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Abstract 

Background:  Cell homeostasis relies on the concerted actions of genes, and dysregu‑
lated genes can lead to diseases. In living organisms, genes or their products do not 
act alone but within networks. Subsets of these networks can be viewed as modules 
that provide specific functionality to an organism. The Kyoto encyclopedia of genes 
and genomes (KEGG) systematically analyzes gene functions, proteins, and molecules 
and combines them into pathways. Measurements of gene expression (e.g., RNA-seq 
data) can be mapped to KEGG pathways to determine which modules are affected or 
dysregulated in the disease. However, genes acting in multiple pathways and other 
inherent issues complicate such analyses. Many current approaches may only employ 
gene expression data and need to pay more attention to some of the existing knowl‑
edge stored in KEGG pathways for detecting dysregulated pathways. New methods 
that consider more precompiled information are required for a more holistic associa‑
tion between gene expression and diseases.

Results:  PriPath is a novel approach that transfers the generic process of grouping 
and scoring, followed by modeling to analyze gene expression with KEGG pathways. 
In PriPath, KEGG pathways are utilized as the grouping function as part of a machine 
learning algorithm for selecting the most significant KEGG pathways. A machine 
learning model is trained to differentiate between diseases and controls using those 
groups. We have tested PriPath on 13 gene expression datasets of various cancers and 
other diseases. Our proposed approach successfully assigned biologically and clinically 
relevant KEGG terms to the samples based on the differentially expressed genes. We 
have comparatively evaluated the performance of PriPath against other tools, which 
are similar in their merit. For each dataset, we manually confirmed the top results of 
PriPath in the literature and found that most predictions can be supported by previous 
experimental research.

Conclusions:  PriPath can thus aid in determining dysregulated pathways, which 
applies to medical diagnostics. In the future, we aim to advance this approach so that 
it can perform patient stratification based on gene expression and identify druggable 
targets. Thereby, we cover two aspects of precision medicine.
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Background
Today, the healthcare system is facing a shift toward precision medicine. When dis-
eases are evaluated at the molecular level, patient stratification becomes possible so 
that the most suitable medication can be identified more individually. This approach 
heavily depends on the molecular data obtained through recent high-throughput 
methods. For example, next-generation sequencing technologies are utilized to ana-
lyze genome diversity, epigenomics, and gene-expression profiling [1, 2]. Along this 
line, transcriptomic data are generated at an unprecedented pace. Much of these data 
adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles; 
hence, large gene expression data sets have become publicly available concerning var-
ious diseases.

The current bottleneck is in biomedical data analysis, starting from the preprocess-
ing of the sequencing data to supporting decision-making processes, e.g., drug selection. 
The high dimensionality of the data (a large number of genes) combined with a small 
number of samples makes it difficult to interpret the data. In this respect, feature selec-
tion is essential for dimensionality reduction and selecting the most informative genes. 
Additionally, more efficient gene selection methods are proposed to achieve the full 
potential of the growing data pool, develop gene-based diagnostic tests, and aid drug 
discovery. Integrative gene selection incorporates domain knowledge from external bio-
logical resources such as databases to improve the gene selection approaches [3]. Gene 
ontology (GO) is one resource used to integrate biological background information with 
the analysis of gene expression data.

Genes do not act alone to perform their biological functions but are organized into, for 
example, metabolic and signaling pathways. These can be regarded as groups of genes. 
The pathway information can be exploited for feature selection in gene expression data 
analysis. In other words, the grouping of the genes in terms of pathways can be incor-
porated into the feature selection problem to identify gene expression signatures. It has 
been shown that for gene expression data analysis, the methods incorporating pathway 
knowledge usually outperform their gene-based counterparts where biological domain 
knowledge or pathway knowledge is not considered [4]. While the traditional methods 
rely on identifying statistically significant differentially expressed genes between two dif-
ferent phenotypes, pathway knowledge-based methods impose further constraints on 
the prediction task and force training methods to choose more meaningful genes. KEGG 
is a frequently used external pathway database [5], and it has recently been enriched 
with new pathways, cellular processes, and diseases [6].

The integration of pathway knowledge can vary among different methods. While some 
algorithms treat pathways as a graph, consider the underlying topology of the pathways, 
and analyze the connections of genes, other methods consider the pathways as gene sets. 
A comprehensive review of topology-based (TB) vs. non-topology-based (non-TB) path-
way analysis methods can be found in [6]. Comparative evaluation of topology-based 
pathway enrichment analysis methods can also be found in [7, 8]. Non-topology-based 
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pathway-guided gene selection methods treat every gene inside a specific pathway 
equally and assign equal weights.

On the other hand, topology-based pathway-guided gene selection methods com-
pute the connectivity level of the genes inside a pathway and use this information while 
weighting the genes. Hence, in topology-based and pathway-guided gene selection 
methods, genes having high connectivity in a pathway may be prioritized. There are 
also functional score-based gene selection methods, such as [3, 9], which consider only 
the pathway membership of the genes to generate an evaluation score. These methods 
implicitly assume that all genes belonging to a specific pathway co-regulate and co-func-
tion. Other approaches to gene set enrichment analysis (GSEA) employ different group-
ing factors for genes, such as function or chromosomal proximity [10].

Regarding predictive accuracy, some studies, such as [11, 12], have concluded that 
pathway-guided gene selection methods do not outperform classic gene-based feature 
selection methods. This performance difference may be explained by the fact that the 
pathway knowledge retrieved from pathway databases such as KEGG [13], Gene Ontol-
ogy [14], and Reactome [15] conveys no or limited meaningful information for some 
datasets. In contrast, the pathways constructed in a “data-driven” way may be more 
informative for the diseases under investigation and thus preferred over the canonical 
pathways.

