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ABSTRACT
Respiratory diseases are among the major health problems causing a burden on
hospitals. Diagnosis of infection and rapid prediction of severity without
time-consuming clinical tests could be beneficial in preventing the spread and
progression of the disease, especially in countries where health systems remain
incapable. Personalized medicine studies involving statistics and computer
technologies could help to address this need. In addition to individual studies,
competitions are also held such as Dialogue for Reverse Engineering Assessment and
Methods (DREAM) challenge which is a community-driven organization with a
mission to research biology, bioinformatics, and biomedicine. One of these
competitions was the Respiratory Viral DREAM Challenge, which aimed to develop
early predictive biomarkers for respiratory virus infections. These efforts are
promising, however, the prediction performance of the computational methods
developed for detecting respiratory diseases still has room for improvement. In this
study, we focused on improving the performance of predicting the infection and
symptom severity of individuals infected with various respiratory viruses using gene
expression data collected before and after exposure. The publicly available gene
expression dataset in the Gene Expression Omnibus, named GSE73072, containing
samples exposed to four respiratory viruses (H1N1, H3N2, human rhinovirus
(HRV), and respiratory syncytial virus (RSV)) was used as input data. Various
preprocessing methods and machine learning algorithms were implemented and
compared to achieve the best prediction performance. The experimental results
showed that the proposed approaches obtained a prediction performance of 0.9746
area under the precision-recall curve (AUPRC) for infection (i.e., shedding)
prediction (SC-1), 0.9182 AUPRC for symptom class prediction (SC-2), and 0.6733
Pearson correlation for symptom score prediction (SC-3) by outperforming the best
leaderboard scores of Respiratory Viral DREAM Challenge (a 4.48% improvement
for SC-1, a 13.68% improvement for SC-2, and a 13.98% improvement for SC-3).
Additionally, over-representation analysis (ORA), which is a statistical method for
objectively determining whether certain genes are more prevalent in pre-defined sets
such as pathways, was applied using the most significant genes selected by feature
selection methods. The results show that pathways associated with the ‘adaptive
immune system’ and ‘immune disease’ are strongly linked to pre-infection and
symptom development. These findings contribute to our knowledge about predicting
respiratory infections and are expected to facilitate the development of future studies
that concentrate on predicting not only infections but also the associated symptoms.
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INTRODUCTION
Respiratory infections are the leading cause of acute illnesses globally in both adults and
children from past to present. According to a report by the World Health Organization
(2020), respiratory-related infections cause nearly four million deaths per year. It is also
one of the major diseases that threaten human health with high morbidity, severity, and
medical costs (Yuan et al., 2022). The numbers are even higher especially in undeveloped
and developing countries due to inadequate healthcare systems. Geographic differences
and socioeconomic factors of the populations also affect the variation in viral etiology and
the number of cases across countries (Liu et al., 2015).

Although numerous pathogens such as bacteria, fungi, mycoplasma, etc. can cause
infection, a large proportion of respiratory infections is caused by viruses. HRV has been
identified as the virus most commonly associated with respiratory diseases, accounting for
about 40% of infections. Influenza viruses, RSV, and Coronavirus follow HRV in terms of
frequency (Lambkin-Williams et al., 2018). These pathogens all have similar clinical
symptoms but sometimes require completely different treatments. Otherwise, severe
pneumonia may develop, which can cause mortality or some complications.

Most infections result in mild symptoms such as runny nose, sore throat, and headache,
but some individuals remain asymptomatic despite exposure to respiratory viruses (Jansen
et al., 2011; Byington et al., 2015). This was commonly reported by people during the
period of COVID. Some COVID patients went through the disease with severe symptoms
despite being in the best of health before infection, while some chronically ill elderly people
showed no symptoms (Zhang et al., 2020; Esteban et al., 2021). The host response following
the exposure is linked to genetic predisposition, disruption of the individual’s microbiome
(Pichon, Lina & Josset, 2017), being in high-risk group (Walker et al., 2022) and effective
immune surveillance. However, the variation in the physiological responses of people to
viral exposure is poorly understood. The lack of understanding about the precise
physiological or genetic factors delays the detection of infection, which leads to the
spreading of the virus and thereby increases the death toll. On the other hand, many of the
processes that lead to these variations occur in the peripheral blood through the activation
and recruitment of circulating immune cells (Heidema et al., 2008). Hence an idea arises as
to whether or not markers of susceptibility and resistance to infection may be identified in
blood samples.

A lot of studies have focused on the idea of using both statistical and in silicomethods to
find out predictors of respiratory infection and make forecasting for individuals. Bongen
et al. (2018) applied a meta-analysis to several data sets and observed that the expression of
the KLRD1 gene in blood decreased after influenza virus infection. They were also able to
predict the symptomatic and asymptomatic samples with an area under the receiver
operating characteristic (AUROC) value of 0.91 in a validation set of H3N2 influenza
samples. Barral-Arca et al. (2020) found 17 characteristic genes for RSV by applying
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logistic regression to 296 infected and 266 healthy samples from different datasets. ORA of
these genes showed that immunological pathways such as the innate immune system and
the adaptive immune system are closely associated with RSV. In a study by Xu et al. (2019),
the OTOF and SOCS1 genes were identified as discriminators of HRV infections in
machine learning experiments on gene expression profiles.

In a comprehensive study, different machine learning and feature selection methods
were compared using three different datasets containing RSV-, HRV-, and
influenza-infected samples (Radovic et al., 2017). The proposed model included a modified
minimum Redundancy—Maximum Relevance (mRMR) method and a naïve Bayes
classifier that achieved an average accuracy of 91% when the number of gene expression
features is 40. The authors also applied an ORA on the top-50 genes selected by the best
feature selection method and reported that all viruses are related to the immune response
to viral infection.

Recently, deep learning-based models have also become popular in predicting
respiratory virus infection. Zan et al. (2022) proposed a six-layer Deep Neural Network
(DNN) model to predict whether a person would catch flu prior to exposure to Influenza A
viruses. The model outperformed SVM, RF, and convolutional neural network, achieving a
cross-validated AUPRC of 0.758 for DEE3 H1N1 and an AUPRC of 0.901 for DEE2 H3N2
experiments, respectively. In another study, a recurrent neural network achieved more
than 90% prediction accuracy for predicting whether samples are infected with H3N2
(Tarakeswara Rao et al., 2022).

