay plate. The machine

was calibrated, and the assay was performed using the Mito stress test

assay protocol per the manufacturer’s recommendations. The

extracellular acidification rate (ECAR) and oxygen consumption

rate (OCR) were measured under basal conditions after sequential

addition of the above-mentioned drugs.
Statistical analysis

All statistical analyses were performed using GraphPad Prism 9

(San Diego, CA). One-way ANOVA (analysis of variance) was

performed followed by Bonferroni correction for all pairwise

comparisons. For skewed data, differences between groups were

analyzed by one-way ANOVA on ranks followed by Dunn’s method

for all pairwise comparisons. Data for symptom score correlation with

IgE were analyzed using Spearman correlation. Pearson correlation was
Frontiers in Immunology 05
used for all other correlation analyses. p-value calculations were two-

tailed and a p value < 0.05 was considered as statistically significant.
Results

EBF-2 dose-dependently inhibited IgE
production in an IgE plasma cell line

As compared to the untreated cells, EBF-2 significantly decreased IgE

production beginning at 1.9 mg/mL (p<0.05) with complete inhibition of

IgE production at 60 mg/mL (p<0.001) (Figure 1A). The IC50 value was

4.70 ± 1.16 mg/mL (Figure 1B). There was no observed cytotoxicity at any

tested concentrations (Figure 1C). The parent formula FAHF-2 also

significantly decreased IgE production at 62.5 mg/mL (p<0.01) with

complete inhibition of IgE production at 500 mg/mL(p<0.001) (Figure

S1A). The IC50 value of the parent formula FAHF-2 was 79.7 ± 17.39 mg/
mL (Figure S1B), with no cytotoxic effect across all concentration (Figure

S1C). Furthermore, we analyzed the effect of three different batches of

FAHF-2 (F2-1106, F2-0202, F2-0909) (Figures S2A–C) and EBF-2 (EBF-

2-0303, EBF-2-0808, EBF-2-0130) (Figures S2D–F) on IgE production by

U266 cells respectively and found consistent results between different

batches. Taken together, EBF-2 is markedly more inhibitory on IgE

production than its parent formula while retaining high cellular safety

and batch to batch consistency
EBF-2 treatment suppressed peanut
anaphylaxis associated with suppression of
peanut specific-IgE without affecting IgG1
or IgG2a production

We next determined EBF-2’s inhibitory effect on IgE levels and its

protective effect against peanut anaphylaxis in a murine model

(Figure 2A). Four weeks after discontinuation of EBF-2 treatment (at

week 14 following initial PN sensitization), peanut (PN)-specific IgE

levels were significantly reduced by approximately 70% in EBF-2 treated

mice compared to sham treated mice (Figure 2B, p<0.05 vs. Sham).

Following intragastric challenge, all sham-treated mice developed

anaphylactic symptoms, with symptom severity scores ranging from

2-3. In sharp contrast, EBF-2 treated mice were completely protected
A B C

FIGURE 1

Inhibitory effect of EBF-2 on IgE production by plasma cell line U266 cells. (A) U266 cells were treated with EBF-2 at different concentrations and cultured
for 6 days. Supernatants were collected, and IgE levels were determined by ELISA. (B) IC50 values for EBF-2 were calculated to be IC50=4.70±1.16 mg/mL.
IC50 = 4.70 ± 1.16 mg/mL (C) Cell viability was measured by trypan blue excursion showed no cell cytotoxicity. IgE levels are expressed as Mean± SEM,
and significance is indicated by *p≤0.05, **p≤0.01, and ***p≤0.001 as compared to the untreated control. N=9 independent cultures over 3 batches.
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from anaphylaxis (Figure 2C, EBF-2 vs. Sham: median score 0 vs. 2,

p<0.05). Hypothermia, a decrease in core body temperature, is a

symptom of anaphylaxis in mice. We measured rectal temperatures

every 30 minutes after the intragastric challenge, EBF-2 prevented

hypothermia, the mean post-challenge body temperature in EBF-2

group was significantly higher than the Sham group and not different

from naïve mice (Figure 2D, sham vs. EBF-2 vs. naïve: 35.18±0.3°C vs.