A recent review [16] presented machine learning-based approaches for integrating 
biological domain knowledge into gene expression data analysis. The authors discussed 
several tools that adopt the so-called Grouping-Scoring-Modeling (G–S–M) approach. 
For instance, maTE [17] integrates biological knowledge of microRNAs (miRNA) for 
grouping genes. CogNet [18] performs KEGG pathway enrichment analysis based on 
ranked active subnetworks. MiRcorrNet [19] detects groups of miRNA-mRNAs by ana-
lyzing the correlation between miRNA and mRNA expression profiles obtained from the 
same sample.

Similarly, miRModuleNet [20] detects miRNA-mRNA regulatory modules to serve 
as groups while analyzing two omics datasets. Another G–S–M model-based study by 
Yousef et al. [21] utilizes GO terms for grouping the genes. GediNET [22] also discov-
ers disease-gene associations using the G–S–M model. The first study, which consid-
ered grouped gene clusters rather than individual genes, was also developed by Yousef 
et al. [23, 24]. The tools mentioned above are different implementations of this idea for 
various data types. SVM-RCE (Support Vector Machines Recursive Cluster Elimination) 
groups genes based on their gene expression values [23]. It scores each cluster of genes 
by incorporating a machine-learning algorithm. This approach has received attention 
from other researchers.

Similarly, SVM-RNE [25] is based on gene network detection to serve as groups for 
scoring by the G–S–M model. SVM-RCE-R is one other example developed along this 
line. However, there is still room for developing more tools based on the G–S–M model 
and incorporating biological knowledge, such as KEGG pathways.

In this paper, we introduce a novel tool named PriPath, which ranks and groups 
biological information based on the G–S–M model. PriPath treats KEGG path-
ways as gene sets, neglecting the structure of the pathway. Instead, the algorithm 
uses KEGG pathways for grouping the genes to perform scoring and classification. 
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PriPath produces performance metrics and a list of dysregulated KEGG pathways 
for the condition under study. The innovation of our approach stems from its ability 
to search the space of the groups of the KEGG pathway to rank and find the most 
important groups.

We have tested PriPath on 13 gene expression datasets of various cancers and other 
diseases. The results indicate that PriPath outperforms maTE in most cases in terms of 
classifier performance and uses less number of genes than SVM-RCE-R and CogNet. 
Additionally, for each dataset, we compared PriPath predictions to the predictions of 
Reactome and DAVID and manually assessed the top 3 PriPath predictions in the litera-
ture. PriPath could detect biologically and clinically relevant pathways. PriPath can assist 
in identifying dysregulated pathways, which is applicable in medical diagnostics. Hence, 
we tackle an aspect of precision medicine.

The rest of the manuscript is organized as follows. “Materials” and “Methods” Sections 
describe the materials and methods used. “Results” Section evaluates the results by com-
paring the proposed approach with other embedded feature selection and enrichment 
tools using different approaches. “Discussions” Section  discusses the top predictions 
considering literature evidence, and “Conclusions” Section concludes the work.

Materials
Gene expression data

To support algorithm development and testing, 13 human gene expression datasets (as 
shown in detail in Table 1) were downloaded from the Gene Expression Omnibus (GEO) 
[26] at NCBI. Disease (positive) and control (negative) data were acquired for all data-
sets. 13 datasets were used to test PriPath and were used for qualitative comparison with 
other tools. Moreover, these 13 datasets enabled performance comparison with tools 
that previously utilized the same data, such as maTE and CogNet.

KEGG data

We downloaded the KEGG data from Bioconductor using the R programming language 
[27] on 21.01.2021. The KEGG data contains 32,083 entries representing 331 KEGG 
pathways [28].

Methods
Algorithm

PriPath employs machine learning to determine which KEGG pathways are associated 
with differences in gene expression between control and disease samples. PriPath aims 
to find dysregulated KEGG pathways for the disease under study using gene expres-
sion data and the Grouping, Scoring, and Modeling (G–S–M) approach. Following the 
G–S–M approach proposed in [16], the PriPath algorithm contains three main compo-
nents. Figure 1 presents the general flowchart of the proposed algorithm.

Let D (e.g., the training data shown in Fig. 1) be the gene expression data represented 
as a matrix, where s denotes the samples. For simplicity, we consider that the genes are 
the columns of the matrix, while the samples are the rows. The matrix D contains a spe-
cial column called label, which indicates the class annotation for each row. The class 
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labels could be disease or any experimental condition versus a control. The test data 
(shown in Fig.  1) is kept out of the G–S–M approach and only used to test the final 
model.

Table 1  Characteristics of the 13 gene expression datasets used in this study

GEO accession Title Disease Number 
of 
samples

Number of 
samples in 
classes

GDS1962 Glioma-derived stem cell factor effect 
on angiogenesis in the brain

Glioma 180 Negative = 23
positive = 157

GDS2547 Metastatic prostate cancer (HG-U95C) Prostate cancer 164 Negative = 75
positive = 89

GDS4824 Prostate cancer
Analysis of malignant and benign 
prostate tissues

Prostate cancer 21 Negative = 8
positive = 13

GDS3268 Colon epithelial biopsies of ulcerative 
colitis patients

Colitis 202 Negative = 73
positive = 129

GDS3646 Celiac disease: primary leukocytes Celiac disease 132 Negative = 22
positive = 110

GDS3874 Diabetic children: peripheral blood 
mononuclear cells (U133A)

Diabetes 117 Negative = 24
positive = 93

GDS3875 Diabetic children: peripheral blood 
mononuclear cells (U133B)

Diabetes 117 Negative = 24
positive = 93

GDS5037 Severe asthma: bronchial epithelial 
cell

Asthma 108 Negative = 20
positive = 88

GDS5499 Pulmonary hypertension: PBMCs Pulmonary hypertension 140 Negative = 41
positive = 99

GDS3837 Non-small cell lung carcinoma in 
female nonsmokers

Lung cancer 120 Negative = 60
positive = 60

GDS4516
GDS4718

Colorectal cancer: laser microdis‑
sected tumor tissues (homogenized)