In addition to these efforts, a competition titled Respiratory Viral DREAM Challenge
was held in 2016 by Sage Bionetworks, Duke University, and Defense Advanced Research
Projects Agency (DARPA). DREAM is a community-driven organisation with the mission
of advancing biomedical and systems biology research through crowdsourcing
competition. Competitions usually focus on tackling a specific biomedical research
question, narrowed down to a specific disease. As the competitions are open to researchers
around the world, a wide range of ideas and solutions can be presented. This allows for the
most effective solution to the problem being sought. The Respiratory Viral DREAM
Challenge was one of these competitions which aimed to develop early predictors of
susceptibility to and contagiousness of respiratory reactions based on gene expression
profiles collected before and after exposure (Fourati et al., 2018). Participants were
expected to make predictions for three different sub-challenges, including viral shedding,
presence of symptoms, and severity, both before and after exposure. According to the
results of the leaderboard stage, the proposed models achieved an AUPRC of 0.92 for
predicting whether a person was infected, whereas obtained approximately an AUPRC of
0.78 for predicting the presence of symptoms. On the other hand, only a 0.53 Pearson
correlation similarity score was obtained for continuous symptom severity prediction.
Moreover, the heme metabolism pathway showed a strong relationship with the
development of symptoms as a result of enrichment analyses of the susceptible genes
identified by the participants.
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In this study, we aimed to outperform the leaderboard scores of the DREAM challenge
for all categories and phases by employing different pre-processing techniques and
machine learning methods. Additionally, we have utilized a two-step feature selection
method that leverages both wrapper and filtering algorithms to enable the identification of
the most effective genes for both infection and symptom predictions. The implementation
of a two-step approach allowed us to select the least number of genes (i.e., features) that
yield the highest predictive performance. Thanks to this approach, we were able to identify
common optimal gene subsets using ORA. This may provide a greater insight into the
relationship between infection and symptom severity prediction. Furthermore, the pre-
and post-exposure analyses also yielded valuable results that may be useful to other
researchers for further studies on respiratory viruses. After conducting a literature review,
we were unable to find any study that investigates the common sides of infection and
symptom severity. Overall, our study is expected to provide significant benefits for future
research in the field, especially for the development and improvement of predictive
performance and statistical identification of biomarker genes.

MATERIALS AND METHODS
Dataset
In our experiments, we used a public dataset on Gene Expression Omnibus (GEO) with
accession number GSE73072, which was also used as the dataset for the leaderboard stage
in the Respiratory Viral DREAM Challenge (Liu et al., 2016). GSE73072 includes datasets
from seven related studies conducted by Duke University under contract with the DARPA
Predicting Health and Disease program. Each of the experiments contains a different
number of samples from one of four different respiratory viruses: H1N1, H3N2, HRV, or
RSV. After aggregation, the experiments were referred to as RSV DEE1, H3N2 DEE2,
H1N1 DEE3, H1N1 DEE4X, H3N2 DEE5, HRV UVA, and HRV DUKE, respectively.
Abbreviations such as DEE1 or DEE2 indicate the names of the experiments and have not
been changed in this article to avoid confusion.

To understand susceptibility to respiratory infections in humans, samples were
collected both before and after infection. Therefore, peripheral blood samples were
collected from healthy volunteers starting the day before (i.e., T.-24 or T.-30 h). Each
volunteer was inoculated at time T.0 in a controlled environment with only one of the four
different live respiratory viruses. Sampling began 1 day (24 or 30 h) before inoculation and
continued at various intervals up to 7 days later. However, in this study, we only took into
account up to 1 day after inoculation because one of the objectives of our study was to
determine the early predictors immediately after exposure, which is the same as the
objective of the DREAM challenge. To extract gene expression profiles from blood
samples, an Affymetrix Human Genome U133A 2.0 microarray with 22,277 probes was
used.

The number of samples collected at different time points is shown in Fig. 1, where rows
denote experiments, columns denote time points, blue numbers denote training samples,
and red numbers denote test samples. For example, while 21 samples were collected for the
DEE5 H3N2 experiment prior to exposure at time T.-30 h, only 14 samples were collected
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for DEE4X H1N1 at time T.-24. The training and testing samples were chosen from the
GSE73072 dataset by the community of DREAM Challenge. Therefore, we used the same
test samples in our analyses to make a fair comparison between ours and the challenge
results. Consequently, our dataset contains a fixed number of seven, eight, and eight test
subjects to be predicted for DEE4X H1N1, DEE5 H3N2, HRV DUKE, respectively.
Nevertheless, it should be noted that predictions will be computed for these subjects both
before and after exposure.

To determine whether a subject is infected, lavage particles from the nasal passages were
analyzed in clinical settings. If the particles showed evidence of viral infection, shedding of
the sample was labeled as 1; otherwise, it was labeled as 0. In addition, subjects were asked
to rate the severity of eight different symptoms, including runny nose, headache, malaise,
myalgia, sneezing, sore throat, and nasal congestion, at regular intervals on a 0–4 scale.
These scores were used to calculate the Jackson score (Jackson et al., 1960), which is known
as the best method for measuring symptom severity. If the score was less than 6, the
presence of the symptom was labeled as 0, indicating that the sample was asymptomatic;
otherwise, the sample was labeled as 1. The log10 transformation of the Jackson score has
also been used to represent continuous symptom severity.

Motivation and problem definition
Respiratory viral infections are still one of the most common diseases imposing an
economic burden on hospitals. Diagnosing as early as possible reduces mortality rates and
contributes economically. At this stage, artificial intelligence-based systems are one of the
solutions. However, since the viruses that cause respiratory diseases are spread through
airborne transmission, it is difficult to determine the exact time of infection and onset of

Figure 1 Detailed numbers of samples collected at different time points for each experiment. The
y-axis shows abbreviations of the seven experiments (i.e., sub-datasets) included in the GSE73072 dataset.
The blue and red numbers represent the number of training and test samples in related experiments,
respectively. Phase 1 (up to T.0) and phase 3 (up to T.24) represent the prediction phases corresponding
to the data prior to viral exposure and up to 24 h after exposure.