37.33±0.2°C vs. 37.33±0.2°C, p<0.001 vs. sham). Anaphylaxis is

associated with an increase in plasma histamine levels and plasma

histamine levels in EBF-2 mice were markedly and significantly lower

than in shammice (Figure 2E Sham vs. EBF-2mean±SEM: 14,134±1004

nM vs. 1689±340 nM). The EBF-2 treated group’s plasma histamine

level was not significantly different from the normal range of histamine

levels in the naïve group (1392±213 nM). PN-specific IgG1 and PN-

specific IgG2a production were not affected (Figures 2F, G). In this

model, symptom severity and plasma histamine levels strongly

correlated with IgE levels (Figures 2H, I, r=0.74, p <0.01; r=0.81, p

<0.001, respectively), whereas body temperatures at challenge were

inversely correlated with IgE (Figure 2J, r=-0.73, p <0.01).

EBF-2 treatment produced long term
protection from peanut anaphylaxis and
reduced IgE+ plasma cell numbers

We investigated the long-term protection by EBF-2 and its effect on

long-lived IgE producing plasma cells in a peanut anaphylaxis murine
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model (Figure 3A). EBF-2 significantly reduced PN-specific IgE during

therapy (weeks 8-26) (p<0.001) and maintained consistent levels even after

completion of the treatment, up to week 78 (p<0.01, p<0.001) (Figure 3B).

Post-treatment challenges conducted at week 30, week 40 and week 70,

respectively, showed that EBF-2 treated mice were completely protected

from anaphylaxis (Figure 3C, EBF-2 vs Sham, p<0.05), prevented

hypothermia (Figure 3D, p<0.001), and reduced plasma histamine levels

(Figure 3E, p<0.001). Furthermore, EBF-2 treated mice showed significantly

lower numbers of the IgE+/CD138+ plasma cells from the spleen compared

to Sham treated mice (Figures 3F, G, p<0.001). There was a significant

correlation between IgE+/CD138+ plasma cells and PN-specific IgE levels

(Figure 3H, r=0.84, p< 0.0001). These data highlight the persistent

protection of EBF-2 from anaphylaxis following peanut exposure.
EBF-2 formula had a high safety profile
EBF-2’s safety was evaluated with a sub-chronic toxicity protocol.

C3H/HeJ mice were fed 5 times the normal daily dose of EBF-2 for 14

consecutive days and observed for 2 weeks. Nomorbidity or mortality was

observed. Serum ALT and BUN levels of EBF2 and sham-treated mice

were all within normal range (Table 1). CBC results in the EBF-2 treated

group were similar to those of sham treated mice and were all within the

normal range. Thus, the EBF-2 formula has a high safety profile.
A

B D E

F G IH J

C

FIGURE 2

Effect of EBF-2 in a peanut allergic mouse model. (A) Experimental design for sensitization, treatment, and challenge: 6 weeks old C3H/HeJ mice were
orally sensitized with 10 mg PN and 10-20 µg cholera toxin at weeks 0 through 5. Mice were boosted with 50 mg PN and 20 µg cholera toxin at weeks
6 and 8. Daily oral EBF-2 treatment (7.68mg/mouse/day) started at week 5 and continued for four weeks. Mice underwent oral PN challenges (200mg) at
week 10 and week 14. (B) PN specific IgE measured by ELISA at week 14. (C) Symptom scores; (D) Body temperatures and (E) Plasma histamine levels 30
mints following oral PN challenge at week 14. (F) PN-specific IgG1; and (G) PN-specific IgG2a were measured by ELISA. (H) Spearman correlation
between PN-IgE and symptom scores, (J) Pearson correlation between PN-IgE and Body temperature. (I) Pearson correlation between PN-IgE and
plasma histamine Bars indicate group means. *P < 0.05; ***P < 0.001 vs. Sham. N=4-5 mice/group.
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HPLC fingerprints reveal a higher berberine
peak in EBF-2 than FAHF-2 and detecting
BBR ex vivo after feeding a single dose of
EBF-2 by LC-MS