Colorectal cancer 148 Negative = 44
positive = 104

GDS2609 Early onset colorectal cancer: normal-
appearing colonic mucosa

Colorectal cancer 22 Negative = 10
positive = 12

GDS3794 Rheumatoid arthritis: peripheral blood 
mononuclear cells

Arthritis 33 Negative = 15
positive = 18

Fig. 1  The flowchart of the PriPath algorithm. The green panel corresponds to the Grouping (G) component. 
The gold panel corresponds to the Scoring (S) component. The G component uses the D matrix and the 
KEGG groups to create sub-datasets for each group. The S component performs inner cross-validation for 
each sub-dataset and reports performance metrics
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The PriPath algorithm requires two inputs, KEGG pathways, and gene expression 
data. We consider KEGG pathways as groups of genes such that each KEGG pathway 
is represented by a set of genes (i.e., multiple occurrences of one gene in a pathway 
are ignored). Table 2 is an example of the KEGG pathways groups. Let us assume that 
we have k such groups. Let kgg_grp = {g5, g12, g18, g22} represent one KEGG group that 
consists of 5 genes.

The differential expressions of each gene between control and disease are detected 
by a t-test applied on D, the training dataset, during the preprocessing step of the tool. 
The t-test statistics are considered for the next steps of the algorithm. The algorithm 
of how PriPath utilizes these input data for its predictions is illustrated in Fig. 1. An 
essential step of the PriPath tool is the Grouping component, G (Fig. 1, green panel). 
The G component utilizes the KEGG groups to create k-related sub-datasets, where 
each sub-dataset is extracted from the primary data D. The green panel in Fig.  1 
depicts the process of creating sub-datasets. Those k sub-datasets are then subjected 
to the Scoring Component, S (Fig. 1, gold panel).

A sub-dataset is created from the output of the G component (kgg_grp = {g5, g12, g18, 
g22}) and the associated input D. Its columns will be the corresponding columns of g5, 
g12, g18, and g22; and its rows are all the sample rows with the associated class labels. 
This creates a sub-dataset that can be subjected to any machine learning algorithm. 
The green panel in Fig.  1 presents an example with the D matrix and four KEGG 
groups to create four sub-datasets, each corresponding to one group. Those four sub-
datasets will serve as input to the S component.

The Scoring component S (Fig. 1, gold panel) iterates over all sub-datasets to assign 
a score representing the capacity to separate the two classes considering just the genes 
associated with the group. Since we observed that the Random Forest (RF) classifier 
performed well in our previous studies [17, 18], we used RF in this study to perform 
the scoring. But the overall data analysis workflow is so flexible that any other classi-
fier could replace RF. Replacing the RF classifier in the implementation of PriPath can 
be done by the users via replacing the RF node with, for example, the support vector 
machine node in KNIME. The inner cross-validation is applied by splitting the sub-
dataset into two parts, one for training the RF and the other for testing. We repeat 
this procedure r times (here: r = 5). The accuracy, sensitivity, specificity, and other 

Table 2  An example of KEGG groups with their associated genes

The first column is the KEGG pathway ID, the second column refers to the KEGG pathway name (group name), and the third 
column is the set of genes associated with the KEGG pathway

KEGG pathway ID Group name Genes References

hsa05220 Chronic myeloid leukemia TP53, MYC, HRAS, KRAS, … [29]

hsa00670 One carbon pool by folate MTHFD2, DHFR, DHFR2, MTHFD1L, … [30]

hsa05033 Nicotine addiction GABRA5, CACNA1B, GABRE, GABRD, 
…

[31]

hsa05200 Cancer GNG4, CTNNA1, TP53, MYC, … [32]

hsa05216 Thyroid cancer TP53, MYC, TCF7L1, MAPK1, … [33]

hsa04723 Retrograde endocannabinoid signal‑
ing

GNG4, MAPK9, PRKCG, GABRA5,… [34]
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statistics are collected and reported as their average over the cross-validation. The 
accuracy average serves as the score of each group/sub-dataset.

In the Modeling component M (not shown in Fig. 1), for each KEGG pathway as the 
grouping factor, the best j KEGG pathways are selected, and their genes are combined. 
An RF model is trained with the grouping function given by the top-ranked j pathways. 
Finally, the model is tested on the test data, and the performance statistics are reported 
(in our case: j ∈ {1..10} ). Training and testing were performed using 80% and 20% of the 
data. However, such settings can be adjusted in our KNIME implementation of PriPath.

Classification approach

We utilized the random forest classifier implemented by the KNIME platform [35]. For 
each model creation, 80% of the data (training data) was used to train the classifier, and 
20% of the data (testing data) was used to test the classifier. The data sets are imbalanced 
in terms of the two classes. This imbalance can affect the performance of the trained 
classifier. To address this issue, we employed random under-sampling of the majority 
class. During model creation, under-sampling is incorporated into the tenfold Monte 
Carlo cross-validation (MCCV) [36] approach. The default parameters were used for RF 
training. The number of levels (tree depth) was not limited, and the number of models 
was set to 100.

Model performance evaluation

To compare among trained models, several statistical measures such as sensitivity, speci-
ficity, and accuracy were calculated [37]. The following formulations were calculated 
from the confusion matrix (TP, true positive; FP, false positive; TN, true negative; and 
FN, false negative).

In addition, the area under the receiver operator characteristic (ROC) curve (AUC), 
which assesses the probability that a classifier will rank a randomly selected positive 
sample higher than a randomly selected negative sample [38], was calculated. All perfor-
mance measures are presented as the average of tenfold MCCV if not otherwise stated.

Implementation

We utilized the Konstanz information miner (KNIME) [35] to implement the PriPath 
algorithm. For the implementation part of our algorithm, we have decided to utilize 
the free and open-source platform KNIME since it is simple to use and provides user-
friendly graphical representations. KNIME has also been employed to develop numer-
ous bioinformatics data analysis workflows. KNIME workflows include processing nodes 
and data links (edges). In the workflow, edges provide data transport from one node to 
another.