Full-size DOI: 10.7717/peerj-15552/fig-1
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the symptoms from a genetic perspective. This makes it difficult to identify early markers
of infection. To address these needs Respiratory Viral DREAMChallenge was held in 2016,
which stands out from many studies in the literature in terms of the use of data sets
containing various types of viruses, evaluating symptom severity, and including exact time
when the subject is exposed to virus. Participants of the challenge were expected to make
predictions for two phases, pre-exposure (phase 1) and post-exposure (phase 3), on data
sets generated by injecting different respiratory viruses into volunteer subjects. Participants
were expected to make predictions in three different tasks:

- Sub-Challenge 1 (SC-1): Prediction of viral shedding, i.e., whether the individual is
infected or not. A binary outcome to evaluate infection prediction rate. Aims to find out
predictors that cause infection.

- Sub-Challenge 2 (SC-2): Prediction of symptomatic response to exposure. In other words,
predicting whether or not the subject will become symptomatic after exposure. Aims to
find out predictors that cause severe symptoms.

- Sub-Challenge 3 (SC-3): Continuous-valued prediction of symptom score. Since the
discrete-valued symptom score is calculated using the Jackson score, this task includes the
direct prediction of the log-transformed version of the Jackson score. Aims to find out
predictors that cause severe symptoms.

To form the datasets, gene expression profiles of each sample had been obtained using a
microarray with 22,277 probes, each representing one or more genes. These gene
expression values were obtained by collecting blood samples at different time points and
constitute the input features for the prediction models.

For each of the three sub-challenges, participants had first made their submissions for
the test set of the leaderboard phase. Then, in the second phase, an independent test set was
used to evaluate the performance of the submissions. In addition to developing models
with high prediction performance, the goal of this challenge was to identify predictors of
infection as well as symptoms for both pre- and post-exposure periods. Table 1 shows the
best performing submissions for the leaderboard phase of the challenge. The results show
that there is still room for improvement especially for SC-2 and SC-3.

The main motivation of this study is to improve the prediction performance of the
challenge results using pre-processing and machine learning methods. There are multiple
reasons for focusing on the results of the DREAM challenge in this study. First of all the
DREAM challenge included multiple prediction tasks with varying objectives, all of which
utilized the same gene expression data. Based on that the challenge dataset allowed us to
perform a comprehensive analysis on different prediction tasks. Second, there is no other
publicly available dataset published after DREAM challenge that contains the four
different respiratory viruses along with actual class label information. Third, sampling of
gene expression had started before the exposure, which led to the opportunity to perform
pre-infection analysis. This way, we were able to propose models specifically for pre- and
post-exposure data as well as various prediction problems. Fourth, the possibility of
identifying related common genes that have a role in both infection and symptom
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development was another motivation for this study. Finally, the results obtained in the
DREAM challenge are still open for further improvement, which shows that the prediction
problems are not solved yet. It should be noted that there are limited studies in the
literature that perform a comprehensive analysis similar to this work using data for
multiple viruses and experiments, data for multiple time-points, computing predictions for
pre-exposure and post-exposure periods, and finding predictors (i.e., genes) that are
important for infection and symptom development.

Prediction algorithms
As explained in the problem definition, SC-1 and SC-2 are binary classification problems.
Classification algorithms can use gene expression values as input to make a prediction
about whether a subject is infected or not. In our experiments, Logistic Regression (LR),
Support Vector Machine (SVM), Random Forest (RF), k Nearest Neighbors (kNN) (Crisci,
Ghattas & Perera, 2012) and XGBoost (XGB) (Chen & Guestrin, 2016) were employed as
classification methods, where RF and XGB are ensemble methods that combine multiple
learners to obtain a combined model that can outperform its base learners.

On the other hand, the goal of SC-3 is to estimate the severity of symptoms for a given
subject, which is represented as a continuous-valued score. Therefore, SC-3 is a regression
problem. The Lasso, Elastic Net, Ridge (Steinauer et al., 2021), Linear Support Vector
Regression (SVR), Gradient Boosting Regressor (Madhuri, Anuradha & Pujitha, 2019), K
Neighbors Regressor (KNN R.), Decision Tree Regressor (El Sayed et al., 2022),
XGBRegressor (Tahseen & Danti, 2022) and Bayesian Ridge (Shi, Abdel-Aty & Lee, 2016)
methods were used for the SC-3 problem.

Hyper-parameter optimization
One of the factors that lead to high predictive performance for machine learning methods
is the proper tuning of hyper-parameters. When the hyper-parameters of an algorithm are
tuned properly, the prediction accuracy can be increased. In our study, each model training
and testing experiment was conducted with both optimized and non-optimized models

Table 1 Best performing leaderboard scores of the Respiratory Viral DREAM Challenge. SC
represents different sub-challenges.

Time index AUPRC AUROC Pearson correlation

SC-1

T.24 (phase 3) 0.9298 0.8137 –

T.0 (phase 1) 0.9247 0.8039 –

SC-2

T.0 (phase 1) 0.7814 0.7348 –

T.24 (phase 3) 0.7511 0.7348 –

SC-3

T.0 (phase 1) – – 0.5335

T.24 (phase 3) – – 0.5
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depending on whether hyper-parameters are optimized or not. In the experiments, we
used the open-source library named Optuna (Akiba et al., 2019) to optimize the hyper-
parameters, which performs a random search and finds an optimal subset of
hyper-parameter values by evaluating the assigned parameters.

Since the number of samples is small even for training data, the leave-one-out-cross-
validation (LOOCV) technique was preferred during parameter optimization. In each
iteration, one sample is marked as validation data and the rest is used to train the model
with the specified parameter set. In the end, a prediction is obtained for each sample and
the final accuracy is computed by averaging predictions obtained for all samples. This
accuracy indicates the performance of the parameter set. The LOOCV is repeated for all
hyper-parameter combinations sampled using random search and the particular
hyper-parameter set that gives the best LOOCV performance is selected as the optimum.
To find the best values of hyper-parameters, the overall accuracy is optimized for SC-1 and
SC-2 and the Pearson correlation for SC-3. The hyper-parameter optimization steps
explained above were performed for all pre-processing methods, e.g., feature selection,
virus merging, and the results for optimized and non-optimized versions of the models
were reported. Details of parameter spaces of the algorithms are given as a supplementary
file (Supplemental 1).