We previously showed that berberine (BBR) isolated from FAHF-2

and B-FAHF-2 reduced IgE by plasma cell lines and human PBMCs from

food allergic patients (55), and demonstrated that the concentration of

BBR can be a pharmacological marker of FAHF-2 and EBF-2. We

therefore determined the concentration of BBR in EBF-2 and compared

with parent formula FAHF-2 (Figure 4A). A total of 29 peaks (P) were

detected in FAHF-2 and EBF-2 batches. The major peak 13 (P13) was

identified as BBR (Figure 4B). The peak area of BBR (Mean ± SED) in

EBF-2 was significantly higher than that in FAHF-2 (62.83 ± 3.53% vs

33.26 ± 6.40% overall total peaks p<0.05 (Supplemental Table 3). We have

identified other peaks such as Magnoflorine (P6), Phellodendrine (P8),

Jatrorrhizine (P12), Ganolucidic acid D (P18), and Ganoderic acid H

(P27), but the differences between these peaks were not statistically

significant. After the purification process, the constituents (less polar

small molecules) in EBF-2 weremore concentrated.We also calculated the

BBR concentration by using the equation collected from the peak area of

BBR standard versus the concentration (BBR concentration (µg/mL) =

BBR pear area/1000/72.23). The BBR in FAHF-2 was calculated as 0.36%,

while the EBF-2 contains 4.4% of BBR. The BBR concentration was

approximately 12 times higher in EBF2 than in FAHF-2 (data not shown).

We detected BBR in liver and fat tissue 5 days after oral administration of
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EBF-2 by LC-MS and demonstrated that BBR is a major bioavailable

compound within EBF-2 when compared to naïve mice (Figure 4C).
EBF-2 bioactive compound BBR inhibited
IgE production and transcription factor
XBP1, BLIMP1, and STAT6, and increased
BCL-6 by IgE producing plasma cell

We evaluated the active compound BBR identified from EBF-2

and determined its effect on the regulation of IgE plasma cells at the

transcriptional level, in vitro using U266 cells. BBR dose-dependently

inhibited IgE production approaching 100% inhibition at 5 µg/mL

(Figure 5A), without any cytotoxicity across the doses (0.625 – 5 mg/
mL) (Figure 5B) with an IC50 value 1.946 mg/mL (Figure 5C). We

evaluated BBR’s effects on the gene expression of XBP1, BLIMP1 and

STAT-6, which are genes that have been shown to be upregulated

during plasma cell activation. BBR significantly inhibits the gene

expression of XBP1, BLIMP1 and STAT6 compared to untreated cells

(p <0.01, Figure 5D). BCL-6 reportedly inhibits long-lived plasma cell

survival, and it has been shown to be upregulated in plasma cell

activation. Therefore, we measured the effect of BBR on the gene

expression of BCL-6, however our results showed that the increase

expression of BCL-6 gene was not statistically significant. Taken

together, we showed that the suppression of IgE in IgE+ plasma B

cells by BBR is mediated by down-regulation of XBP1 and BLIMP1.
A

B D E
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C

FIGURE 3

Long term effect of EBF-2 on peanut-specific IgE, anaphylaxis and IgE+PC. (A) Experimental protocol. (B) Effect of EBF-2 on percent inhibition of PN-specific
IgE over duration of the experiment. (C–E) symptoms scores, body temperature and plasma histamine levels 30 minutes following challenges at weeks 30,
40 and 70. (F) Representative flow cytometry panels showing the percentage of IgE+/CD138+ PCs (upper right quadrant) in spleens of mice in sham, EBF-2,
and naïve groups. (G) Scatter graph showing data for individual mice across experimental groups shown in (F) Bars are group means. (H) Correlation between
IgE+/CD138+ plasma cells and PN-specific IgE levels in mice across all experimental groups. r value is the Pearson coefficient of correlation. *p<0.05,
**p<0.01, ***p<0.001 vs sham vs. sham. N=5 mice/group. PC, plasma cells.
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A
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FIGURE 4