Sensitivity (SE, Recall) = TP/(TP + FN)

Specificity (SP) = TN/(TN + FP)

Accuracy (ACC) = (TP + TN)/(TP + TN+ FP + FN)
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The workflow of PriPath is shown in Fig. 2. The “List Files” node collects the data 
needed for PriPath analysis. The “Table Reader” node reads each file and forwards it to 
the PriPath algorithm, which is implemented as a sub-workflow in the PriPath meta-
node. The node “Loop End” task is to collect all the results, which are then stored in 
Excel in the last node of the workflow (not shown). The “Integer Input” allows users to 
conveniently set various parameters, such as the number of cross-validations.

Assessment of the PriPath predictions

Other tools that employ embedded feature selection

PriPath performs embedded feature selection. Therefore, it is similar to previous 
approaches we have developed, such as maTE and CogNet. CogNet relies on another 
tool called pathfindR that serves as the biological grouping tool to allow the main 
algorithm to rank active subnetworks of KEGG pathways. This grouping results in an 
enrichment analysis modeling networks, not just significant genes. Unlike CogNet, 
PriPath uses KEGG pathway knowledge without another grouping factor. The maTE 
tool was designed to utilize microRNAs and their target genes for grouping, repre-
senting a completely different type of information. In PriPath, we have included the 
knowledge of KEGG pathways in the grouping component. PriPath is different from 
SVM-RCE in the way that the genes are grouped. SVM-RCE clusters genes based on 
the k-means clustering algorithm. The outcome is a list of significant genes that sur-
vived the RCE procedure. This list has no prior biological knowledge compared to the 
other algorithms PriPath.

Comparing these tools is possible by assessing the performance values they report. To 
evaluate the differences among these four tools, which employ embedded feature selec-
tion, we have recorded the AUC values over the top 10 groups ranked by the scoring 
stage for each tool, except for SVM-RCE. For SVM-RCE, we measured the performance 
starting with 1000 genes and 100 clusters and decreased by 10% at each iteration. We 
used the final 10 clusters of SVM-RCE for comparison. This assessment is valid because 
all employed embedded feature selection and were run on the same datasets.

Fig. 2  Overview of the PriPath KNIME workflow. The workflow contains programming structures such 
as loops (shown in blue), input nodes (shown as orange boxes), and workflow parameters (green box). 
Meta-nodes, shown in gray, encapsulate sub-workflows to increase modularity and readability. The green 
dots under the nodes demonstrate that the process has been successfully executed
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Other approaches to gene set enrichment

As discussed above, several other approaches aim to functionally enrich a set of differ-
entially expressed genes [10]. We selected a few gene set enrichment tools widely used 
in literature. It is beyond the scope of this work to discuss all existing approaches, but 
for assessing the predictions, we have selected two popular enrichment tools. These 
tools are DAVID (version 6.8) and Reactome (version 78—Pathway Browser version 
3.7. To assess these tools, 1000 genes were selected with a t-test. Then, the selected 
1000 genes were submitted to DAVID and Reactome. The top 10 predicted KEGG 
pathways of these tools were recorded. Finally, we assessed the number of shared 
pathways among the predictions of these tools with the predictions by PriPath.

DAVID  Among many other functions of DAVID (https://​david.​ncifc​rf.​gov/​tools.​jsp), 
it offers gene set enrichment analysis. The tool accepts a set of genes as input but does 
not consider quantitative information such as gene expression. Another notable func-
tionality of DAVID is its ability to translate among identifiers, for example, between 
Unigene IDs and GenBank IDs. We provided filtered gene sets to DAVID, equal to the 
combined training and testing data used during the model training of PriPath. DAVID 
then returned its interpretation of the datasets [39]. We applied a t-test to each gene 
expression data set in this study. We provided the top 1000 genes from the t-test results 
as inputs (ranked by increasing p value). Default values were used for DAVID analysis.

Reactome  Reactome (https://​react​ome.​org/) provides bioinformatics tools for the 
interpretation, visualization, and analysis of pathway knowledge to assist in modeling, 
genome analysis, and systems biology. The constantly increasing size of the data sam-
ples is one of the main problems from a performance point of view [40]. This study 
applied a t-test to each gene expression data set. The top 1000 genes, according to 
the t-test, were used as input for Reactome. The default settings of Reactome were 
left unchanged. DAVID was used to translate between Reactome pathways and KEGG 
pathways.

Results
Performance evaluation of PriPath

Gene expression and differential gene expression (DGE) analyses provide insights 
into the molecular mechanisms underlying the difference among phenotypes (e.g., 
control and disease). However, genes do not act alone, which makes it necessary to 
consider sets of genes to delineate among phenotypes. We introduce PriPath, which 
considers KEGG pathways as the grouping factor for expressed genes and thereby 
integrates the DGE analysis results of multiple genes. PriPath is freely available as a 
KNIME workflow. KEGG pathways and gene expression data must be available to the 
KNIME workflow, and examples are available in our GitHub repository. The output is 
a Microsoft Excel spreadsheet containing averaged performance metrics of ten cross-
validations and a per-gene average (Additional file 2: Table S1). The PriPath workflow 
can be modified to provide information at all calculation steps, but we decided to pro-
vide only vital information. PriPath was used to evaluate 13 different gene expression 

https://david.ncifcrf.gov/tools.jsp
https://reactome.org/
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data sets. The AUC results of this analysis, considering the number of groups (or clus-
ters), are presented in Fig. 3A and Additional file 2: Table S1. The number of genes 
that were used is displayed in Fig. 3B. The average number of genes for ten iterations 
of MCCV is shown in column “#G” (Additional file 2: Table S1).

Comparative evaluation with other tools that employ embedded feature selection

We previously observed that although CogNet, maTE, and SVM-RCE employ embed-
ded feature selection, these tools perform differently (Fig.  3A). The mean AUC values 
of the four tools and their prediction for the 13 datasets are presented in Fig.  3A. In 
Fig. 3B, we plot the average number of genes associated with the prediction. As illus-
trated in Fig. 3A, PriPath performs similarly, but not the same, with maTE, CogNet, and 
SVM-RCE for different datasets. As shown in Fig. 3A, it uses far fewer genes than SVM-
RCE and CogNet but a comparable number with maTE. Figure 3 implies that, on aver-
age, PriPath outperforms maTE by 1.2% while producing similar results with SVM-RCE. 
Regarding the average number of genes, SVM-RCE uses a 16-fold larger number than 
PriPath, with a lower number of genes leading to a more precise prediction. Note that 
the grouping factors in maTE and PriPath are different, which could be employed syner-
gistically in the future.