Data preprocessing
Our main goal is to predict the subject’s infection, symptom presence, and symptom
severity as accurately as possible. In this article, we proposed machine learning-based
models that take gene expression profiles of subjects as input and make forecasting about
infection and symptoms. All methods, pre- and post-processing codes were implemented
using the Python programming language. To implement classification and regression
algorithms, we used the open-source machine learning library of Python called scikit-learn
(Pedregosa et al., 2011). To implement feature selection methods, we used the scikit-feature
library of Python (Li et al., 2017).

The sampling process was not performed in all time spans for each subject, which causes
missing value problem. For example, blood samples of subjects with IDs “3013” and “3015”
were not collected at the T.-24 time point, nor the samples of subject “3014” on T.0.
Consequently, for a given experiment, the number of samples at different time points may
not be equal, and such unbalanced sample numbers must be considered in experimental
analysis so that machine learning models can be trained and tested systematically in a way
that combines information from multiple time-points. To address this issue, those time
points, which do not include data for all subjects of a given phase and experiment or those
subjects who do not have data in all time points of a given phase and experiment could
have been excluded from the analysis. However, to allow a fair comparison between the
challenge results and our proposed models, neither subjects nor time points were
discarded. Instead, we propose single time point and experiment (STPE), and average of
features (AF) approaches to process data from all subjects and time points.

Our experiments include two main stages. In the first one, machine learning models are
applied only to preprocessed datasets obtained using STPE, AF, and/or virus merge (VM)
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approaches, which are explained below in more detail. This stage shows the prediction
performance of the full use of gene expression profiles. The second stage consists of
applying feature selection for the prediction of respiratory infection and the determination
of significant genes that have an impact on the prediction of infection and symptoms.

Single time point and experiment (STPE) approach

Samples related to each time point of the experiment are treated as a separate dataset in the
STPE approach. Machine learning models are trained separately for each dataset belonging
to a particular time point and experiment. After training, for each experiment in the test
set, the class probability distributions of the subjects are predicted for each time point in
each phase (i.e., phase 1 or phase 3) because our goal is to make a prediction for a phase
that spans multiple time points, rather than for a specific time point. The final class
distributions were obtained by averaging these probabilities obtained for different time
points. If gene expression data are not available for a subject at particular time points, these
time points are excluded and the distributions obtained for the remaining time points are
used to calculate the average. For SC-3, instead of a class probability distribution, symptom
severity is predicted and averaged to calculate the phase prediction for each subject.
As described above, time points when the subject has no gene expression samples are
ignored. The STPE approach allows us to use data for all subjects and time points available
for a given phase and experiment.

For example, since there are 10 samples of DEE4X H1N1 in training set at time T.-24, a
separate model is trained for SC-1 using these samples only. Then the class probabilities of
the four test set subjects belonging to DEE4X H1N1 are predicted using the gene
expression data of these subjects as input. The same process is repeated for time point T.0
with 11 training samples and seven test samples, because a different number of samples are
collected in T.0. Since only time points T.-24 and T.0 are included in phase 1 for DEE4X
H1N1, probabilities from two different time points are averaged to calculate the final class
probabilities of phase 1 (see Fig. 2).

Average of features (AF) approach

In the AF approach, the average of the input feature vectors at different time points for
each subject is used as input to the ML models. If a subject does not have gene expression
data at a particular time point, that time point is ignored and only the average of the
available feature vectors is computed. Figure 2 shows an example of the steps in the AF
approach. For example, the subject with ID 3013 has gene expression data at time point T.0
but does not have data at time point T.-24. Therefore, there is only one time point for this
subject to make a prediction for phase 1. On the other hand, the subject with ID 3012 has
gene expression data both for time points T.0 and T.24. Rather than just one time point,
use of all available time points would be more effective, as more information makes
machine learning models more robust in computing predictions.

The AF approach simply uses the average of the gene expression profiles and hence time
point information is ignored. Although this may be considered as a downside of this
approach, from another perspective it may also be an advantage, since the timing of
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symptoms varies from person to person and even virus to virus. For example, phase 3
contains eight different time points in the HRV DUKE experiment. While some subjects
may become symptomatic between time points T.4 and T.12, others may show symptoms
after T.12. As machine learning models cannot be trained/tested for each subject
individually depending on the time point, symptom signals from all subjects should be
acquired in a generalized model. This is because we assume that the changes in gene
expression also begin with the onset of symptoms, making it easier to capture the changed
signals (i.e., gene expression) by machine learning. In this way, despite the fact that gene
expression signals of the subjects can be weak or strong at different time points, distinctive
signals can be captured for all subjects using the AF approach, which also facilitates the
identification of key gene expressions that impact disease prediction.

Virus merge (VM) approach

Since machine learning and pattern recognition derive their strength from data, problems
of under- or over-fitting can arise when applying machine learning to small data sets
(Vabalas et al., 2019). The larger the number of samples in training set, the more robust the
models become in predicting new samples. However, the sample size of our training
dataset is quite small compared to the typical size of the datasets used to train machine
learning models. Therefore, in the VM approach, different experiments containing the
same virus family were merged to increase the size of the training datasets. For this

Figure 2 Class probability calculation in STPE (A) and AF (B) Approaches. STPE approach takes the average of class probabilities from different
time points predicted by machine learning algorithms. AF takes the average of gene expression data from different time points. Both approaches use
all samples and time points available without discarding any of them. Full-size DOI: 10.7717/peerj-15552/fig-2
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purpose, the training sets for the following experiments were merged: DEE4X H1N1 and
DEE3 H1N1, DEE5 H3N2 and DEE2 H3N2, HRVUVA, and HRVDUKE. For example, in
order to compute predictions for the four test samples of DEE4X H1N1 at T.-24, the model
will be trained with 32 samples corresponding to 22 samples of DEE3 H1N1 and 10
samples of DEE4X H1N1 at the time point of -24 in the VM approach. Since VM is a
preprocessing approach, it can also be used in combination with the other proposed
approaches AF and STPE. This allows us to increase the size of training sets used to train
machine learning models for all the approaches proposed.