Characterization of FAHF-2 and EBF-2 products. (A) HPLC fingerprint of FAHF-2 and EBF-2. The x-axis indicates retention time in minutes, while the y-
axis indicates an absorbance unit (AU). (B) Chemical structure of Berberine. (C) The presence of berberine in the liver and fat tissue samples of mice
treated with E-B-FAHF-2. Mice were fed with the EBF-2 formula, and tissue samples were collected 5 days after oral administration. Mass spectra of the
berberine standard; m/z: 336.2 was detected. Berberine presented in the liver of EBF-2 treated mice. No berberine was detected in liver samples of naïve
mice. Berberine presented in fat tissue samples of EBF-2 treated mice. No berberine was detected in fat tissue samples of naïve mice. The illustrations
are representative of 3-5 samples.
A B

DC

FIGURE 5

Effect of BBR on IgE production and transcription factor gene expression in U266 cells. (A) BBR dose-dependently inhibited the IgE production by U266
cells. (B) Cell viability of BBR on U266 cells. (C). C50 value of BBR on IgE production was 1.946 mg/mL. (D) The relative expression level of XBP1, STAT6,
BLIMP1, and BCL-6 genes vs. GAPDH. **p<0.001; ***p<0.001 vs. untreated. N=3 independent culture.
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Berberine, a major active compound in EBF-
2, inhibited IgE producing plasma cell
mitochondrial metabolism

Plasma cells have a nutrient uptake and energy demand for the

production and secretion of antibodies compared to their

counterparts of B cells and plasmablasts (44). Emerging evidence

suggests that glucose availability and energy metabolism are

important for regulating plasma cell antibody production, secretion

and survival at post-transcriptional levels (44, 63). Traditionally, BBR

has been used as a glucose lowering agent in Type II diabetes through

inhibition of mitochondrial respiratory complex I (64–67). We next

asked whether BBR disrupts energy metabolism and changes glucose

utilization in IgE plasma cell line U266 by a seahorse Mito stress

assay. The assay measures mitochondrial respiration and function

glycolysis by directly measuring OCR (Oxygen Consumption Rate)

and ECAR (Extracellular Acidification Rate). Vehicle treated U266

cells were used to establish some key parameters of mitochondrial

function (Figure 6A) including basal respiration, proton leak (after

oligomycin injection, which inhibits ATP production through

complex V), maximal respiration capacity (after injecting FCCP,

which uncouples ATP production from electron transport), and

non-mitochondrial respiration (after injecting complex I and III

inhibitors rotenone and antimycin A). Interestingly, BBR

pretreatment significantly suppressed basal OCR (p<0.05) and

FCCP-induced maximal OCR (p<0.001) in a dose-dependent

manners, with almost complete inhibition of mitochondrial

respiration at 3 µg/mL and 10 µg/mL, respectively. To compensate

for energy crisis resulted from mitochondrial respiratory inhibition,

BBR-treated U266 cells increased the rate of glycolysis to increase

ATP production from glycolysis pathway, as indicated by significantly

elevated ECAR (Figure 6B, BBR at 10 µg/mL vs. untreated cells,

p<0.05). These results suggest BBR inhibits mitochondrial respiration

in IgE+PCs, which lead to cellular energy crisis and decreased the

availability of glucose molecules for other pathways such as IgE

Ab glycosylation.
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Discussion

IgE plays a key pathogenic role in FA-related hypersensitivity.