Comparative evaluation with functional enrichment tools

Additionally, we compared the performance of PriPath with the enrichment tools, apply-
ing statistical analysis to gene expression datasets and identifying overrepresented path-
ways. Figure  4 displays the comparative evaluation of PriPath with these enrichment 
tools (i.e., DAVID and Reactome) for the GDS1962 dataset using a UpSetR plot [41]. 
An UpSetR plot comprises two axes and a connected-dot matrix. The vertical rectangles 
illustrate the number of elements in each list combination. The connected-dots matrix 
shows which combination of lists corresponds to which vertical rectangle. The horizon-
tal bars that correspond to the size of sets indicate the participation of objects (from the 
vertical rectangles) in the respective lists [42].

An example is illustrated in Fig. 4 for the GDS1962 dataset. In this example, Reac-
tome and DAVID identify seven KEGG pathways in their prediction, and they iden-
tify one pathway in common with PriPath. PriPath shares another predicted pathway 
with Reactome and features eight unique pathways not predicted by the other two 

Fig. 3  Performance evaluations of PriPath, CogNet, maTE, and SVM-RCE. A the number of genes, and B AUC 
values of 4 competing tools for the 13 selected datasets (top 10 results)
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approaches. When the predictions are analyzed for 13 different datasets (Individual 
UpSetR plots can be found as Additional file 1: Figs. S1–S13), it can be observed that 
DAVID and Reactome predictions are more similar to each other than to PriPath’s. 
Figure 5 summarizes the individual results for all 13 datasets. PriPath shares 1–3 pre-
dictions with DAVID (average, 0.7); 1–4 predictions with Reactome (average, 0.5); and 
features unique pathways not predicted by the other two approaches (8.4 on average). 
Reactome and DAVID generally share 1–6 pathways (average, 3.8). PriPath shares 1–2 
pathways with both tools (0.5 on average).

In some cases, PriPath does not share any predictions with either DAVID or Reac-
tome. As pointed out above, the ground truth is unavailable for the datasets con-
sidered. A true comparison cannot be made without ground truth. Therefore, this 
benchmarking indicates that DAVID and Reactome work more similarly than PriPath. 
Hence PriPath provides alternative explanations to the data analysis. On the other 
hand, both Reactome and DAVID have predictions that are not shared with the other 
tool (4.7 on average for DAVID and 3.6 for Reactome). A more detailed assessment 
of the PriPath predictions is presented in the “Discussions” Section, which evaluates 
whether the predictions align well with the literature.

Fig. 4  Comparative evaluation of PriPath against enrichment analysis results by Reactome and DAVID for the 
GDS1962 dataset. Results for the other datasets are available in Additional file 1: Figures S1–S13
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Discussions
In the previous section, we presented the results of our experiments using PriPath on 13 
different datasets: and our comparative evaluation with other tools employing embed-
ded feature selection. In this section, we discuss the biological relevance of the PriPath 
predictions.

For each of the 13 selected datasets, we assess the top three predictions of PriPath. The 
assessment is done by manually checking whether any support for the prediction can 
be found in the literature. Support for the prediction means that the disease annotated 
for the dataset has been experimentally implicated with the prediction in the literature. 
We also assessed whether DAVID and Reactome predicted these top three pathways. 
Table 3 summarizes the association of the top three identified pathways of PriPath with 
the disease under study and presents whether these top three identified pathways were 
included in the top three predictions of DAVID and Reactome.

In the following, we provide more details for the literature assessment of the predic-
tions presented in Table 3.

For the GDS1962 dataset, a study concerning glioma, PriPath’s top predictions are 
Human papillomavirus infection (hsa05165), Signaling pathways regulating pluripotency 
of stem cells (hsa04550), and Shigellosis (hsa05131). The association between viruses 
and cancer has often been shown, and the correlation between HPV and glioma is not 
an exception [43]. Shigellosis is also an opportunistic infection of the immune-compro-
mised, so it could be seen in cancer patients undergoing chemotherapy. The other tested 
tools did not predict these pathways within the top three. With this statement, we do not 

Fig. 5  Sum and averages of the number of common KEGG pathways predicted among tools and the 
number of KEGG pathway predictions that are not shared for the 13 datasets
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Table 3  Association of the top three predicted pathways of PriPath with the disease annotated for 
the study

Dataset 
accession

Annotated 
disease

KEGG Pathway 
ID

DAVID Reactome Pathway Name Literature 
support for top 
3 identified 
pathways by 
PriPath

GDS1962 Glioma hsa05165 – – Human papil‑
lomavirus (HPV) 
infection

The presence 
of HCMV and 
HPV has been 
shown in gliomas. 
According to 
one study, HPV 
infection did not 
have a significant 
effect on the 
prognosis of 
glioma patients, 
while another 
study supports 
the presence of 
HPV in gliomas

hsa04550 – – Signaling path‑
ways regulating 
pluripotency of 
stem cells

None found

hsa05131 – – Shigellosis It can be an 
opportunistic 
infection in 
cancer patients 
undergoing 
chemotherapy

GDS2547 Prostate cancer hsa04910 – – Insulin signaling 
pathway

Insulin resistance 
index is positively 
correlated with 
prostate volume 
in benign pros‑
tatic hyperplasia 
complicated with 
diabetes patients

hsa03010  +  – Ribosome Ribosome-target‑
ing drugs may be 
effective against 
diverse prostate 
cancer

hsa05171 – – Coronavirus 
disease

Some research 
points to a 
possible liaison 
between prostate 
cancer (PCa) and 
COVID-19
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Table 3  (continued)