Feature selection
Feature selection (FS) is defined as the process of eliminating redundant and irrelevant
features from a dataset to improve the performance of a learning algorithm (Liu &
Motoda, 1998). Thus, not only does FS help reduce the number of dimensions, but it can
also improve the predictive performance. Machine learning-based FS methods can be
divided into three main categories: filtering, wrapper, and embedding methods (Işık et al.,
2021). Filtering approaches assign a score to each feature and rank them to find the optimal
feature set by scoring each or a subset of features based on various measures such as mutual
information, similarity, or correlation. Then, these ranked features whose scores are below
the threshold are eliminated. Wrapper methods, on the other hand, include a learning
algorithm for evaluating feature subsets. The optimal subset is selected depending on the
performance of the prediction model. Therefore, wrapper-based feature selection methods
are also called classifier-dependent approaches.

Our proposed two-step FS method includes both the filtering and wrapper approaches.
The process starts with applying a filtering method to the training set. During the filtering
step, the correlation value of each feature (i.e., gene expression) is calculated. Then, the
features are sorted in descending order by their correlation score, and the training set is
re-arranged according to the new order of the features. The second step aims to find the
best subset of features. For this reason, starting from the most highly correlated feature, a
subset is formed by adding the next feature at each iteration. The performance of each
subset is evaluated using a wrapper algorithm and a LOOCV experiment on training set.
Similar to hyper-parameter optimization, for SC-1 and SC-2, the overall accuracy and for
SC-3 the Pearson correlation coefficient are optimized as the performance metrics to find
the best feature subset. Since the main objective of feature selection is to reduce the number
of dimensions, the least number of features that achieved the highest predictive
performance was marked as the optimal subset of features. For example, if the first three
and the first 20 features achieve the same highest accuracy as 75%, the first three features
are selected as the optimal set. Once the best feature subset is found using training set, the
test set is re-ordered using these features.

The flow of our feature selection approach is given in Fig. 3. For the STPE approach, FS
is performed separately for each experiment and time point. For the AF approach, FS is
performed for each experiment separately after the feature vectors are averaged for the
given phase. After rearranging the training and test sets using the selected subset of
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features, model training and testing experiments were performed for STPE, AF and VM
approaches.

To find the best algorithms for both filtering and wrapper approaches, we compared
different methods. Fisher score, F-score, Chi-square, RelieF, mRMR were used as filtering
approaches for the problems SC-1 and SC-2. These methods calculate distinctiveness
scores of a feature for a categorical class label. On the other hand, for SC-3 which is a
regression problem, the mutual information (MI) and F-statistics were used to calculate
the degree of correlation between a given feature and the output label. Similar to filtering
step, wrapper algorithms also differ based on the sub-challenges. While XGBoost, LR, and
KNN were employed for SC-1 and SC-2, Lasso, ElasticNet and Gradient Boosting
Regressor were used for SC-3 as the prediction algorithms for the wrapper method.

RESULTS
As explained in the introduction and problem definition sections, the main goal of this
study is to propose machine learning models that achieve better prediction performance
than the best performing methods of Respiratory Viral Dream Challenge (Fourati et al.,
2018). Detailed leaderboard scores obtained by the participants of the challenge are shown
in 1. Our results are divided into three different tables to show the performance for
classification and regression problems.

Table 2 contains the results for data pre-processing approaches (i.e., STP, AF, and VM).
This table only includes our results that are better than the best-performing leaderboard
results of the challenge. It can be concluded that the data pre-processing approaches were
able to produce better prediction scores than the leaderboard results in all subchallenges
and phases. In particular, AF-based models, obtained the highest values, especially in
post-exposure prediction (i.e., phase 3). Moreover, although the highest AUPRC was 0.75
for the SC-2 phase 3 category of the challenge leaderboard, our AF models achieved a
much higher score with an AUPRC of 0.92.

Because SC-3 was associated with continuous symptom severity, the predictive
performance of the models was evaluated using Pearson correlation coefficient, which
describes the strength of the linear relationship between two variables. While a correlation
of one indicates an exact linear relationship, 0 represents no relationship or similarity

Figure 3 Steps of feature selection process. Features in training data were ranked by filtering metrics
and evaluated by a wrapper approach. All steps are applied only to training data to evaluate and select
features. After finding the best feature subset training and testing samples are re-arranged using the
features selected. Full-size DOI: 10.7717/peerj-15552/fig-3

Işık and Aydın (2023), PeerJ, DOI 10.7717/peerj.15552 12/26

http://dx.doi.org/10.7717/peerj-15552/fig-3
http://dx.doi.org/10.7717/peerj.15552
https://peerj.com/


between the variables. In addition, we also calculated the mean square error (MSE) for each
model. This is because the MSE is one of the most well-known methods of measurement,
especially in regression problems, and could also be informative.

Among our proposed models for SC-3, LinearSVR with the STPE approach achieved a
Pearson correlation of 0.5897 for pre-exposure prediction. For SC-3 phase 3, our models
also achieved higher values than the best-performing models of the DREAM challenge (a
Pearson correlation of 0.5963). When the results of SC-3 are evaluated by MSE, the kNN
regressor based on AF VM scored the lowest with an MSE of 0.1822. Even though MSE is
expected to take low values when Pearson coefficient takes high values, this is not always
observed in our results. This is because while the Pearson coefficient measures the strength
of the relationship between the two variables, the MSE expresses the overall error of the
model.

If we compare data pre-processing methods (i.e., STP, AF, and VM) and prediction
methods (i.e., LR, RF, SVM, k-NN, XGBoost, etc.), there is no winner that performs the
best in all prediction tasks and phases. Furthermore, hyper-parameter optimization did
not always improve the prediction performance of the models. This could be because the

Table 2 Results of data pre-processing methods that outperformed the leaderboard scores for all
sub-challenges.