Enthusiasm about IgE regulatory interventions for FA therapy

remains high yet, interventions to modulate IgE+PCs remain

undeveloped. We tested direct effects of EBF-2, a refinement of

parent formula FAHF-2, on IgE production using U266 cells, a

well-established IgE+ plasma cell line. We demonstrated the

consistent inhibition of IgE production with EBF-2 across 3

separate batches, without cytotoxicity, and more potently than

parent FAHF-2. EBF-2 was 16-fold more potent than parent

formula FAHF-2, suggesting a superior effect compared to the

parent formula. Using a PN allergic murine model, we

demonstrated that EBF-2 decreased PN-specific IgE levels by ~70%

following 4 weeks of oral treatment compared to sham-treated mice

in an early EBF-2 treatment protocol, with no significant changes in

PN-specific IgG1 or IgG2a levels and demonstrated a high safety

profile. EBF-2 significantly protected PN allergic mice from

anaphylaxis with an 8.5-fold lower daily dose than parent FAHF-2

(68), highlighting its efficacy and potency. The mechanism underlying

this persistent therapeutic effect is unknown but may be due to

suppression of long-lived IgE+PCs. Using a PN allergy model, we

showed that the percentages of IgE+PCs, largely LLPCs at this 8-week

post antigen exposure timepoint, were significantly reduced in EBF-2

treated mice and correlated with the peanut-IgE levels. This is

important because these IgE+PCs, which are LLPCs known to resist

immunosuppressive or ablative therapies (24, 25, 69, 70), showed

significant reduction following EBF-2 treatment. This indicates that

EBF-2 may have a potential to alter the process of persistent peanut

allergy, but this requires further investigation.

As a first attempt to understand EBF-2 suppression of IgE+PCs

and given that BBR is found at higher levels in EBF-2 than in FAHF-2

by HPLC, we identified BBR as a bioavailable compound within EBF-

2 by LC-MS analysis following oral feeding. This provides a rationale

to study BBR as a bioavailable active compound to regulate IgE

production. We showed that BBR suppressed IgE production by a
A B

FIGURE 6

Effect of BBR on mitochondrial respiration rate in U266 cells. (A) U266 cells were pre-treated with DMSO or the indicated concentration of BBR for
15 min. Oligomycin (3 mM, inhibitor of mitochondrial complex V), FCCP (4 mM, stimulator of mitochondrial complex IV), and combination of rotenone (3
mM) and antimycin A (1 mM) (inhibitors of mitochondrial complex I and III, respectively) were injected at the indicated time per manufacturer instructions.
The oxygen consumption rate (OCR) was recorded over time. (B) BBR dose-dependently increased basal glycolytic rate 15 min after treatment. Data
represents triplicate cultures and is expressed as mean ± SEM. *p <0.05; **P<0.01; ***p<0.001 vs. untreated.
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human IgE producing plasma cell line in a dose-dependent manner.

Since no cytotoxicity was observed even at the dose (5 mg/mL) which

BBR eliminated IgE production, we hypothesized it may act on

mechanisms controlling IgE production and secretion. IgE+PCs are

under constant stress from antibody production and secretion. XBP1,

a transcription factor, promotes and maintains plasma cells antibody

production and secretion under ER stress as a compensating response

(44, 63). We found a significant reduction of XBP1 gene expression in

BBR-treated cells (~ 5-fold reduction) at a non-toxic dose compared

to untreated cells. We also found that BBR inhibited BLIMP1, which

promotes plasma cell survival (45). In addition, we found that STAT-

6 was significantly reduced in a BBR treated IgE+ plasma cell. STAT-6

is reported to be mainly involved in cooperating on IL-4-induced up-

regulation of an IgE germline promoter (71). However, the role of

STAT-6 on terminally differentiated IgE+PCs has not been reported,

requiring further investigation. In contrast, BCL-6, a transcriptional

repressor of IgE production (72), tended to be increased. These

findings suggest that BBR modulation of XBP1 and other

transcription factors may together down-regulate IgE+PCs.