Dataset 
accession

Annotated 
disease

KEGG Pathway 
ID

DAVID Reactome Pathway Name Literature 
support for top 
3 identified 
pathways by 
PriPath

GDS2609 Colorectal 
cancer

hsa04010 – – MAPK signaling 
pathway

Activation signal‑
ing pathways 
including the 
MAPK path‑
way enhance 
colorectal cancer 
progression

hsa04657 – – IL-17 signaling 
pathway

IL-17A inhibi‑
tors have been 
assessed for 
their therapeutic 
and preventa‑
tive potential in 
human cancers, 
particularly in 
colorectal cancer

hsa05130 – – Pathogenic 
Escherichia coli 
infection

Pathogenic E. coli 
could be a factor 
in developing 
colorectal cancer

GDS3268 Colitis hsa04151 –  +  PI3K-Akt signal‑
ing pathway

Up-regulation 
of the PI3K/Akt-
mTOR signaling 
pathway can trig‑
ger cell apoptosis 
and inflammation 
in ulcerative 
colitis

hsa05200 –  +  Pathways in 
cancer

It is known that 
long duration of 
ulcerative Colitis 
is a risk factor for 
the development 
of Colitis associ‑
ated cancers

hsa05164 – – Influenza A Infection with 
influenza A could 
cause hemor‑
rhagic colitis

GDS3646 Celiac disease hsa05010 – – Alzheimer 
disease

Several types of 
dementia such as 
Alzheimer’s, vas‑
cular dementia, 
frontotemporal 
dementia have 
been associa‑
tion with Celiac 
disease

hsa04020 – – Calcium signal‑
ing pathway

None found

hsa05012 – – Parkinson 
disease

PARK7 plays an 
important role 
in the preserva‑
tion of mucosal 
integrity in Celiac 
disease
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Table 3  (continued)

Dataset 
accession

Annotated 
disease

KEGG Pathway 
ID

DAVID Reactome Pathway Name Literature 
support for top 
3 identified 
pathways by 
PriPath

GDS3794 Arthritis hsa04620 – – Toll-like recep‑
tor signaling 
pathway

Rheumatoid 
arthritis (RA) 
development 
can be induced 
by the activation 
of the Toll-like 
receptor (TLR) 
signaling path‑
way

hsa04657 – – IL-17 signaling 
pathway

The IL-17 
cytokines play 
a crucial role 
in the chronic 
inflammation of 
the synovium in 
psoriatic arthritis

hsa05022 – – Pathways of 
neurodegenera‑
tion—multiple 
diseases

Neurodegen‑
erative disease 
increases the pro‑
gress of arthritis

GDS3837 Lung cancer hsa04974  +  – Protein 
digestion and 
absorption

None found

hsa04510 – – Focal adhesion FAK is significant 
in small cell lung 
cancer biology 
and targeting its 
kinase domain 
may have thera‑
peutic potential

hsa04151  +   +  PI3K-Akt signal‑
ing pathway

FGF21 may 
function as a 
tumor promo‑
tor by activating 
the SIRT1/PI3K/
AKT signaling 
pathway in lung 
cancer

GDS3874 Diabetes hsa05203 – – Viral carcino‑
genesis

None found

hsa04625 – – C-type lectin 
receptor signal‑
ing pathway

None found

hsa05166 – – Human T-cell 
leukemia virus 1 
infection

None found
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Table 3  (continued)

Dataset 
accession

Annotated 
disease

KEGG Pathway 
ID

DAVID Reactome Pathway Name Literature 
support for top 
3 identified 
pathways by 
PriPath

GDS3875 Diabetes hsa05168 – – Herpes simplex 
virus 1(HSV-1) 
infection

HSV-1 infection 
has an important 
association with 
type 2 diabetes

hsa04910 – – Insulin signaling 
pathway

Insulin resistance, 
is generated by 
the disruption of 
the insulin signal‑
ing pathway

hsa05022 – – Pathways of 
neurodegenera‑
tion—multiple 
diseases

One of the condi‑
tions which result 
in neurodegener‑
ation is diabetes

GDS4516
GDS4718

Colorectal 
cancer (CRC)

hsa04080 – – Neuroactive 
ligand-receptor 
interaction

None found

hsa04721 – – Synaptic vesicle 
cycle

None found

hsa04724 – – Glutamatergic 
synapse

Neuroligin1 is the 
main component 
of excitatory glu‑
tamatergic syn‑
apses complex is 
verified as a new 
poor prognostic 
marker for CRC​

GDS4824 Prostate cancer hsa04080 – – Neuroactive 
ligand-receptor 
interaction

None found

hsa05163 – – Human cyto‑
megalovirus 
infection

The activation 
of the Human 
cytomegalovirus 
(HCMV) major 
immediate early 
promoter by 
androgen in the 
prostate might 
contribute to 
oncomodula‑
tion in prostate 
cancers

hsa04062 – – Chemokine 
signaling 
pathway

Chemokines play 
modulatory roles 
in prostate cancer 
metastasis
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want to dismiss the predictions by DAVID and Reactome. Both tools predict Calcium 
signaling among their top predictions, which has a link to glioma [44], and proteogly-
cans in cancer, for which we could not find a basis in the literature. DAVID predicts 
neuroactive ligand-receptor interaction, which has been implicated in glioma [45], and 
Reactome suggests retrograde endocannabinoid signaling, which has also been linked 
to glioma [46]. Hence, it seems vital to perform predictions with multiple tools to com-
prehensively understand any dataset. In the following, we will only analyze the literature 
support for the PriPath predictions. However, we assume that DAVID and Reactome 
predict KEGG pathways with similar literature support as PriPath.