Pre process Classifier AUPRC AUROC Pre process Regressor Pearson MSE

SC1-Ph.1 SC3-Ph.1

STPE VM* LR 0.9328 0.7843 STPE LinearSVR 0.5897 0.2273

LB. – 0.9247 0.8039 STPE VM* KNN R. 0.5608 0.1969

SC1-Ph.3 STPE VM KNN R. 0.5593 0.1987

AF* RF 0.9541 0.8676 STPE* Bayes R. 0.5300 0.2000

STPE VM* LR 0.9506 0.8627 STPE* Ridge 0.5299 0.2001

AF VM* XGB 0.9395 0.8431 STPE Ridge 0.5296 0.2001

STPE VM* RF 0.937 0.848 AF Ridge 0.5274 0.1983

LB. - 0.9298 0.8137 LB. - 0.5335 –

SC2-Ph.1 SC3-Ph.3

AF* LR 0.8522 0.8485 AF VM* KNN R. 0.5963 0.1889

STPE* LR 0.7886 0.7652 AF* KNN R. 0.5948 0.1891

LB. – 0.7814 0.7348 STPE VM* Gradient R. 0.5947 0.1965

SC2-Ph.3 STPE VM* D.Tree R. 0.5906 0.1901

AF* LR 0.9182 0.9015 AF VM KNN R. 0.5824 0.1822

AF* KNN 0.8517 0.8182 STPE VM* XGB R. 0.5646 0.2158

AF VM* KNN 0.8517 0.8182 STPE* KNN R. 0.5449 0.2000

STPE* LR 0.8101 0.803 STPE XGB R. 0.5343 0.2265

STPE VM* KNN 0.8045 0.7803 STPE VM* KNN R. 0.5195 0.2070

LB. – 0.7511 0.7348 LB. – 0.5 –

Note:
Left side contains SC-1 and SC-2 (classification problems), and right side contains performance results of SC-3
(regression problem). An asterisk (*) indicates that the hyper-parameters were not optimized. Italic values (LB) show the
best results for sub-challenges and phases of the Respiratory Viral DREAM Challenge.
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number of samples in the training set is small. Consequently, our proposed approaches
achieved improvements of 1–3%, 7–16%, and 5–9% for SC-1, SC-2, and SC-3, respectively.

FS is often used not only to reduce the number of dimensions but also to find the
features that are most important for classification. Therefore, selected gene expression
probes can also be interpreted as significant genes that are important for infection and
symptom severity. Table 3 shows the performance results of feature selection methods for
SC-1 and SC-2. The “Wrapper” column indicates the classifier used by the forward
selection algorithm, while the “Classifier” column indicates the classifier that is trained and
tested for the prediction task after performing FS.

The “Number of Features” column represents the total number of gene expression
features selected and used in the FS-based models. For the STPE approach, this value is
calculated by summing the features selected at each time point in the given phase. For the
AF approach, it is equal to the number of features selected after taking the average of the
feature vectors from multiple time points. For example, for the STPE approach, the
number of selected genes is 1 for DEE4X H1N1, 5 for human rhinovirus Duke (HRV
Duke), and 1 for DEE5 H3N2 at time T.-24, whereas this number is 1 for DEE4X H1N1
and 47 for HRV Duke at time T.0 for the ReliefF models. Because phase 1 includes time
indices prior to and including T.0, the total number of unique features used in the ReliefF
experiment of SC-1 phase 1 became 55 after removing duplicates (some features may be
selected repeatedly in multiple time points and/or experiments).

The model that used the AF-approach for data pre-processing, chi-square method for
FS and LR as the classifier achieved an AUPRC of 0.8187 in the SC-2 phase 1 category,
although only 8 gene expression features were used. Considering that the total number of
features in each time point is 22,277, it can be interpreted that this model achieved a
reasonably high score despite the small number of features. In addition, the Fisher
score-based models achieved the best performance among all models using only 60 gene
expression features in SC-1 phase 3 category. Similarly, it can be concluded that FS
approaches highly improved the prediction of symptom severity scores with a Pearson
correlation of 0.67, as shown in Table 4. When the performances of the models that
employed FS are compared to the performances obtained without FS, reducing the number
of features further improved the prediction performance except for SC-2 phase 3. FS-based
models achieved between 1% and 17% improvement in AUPRC, depending on
subcategory and phase.

Evaluating the significance level of research results often involves utilizing statistical
tests. Usually, these tests are considered reliable and appropriate when the sample size is
more than 30 (Chang, Huang &Wu, 2006). Despite the relatively small sample size of 23 in
our study, we performed a Z-test with a confidence level of 0.90 for the best performing
models listed in the tables. Calculated Z-Scores and p-values are shared as supplementary
file (Supplemental 2). Based on these results most of the improvements obtained in this
article are not found to be statistically significant but it should be noted that these tests are
performed with insufficient number of samples and therefore the test results could be
unreliable.
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The union of genes selected by FS methods are shown in Fig. 4 as a Venn diagram
according to different sub-challenges and phases. Because one of the main objectives of our
analysis is to determine the genes that are important for infection, only models that
selected less than 100 features were considered in constructing the diagram. Since each
method could select different genes and any of them could be significant, the genes selected

Table 3 Results of FS Methods for SC-1 and SC-2.