In addition to transcriptional regulation, energy metabolism has

emerged as an important regulator of plasma cell survival and function

(44). Previous studies have shown that long-lived plasma cells (LLPCs)

used 90% of glucose to glycosylate antibodies; however, when these cells

were under energy stress such as challenged with a mitochondrial

inhibitor, they diverted glucose to glycolysis to form pyruvate to

support energy production, which was accompanied by a marked

decrease in antibody secretion (73). Classically, BBR has been used to

treat type II diabetes (74). Suppressing mitochondrial metabolism and

promoting glycolysis have been suggested as mechanisms underlying

BBR’s anti-diabetic effects (66). Here we demonstrate, for the first time,

that BBR reduces IgE plasma cell mitochondrial metabolism. We

believe that BBR inhibits IgE+PC mitochondrial respiration likely

forcing IgE+PCs to produce ATP through upregulated glycolysis. The
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metabolic decision point for glucose between glycolysis and

hexosamine biosynthesis for glycosylation occurs at fructose-6-

phosphate, catalyzed by phosphofructokinase (PFK). It is established

that a low cellular ATP level allosterically activates the enzyme PFK,

one of the rate-limiting enzymes in glycolysis, thus leading to the

increase in glycolysis and the subsequent decrease in hexosamine

biosynthesis for glycosylation (Figure 7A). Therefore, we feel that for

the scope of this paper, showing the >50% increased glycolytic rate after

BBR treatment highly likely led to the diversion of glucose away from

IgE glycosylation (Figure 7B), potentially causing accumulation of

immature (unglycosylated) IgE in the ER and in turn triggering ER

stress. Under normal circumstances this triggers up-regulation of XBP1

to compensate for energy depletion. However, this will not happen in

the presence of BBR that suppresses XBP1, leading to a cellular energy

crisis (Figure 7B). Thus, BBR switches off IgE production from IgE+PCs

by regulating both transcription factors and mitochondrial metabolism.

In this study, our goal is to test the potency of a refined botanical

medicine in murine model of peanut allergy, we therefore orally

sensitized using Th2 adjuvant and orally challenged female C3H/HeJ

mice. The advantage is that this murine model showed persistent

peanut allergy, which allow us to test the durability of EBF-2 on food

allergy and study long-lived IgE producing plasma cells. The reason to

use female mice is to consider that females are more susceptible to food

allergies (75) and have been widely used in food anaphylaxis studies

(75–83). Therefore, we intended to use established model. Additional

limitation of this study is lack of positive treatment control. At present,

there is limited or no peanut therapy showing sustainable protection.

Our previous publication showed that the effect of protection again

anaphylaxis by peanut oral immunotherapy (OIT) is transient. At 5

weeks post therapy, the reactions returned by 90% of OIT treated mice

following peanut challenge (51). Therefore, we included peanut allergic

mice treated with water as sham treatment control (equivalent to

placebo control in human trials. Since BBR has poor bioavailability,
A B

FIGURE 7

Role of BBR in regulating energy consumption: (A) Glucose metabolism in normal plasma cell to produce ATP via TCA cycle. (B) BBR treatment
decreases mitochondrial respiration, suppresses XBP1, and inhibits glycosylation.
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we further are working to develop a technology to encapsulate BBR

with nano particle to prevent degradation and enhance absorption in

the gastric tract. In future, we intend to investigate nano-BBR

intervention on transcription factors and mitochondrial metabolism

in murine PN allergic models. Furthermore, in order to conform the

direct evidence of BBR effect on IgE glycosylation, glycoproteomic

analyses should be considered in future.

In conclusion, this study demonstrated that a novel botanical

medicine, EBF-2, significantly and consistently suppressed IgE

production and is markedly more potent than its parent formula

FAHF-2. EBF-2 significantly suppressed PN specific IgE production

with complete protection against anaphylaxis and long-lasting effects

associated with suppression of IgE+PCs in a murine model. The

mechanism of BBR, the active EBF-2 compound in suppressing IgE

may be partially associated with its inhibitory effect on XBP1 and

mitochondrial metabolism leading to insufficient energy and

transcriptional activation for IgE IgH/IgL synthesis and antibody

glycosylation. Further understanding of how EBF-2 and BBR regulate

established IgE production by IgE+ PCs may lead to new interventions

to target key mechanisms of IgE-mediated food allergy.
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