For the GDS2547 dataset, a study concerning prostate cancer, PriPath’s top predic-
tions are insulin signaling pathway (hsa04910), Ribosome (hsa03010), and Coronavi-
rus disease (hsa05171). The connection between diabetes and prostate cancer has been 

Table 3  (continued)

Dataset 
accession

Annotated 
disease

KEGG Pathway 
ID

DAVID Reactome Pathway Name Literature 
support for top 
3 identified 
pathways by 
PriPath

GDS5037 Asthma hsa04530 – – Tight junction 
(TJ)

Asthma may be 
linked to differ‑
ential expression 
of TJ

hsa05016 – – Huntington’s 
disease

None found. 
However, similarly 
to hsa05022 
below, it leads to 
neurodegenera‑
tion

hsa05022 – – Pathways of 
neurodegenera‑
tion—multiple 
diseases

Asthma, 
especially when 
severe, is associ‑
ated with features 
of neuroinflam‑
mation and neu‑
rodegeneration

GDS5499 Pulmonary 
Hypertension

hsa04010 – – MAPK signaling 
pathway

Inhibition of the 
MAPK axis could 
prevent vascular 
remodeling in 
pulmonary artery 
hypertension

hsa04621 – – NOD-like recep‑
tor signaling 
pathway

NOD-like receptor 
subfamily C3 may 
potentially be 
a marker for PH 
patients

hsa04390 – – Hippo signaling 
pathway

Pulmonary arte‑
rial hypertension 
is ameliorated by 
suppressing the 
HIPPO signaling 
pathway

The table shows the accession of the dataset and the disease label

DAVID and Reactome columns show whether the PriPath prediction was also in the top three predictions of these tools. The 
pathway name is provided so the literature assessment of the top three PriPath predictions can be better appreciated. The 
references to the literature support are provided within the text following the table
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demonstrated in [47]. In the literature, it has been shown that Ribosome-targeting drugs 
may be effective against diverse prostate cancer [48]. Some research findings point to 
a possible hidden liaison between prostate cancer (PCa) and COVID-19 [49]. DAVID 
also predicted associations between the data and the Ribosome pathway in its top 3 
predictions.

For the GDS2609 dataset, a study concerning colorectal cancer, PriPath’s top predic-
tions are MAPK signaling pathway (hsa04010), IL-17 signaling pathway (hsa04657), and 
pathogenic Escherichia coli infection (hsa05130). The relationship between the MAPK 
signaling pathway and Colorectal cancer has been illustrated in [50]. Research shows 
that IL-17A inhibitors have preventive potential in human cancers, particularly colorec-
tal cancer [51]. Pathogenic E. coli could also contribute to developing colorectal cancer 
[52]. The other tested tools did not predict these associations between the data and the 
investigated disease in their top three predictions.

For the GDS3268 dataset, a study concerning Colitis, PriPath’s top predictions are the 
PI3K-Akt signaling pathway (hsa04151), pathways in cancer (hsa05200), and Influenza 
A (hsa05164). The association between the PI3K-Akt signaling pathway and Colitis has 
been shown in [53]. The long duration of Ulcerative Colitis is known as a risk factor for 
the development of Colitis associated cancers [54]. The same study reported that the 
analysis of the transcriptomic changes in the colonic mucosa of long-duration Ulcerative 
Colitis patients revealed colitis-associated cancer pathways. Infection with influenza A 
could cause hemorrhagic colitis [55]. Reactome predicted the association between the 
data and PI3K-Akt signaling pathway and pathways in cancer in its top three predictions.

For the GDS3646 dataset, a study concerning Celiac disease (CD), PriPath’s top pre-
dictions are Alzheimer’s disease (hsa05010), Calcium signaling pathway (hsa04020), and 
Parkinson’s disease (hsa05012). Several types of dementia, such as Alzheimer’s, vascu-
lar dementia, and frontotemporal dementia, were reported in association with CD [56]. 
Lurie et al. also reported Alzheimer’s disease in two patients diagnosed with CD after 
60 years [57]. The association between Parkinson’s disease and Celiac has been shown in 
[58]. The other tools did not report these pathways in their top three predictions for this 
dataset.

For the GDS3794 dataset, a study concerning Arthritis, PriPath’s top predictions are 
Toll-like receptor signaling pathway (hsa04620), IL-17 signaling pathway (hsa04657), 
and pathways of neurodegeneration—multiple diseases (hsa05022). Rheumatoid arthri-
tis (RA) is associated with the Toll-like receptor (TLR) signaling pathway [59]. The IL-17 
cytokines play an important role in the chronic inflammation of the synovium in Psori-
atic arthritis [60]. Research showed that neurodegenerative disease increases the pro-
gression of arthritis [61]. The other tested tools did not contain these pathways within 
their top three predictions.

For the GDS3837 dataset, a study concerning lung cancer, PriPath’s top predictions are 
protein digestion and absorption (hsa04974), focal adhesion (hsa04510), and PI3K-Akt 
signaling pathway (hsa04151). The association between Focal adhesion and lung cancer 
has been shown [62]. The dysregulation of the PI3K-Akt signaling pathway is known to 
affect lung cancer [63]. DAVID and Reactome predicted the associations between the 
data and the PI3K-Akt signaling pathway in their top three predictions. DAVID further 
suggested the protein digestion and absorption pathway in its top three.
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For the GDS3874 dataset, a study concerning Diabetes, PriPath’s top predictions are 
viral carcinogenesis (hsa05203), C-type lectin receptor signaling pathway (hsa04625), 
and Human T-cell leukemia virus 1 infection (hsa05166). There is no study about the 
association between Diabetes and our predicted pathways for this dataset. The dataset 
GDS3874 shows a slight variance in PriPath performance (Fig.  3A). Perhaps Diabetes 
shares some commonly dysregulated genes with the predicted pathways which have not 
been reported. The other tested tools did not identify these pathways in their top 3 pre-
dictions for this dataset.

For the GDS3875 dataset, which is another study on Diabetes, PriPath’s top predictions 
are Herpes simplex virus 1 infection (hsa05168), Insulin signaling pathway (hsa04910), 
and pathways of neurodegeneration—multiple diseases (hsa05022). HSV-1 infection has 
an important association with diabetes, as explained in [64]. This disease, also known as 
insulin resistance, is generated by disrupting the insulin signaling pathway [65]. Addi-
tionally, one of the conditions which result in neurodegeneration is diabetes [66]. The 
other tested tools did not detect these pathways in their top three predictions.