Feature selection Pre process Classifier Wrapper Number of features AUPRC AUROC

SC-1 Ph.1

ReliefF* STPE LR KNN 55 0.9341 0.8235

ReliefF AF LR XGB 10 0.9264 0.7745

SC-1 Ph.3

Fisher Score* STPE KNN XGB 60 0.9746 0.9167

F Score* STPE KNN XGB 60 0.9746 0.9167

mRMR* STPE SVM XGB 275 0.9706 0.9118

mRMR* STPE KNN KNN 6,805 0.9632 0.8775

Fisher Score* STPE RF LR 20,481 0.9628 0.8725

Gini Index* STPE KNN KNN 12,302 0.9572 0.8627

ReliefF* STPE XGB KNN 18,913 0.9502 0.8725

ReliefF STPE LR LR 22,277 0.9498 0.8627

Fisher Score* AF KNN XGB 40 0.9429 0.8235

mRMR AF SVM KNN 16 0.9325 0.7745

SC-2 Ph.1

Fisher Score* AF KNN KNN 17,566 0.8515 0.8712

F Score* AF KNN KNN 17,566 0.8515 0.8712

Gini Index* AF LR KNN 14,673 0.8365 0.8561

Chi Square* AF XGB LR 8 0.8187 0.7765

Chi Square STPE KNN XGB 54 0.8112 0.7689

Chi Square AF LR KNN 5 0.8039 0.7879

SC-2 Ph.3

Fisher Score* AF KNN KNN 18,084 0.8956 0.8561

F Score* AF KNN KNN 18,084 0.8956 0.8561

Gini Index* AF SVM LR 116 0.8908 0.8939

Chi Square AF LR LR 19 0.8759 0.8712

Chi Square AF LR KNN 6 0.8675 0,8561

Chi Square STPE KNN XGB 180 0.8595 0.8333

ReliefF STPE KNN LR 12,206 0.8518 0.8447

Fisher Score* STPE KNN KNN 22,214 0.8497 0.8598

Gini Index* AF LR KNN 8,495 0.8462 0.8333

Gini Index* AF SVM XGB 4 0.8428 0.8258

ReliefF AF LR XGB 92 0.821 0.8106

Note:
After the features are ranked by a filtering approach, a wrapper algorithm is utilized to select the best feature subset.
Wrapper column indicates the prediction algorithm used in wrapper method. Number of Features column represents the
number of distinct features selected. An asterisk (*) indicates that the hyper-parameters were not optimized.
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by different FS methods were combined as a single list for each sub-challenge and phase.
This allowed us to identify the gene subset that achieved the highest predictive
performance with the smallest number of features. As a result, the number of genes at the
intersection of SC-1 phase 1 and SC-2 phase 1 (i.e., those that are common to SC-1 and
SC-2 in phase 1) is 6, and this number is 2 for the genes that are common to SC-1 and SC-2
in phase 3, respectively. When evaluated according to sub-challenge, 8 genes were selected

Table 4 Results of FS methods for SC-3.

Feature selection Pre process Regressor Wrapper Number of features Pearson MSE

SC-3 Ph.1

F Statis. AF Decision Tree R. Gradient B. 259 0.5990 0.2357

Mutual Info.* STPE KNeighbors R. ElasticNet 121 0.5566 0.1893

Mutual Info.* STPE KNeighbors R. Gradient B. 979 0.5443 0.1917

F Statis. STPE Decision Tree R. Lasso 404 0.5346 0.1998

SC-3 Ph.3

F Statis.* STPE LinearSVR ElasticNet 1,736 0.6733 0.1920

F Statis. STPE ElasticNet ElasticNet 1,736 0.6073 0.1973

F Statis. STPE LinearSVR ElasticNet 1,736 0.6069 0.2062

F Statis. STPE XGB Regressor Lasso 1,526 0.5693 0.2114

Mutual Info.* STPE LinearSVR Lasso 4,410 0.5576 0.2021

F Statis* STPE Ridge ElasticNet 1,736 0.5507 0.2148

F Statis.* AF KNeighbors R. ElasticNet 671 0.5455 0.1990

Note:
Number of Features column represents number of distinct features selected. An asterisk (*) indicates that the hyper-parameters were not optimized.

Figure 4 Number of genes jointly selected by the feature selection algorithms for the presence of viral
shedding (SC-1) and the presence of symptoms (SC-2). The intersections of the clusters represent the
selected genes for mutual genes for different challenges and phases. There is only one gene, ATP7A, as
shown in the middle of the diagram, which has a strong discriminatory effect in terms of predictive
performance for all sub-challenges and phases. Full-size DOI: 10.7717/peerj-15552/fig-4
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as common to SC-1 phase 1 and SC-1 phase 3 (i.e., those that are selected in SC-1 both for
phase 1 and phase 3); 28 genes were at the intersection of SC-2 phase 1 and SC-2 phase 3.
In addition, only 1 gene was selected for all sub-challenges and phases, namely “ATP7A”.

Despite the paucity of overlap among common genes, ORA was performed on the
union of intersecting genes to gain better insight into the underlying association of genes
with specific biological pathways. ORA is a simple statistical approach that determines
which biological functions or processes (or pathways) are significantly enriched among
genes in a given list (Tsuyuzaki et al., 2015). The degree of enrichment is expressed as a
p-value calculated using a hyper-geometric test (or Fisher’s exact test) indicating whether
terms are found in the gene lists more frequently than expected by chance. A p-value less
than 0.05 is typically considered to be statistically significant.

To perform ORA, we used the WebGestalt platform, a web-based toolkit that takes a
gene list as input and performs a functional enrichment analysis to make an interpretation
of the given list (Liao et al., 2019). Because the pathways in different databases can differ in
many ways, such as the number of pathways present, the size of the pathways, and how the
pathways are curated, we used two well-known databases in our analysis: KEGG, and
Reactome (Ogata et al., 1999; Gillespie et al., 2022).

Because we want to extract the underlying biological factors before and after exposure
and the reasons for the symptoms, we need to analyze each sub-challenge and phase
separately. Therefore, the intersecting genes for SC-1, SC-2, phase 1, and phase 3, whose
numbers are listed in Fig. 4, were determined and used separately in ORA. For example, to
analyze only SC-1, the intersecting genes of SC-1 phase 1 (orange circle in Fig. 4) and SC-1
phase 3 (pink circle in Fig. 4) were used as input.

As a result of ORA, the ratio and false discovery rate (FDR) of the enriched pathways for
SC-2 and phase 1 are shown separately in Fig. 5. However, because the FDR values of the
enriched pathways for SC-1 and phase 3 were above 0.05, the result obtained would not be
significant and would be unreliable, and therefore only the pathways with FDR <0.05 were
considered.

As can be seen in the Fig. 5, despite the fact that each FS method selected different
number of genes in different sub-challenges and phases, mostly similar pathways are
enriched. In particular, translocation of ZAP-70 to the immunological synapse,
phosphorylation of CD3 and TCR zeta chains, and PD-1 signaling pathways are the most
enriched pathways with the lowest FDR values. The majority of these pathways is that they
are all part of the Adaptive Immune System group in the Reactome database. In addition,
all other enriched pathways also have an association with either the immune system or
immune diseases, with the exception of Type I Diabetes Mellitus, Intestinal Immune
Network for IgA Production, Viral Myocarditis and Phagosome. ORA found out that HLA-
DQA1, HLA-DQA2, HLA-DRB4 for phase 1 and HLA-DQB1, HLA-DRB4, HLA-DQA1
for SC-2 were the genes that had the maximum overlap with the enriched pathways.

In addition to these analysis, genes that are commonly selected among different
experiments are also explored. Although the viruses in our experiments are different, they
are all associated with a respiratory disease. Therefore, common genes affected by different
viruses may also be useful for understanding the disease mechanism. For this purpose, the
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major genes commonly selected on different experiments are also obtained and provided
as Supplementary file (Supplemental 3).