For the GDS4516 dataset, a study concerning colorectal cancer (CRC), PriPath’s top 
predictions are neuroactive ligand-receptor interaction (hsa04080), synaptic vesicle 
cycle (hsa04721), and glutamatergic synapse (hsa04724). The association between the 
glutamatergic synapse pathway and colorectal cancer has been reported, and gluta-
matergic synapse has recently been verified as a new prognostic marker for CRC [67]. 
The other tested tools didn’t return these pathways in their top three predictions.

For the GDS4824 dataset, a study concerning prostate cancer, PriPath’s top predictions 
are neuroactive ligand-receptor interaction (hsa04080), Human cytomegalovirus infec-
tion (hsa05163), and chemokine signaling pathway (hsa04062). Proteins in the neuro-
active ligand-receptor interaction pathway are hubs in the protein–protein interaction 
network and play roles in prostate cancer [68]. The association between prostate cancer 
and Human cytomegalovirus infection has been demonstrated [69]. Chemokines play 
modulatory roles in prostate cancer metastasis [60, 70]. The other tools did not identify 
these pathways in their top three predictions.

For the GDS5037 dataset, a study concerning Asthma, PriPath’s top predictions are 
tight junction (TJ; hsa04530), Huntington’s disease (hsa05016), and pathways of neuro-
degeneration—multiple conditions (hsa05022). Asthma may be linked to the differential 
expression of TJ, as reported in [71]. Asthma, especially when severe, is associated with 
features of neuroinflammation and neurodegeneration [72]. The other tested tools did 
not report these pathways in their top 3 predictions.

For the GDS5499 dataset, a study concerning pulmonary hypertension, PriPath’s 
top predictions are MAPK signaling pathway (hsa04010), NOD-like receptor signal-
ing pathway (hsa04621), and Hippo signaling pathway (hsa04390). Research has shown 
that inhibiting the MAPK axis could prevent vascular remodeling in pulmonary artery 
hypertension [73]. A NOD-like receptor signaling pathway has been previously associ-
ated with pulmonary hypertension [74]. PAH has been observed to suppress the HIPPO 
signaling pathway [75]. The other tested tools did not return these pathways in their top 
3 predictions.

In summary, for most datasets (except GDS3874), the top 3 pathways predicted by Pri-
Path have been associated with the diseases of the respective dataset in the literature. 
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Hence, we have shown that PriPath successfully identified dysregulated pathways of var-
ious illnesses that seem to have a basis in molecular biology.

PriPath, CogNet, maTE, and SVM-RCE tools integrate biological information into the 
machine learning algorithm and help scientists to understand disease mechanisms at 
the molecular level and to generate hypotheses. These tools natively analyze different 
aspects (e.g., maTE analyzes the microRNA-target portion of the dysregulated genes). As 
presented in “Comparative Evaluation with other tools that employ embedded feature 
selection” Section, PriPath was compared with these tools, which implement different 
data integration approaches but are also based on the G–S–M model. Hence, it becomes 
possible to compare the performance metrics that these tools report. All methods were 
tested with 13 different gene expression data sets. Our experiments showed that PriPath 
utilizes fewer genes than SVM-RCE. On average, PriPath outperformed maTE by 1.2% 
while producing similar results with SVM-RCE. SVM-RCE used a 16-fold larger number 
of genes than PriPath in terms of the mean number of genes, making the PriPath predic-
tions favorable.

Currently, the standard approach to differential gene expression analysis is to provide a 
list of genes expressed significantly different among conditions. The main aim of PriPath 
is to discover KEGG pathways that have a biological role in the disease under investiga-
tion. Such associations are found when several differentially expressed genes support a 
KEGG pathway. Other approaches, such as statistical ones, are presented by Reactome 
and DAVID. A fair comparison with these methods is impossible since they use differ-
ent approaches and because there needs to be ground truth data to compare the out-
comes. We did check whether DAVID and Reactome provide the same KEGG pathways 
as PriPath. Our analysis shows a larger overlap between DAVID and Reactome but lit-
tle overlap with PriPath regarding predictions (Fig. 5). This indicates that PriPath func-
tions differently than the other tools. In the absence of ground truth for this type of data, 
it is impossible to discard the prediction of any of these tools. Therefore, we assessed 
whether the PriPath predictions make sense on the biological level. For many datasets, 
the pathways predicted by PriPath have support in the literature for the annotated dis-
ease of the dataset. Thus, we have observed that PriPath successfully identified dysregu-
lated pathways of various illnesses that seem to have a basis in molecular biology. This 
should not discard Reactome and DAVID predictions, and a researcher that may want to 
discover significantly dysregulated pathways could integrate several approaches of gene 
set enrichment.

Conclusions
Dysregulation of gene expression is a hallmark of diseases. Determining dysregu-
lation on the transcriptional level can be performed using high throughput arrays, 
sequencing approaches, etc. Such analyses result in a set of genes that are differen-
tially expressed among different conditions. Correlating this information with prior 
biological knowledge can show how differential gene expression drives a disease. We 
introduce a novel tool named PriPath that groups the biological information in KEGG 
pathways to analyze differential gene expression. PriPath uses a list of KEGG path-
ways and gene expression data to perform embedded feature selection that we refer 
to as the G–S–M method. PriPath produces performance metrics such as accuracy, 
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sensitivity, specificity, and AUC describing the performance of the generated models. 
Thus, the best model can be selected. Additionally, PriPath presents a ranked list of 
important KEGG pathways that can explain the differential gene expression among 
the analyzed samples.

In summary, PriPath is a novel tool that complements predictions of other gene set 
enrichment tools and presents alternative explanations for observed differential gene 
expression. It is advisable to integrate the results of multiple such tools in practice to 
perform unbiased gene set enrichment.
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