The number of correctly and misclassified samples for each respiratory virus on the test
set is shown in Fig. 6 with respect to sub-challenge and phase. The top section of this figure
includes confusion matrices with rows representing true labels and columns denoting
predicted labels. Our best performing models correctly predicted 18 out of 23 test samples
for SC-1 phase 1 and SC-1 phase 3, which gives an overall accuracy of 78.26%. ReliefF with
LR classifier and Fisher Score with KNN classifier and STPE pre-processing approach were
used for these models, respectively. On the other hand, the best performing model for SC-2
phase 1 correctly predicted 16 out of 23 test samples with an accuracy of 69.57% and the
best performing model for SC-2 phase 3 correctly predicted 17 out of 23 test samples,
which corresponds to an accuracy of 73.91%.

Figure 5 Enriched pathways as a result of over-representation analysis using intersecting genes from
SC-2 and phase 1. The bars show the enrichment values of each listed pathway, whereas the black and
gold dots indicate the false discovery rate of these values. The higher the FDR, the lower the confidence in
the pathway. Since there is no enriched pathway in the other sub-challenges and in phase 3, they are not
listed in the figure. Majority of enriched pathways were related to either Adaptive Immune System or
Immune Disease. Full-size DOI: 10.7717/peerj-15552/fig-5
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In our last experiment, we compared our method with DeepFlu, which is based on deep
neural networks and is published recently in the literature. DeepFlu was specifically
developed to predict symptom severity, which corresponds to SC-2 and was applied to the
datasets for DEE2 H3N2 and DEE3 H1N1. It should be noted that DeepFlu used a
gene-annotated versions for both datasets, while we used probe-annotated versions. This
resulted in different number of input features for prediction models. Additionally, DeepFlu
utilized Leave-one Person Out (L1PO) cross-validation experiment on combined samples
from T0 and T24 time points to evaluate performance separately on DEE2 H3N2 and
DEE3 H1N1 datasets. In our model, we used the AF approach for preprocessing and the
XGBoost algorithm in default hyper-parameter settings without feature selection for
computing predictions. Since DeepFlu results were obtained with L1PO, our model is
evaluated using the samples belonging to DEE2 H3N2 and DEE3 H1N1 experiments only
using LOOCV to make a fair comparison. The results show that the our method achieved
an AUPRC of up to 0.956, outperforming DeepFlu’s AUPRC of 0.76 in predicting the SC-2
label of DEE3 H1N1. On the other hand, our method obtained an AUPRC of 0.946 while
DeepFlu could obtain 0.901 for predicting the SC-2 label of DEE2 H3N2. The results of
both models are available in Table 5, which shows the best performing method for each

Figure 6 Confusion matrices and number of correctly and mis-classified subjects for each testing
experiment predicted by the most accurate models in Tables 2 and 3. The y-axis of the matrices
indicates the actual condition of the subjects (i.e., true labels).

Full-size DOI: 10.7717/peerj-15552/fig-6
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performance metric and for each virus experiment. Based on these results, our method
outperforms DeepFlu in all performance metrics for DEE3 H1N1 and DEE2 H3N2.

DISCUSSION
In this study, we aimed to improve the accuracy of predicting infection and symptom
development in individuals exposed to respiratory viruses by using different machine
learning models and approaches. Our results were compared with the Respiratory DREAM
Challenge, which is considered as one of the most important competitions in the field.
Among the proposed approaches, STPE, which treats each time point separately, and AF,
which combines gene expression at different time points, performed better than the
Challenge leaderboard in all categories in terms of prediction. Although merging samples
from the same virus to enlarge train dataset (i.e., the VM approach) improved the
prediction performance for some of the tasks, this was not observed in all settings.

One of the interesting findings of the experiments is that although the accuracy of
predicting whether a particular sample is infected increased in post-exposure for most of
the models, a reverse behavior is observed for the remaining models. After inoculation of
the virus into the body, some genes are expressed as part of the immune system against the
infection. Therefore, profiling values of the expressed genes could be expected to be more
discriminative for prediction. However, results show that the number of correctly
predicted subjects did not increase for DEE4X H1N1 in SC-1 and DEE5 H3N2 in SC-2
even after exposure to respiratory virus. On the contrary, the prediction accuracy
decreased after exposure in HRV DUKE experiments in the SC-1 category.

Another approach we have used in our experiments is FS, which achieved very good
results despite using too few gene expression values. For example, the mRMR-AF based
model achieved such a high AUPRC of 0.9325 even though only 16 gene expression feature
values were used. This result shows that the majority of features in the dataset might be
irrelevant or redundant, considering that the total number of features is 22,777.

Table 5 Results of the comparative analysis between DeepFlu and our method for DEE3 H1N1 and
DEE2 H3N2 experiments for different time points. Bold values denote scores of best-performing
models according to different performance metrics.

Experiment Accuracy Sensitivity Specificity Precision AUROC AUPRC

H1N1

DeepFlu T0 0.700 0.616 0.822 0.718 0.787 0.758

AF-XGB T0 0.952 1.000 0.900 0.917 0.900 0.458

DeepFlu T24 0.669 0.613 0.715 0.679 0.725 0.712

AF-XGB T24 0.857 0.909 0.800 0.833 0.909 0.956

H3N2

DeepFlu T0 0.738 0.722 0.756 0.770 0.847 0.901

AF-XGB T0 0.882 0.889 0.875 0.889 0.889 0.946

DeepFlu T24 0.689 0.689 0.723 0.759 0.759 0.806

AF-XGB T24 0.765 0.778 0.750 0.778 0.778 0.888
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Intersecting genes of SC-1 and SC-2 selected by the most successful FS methods (see
Table 3) are found as ATP7A, HLA-DQA1, HLA-DRB4, XIST, LOC389906 in phase 1 and
ATP7A and FCER1A in phase 3, respectively. All of these genes were mentioned as related
to respiratory infection in the literature (Janssen et al., 2007; Boyton et al., 2008; Jong et al.,
2016). Especially, “ATP7A” gene selected commonly for SC-1 and SC-2 is found to be
related to virus replication process of influenza A (Rupp et al., 2017).

It can be observed that the number of genes jointly selected by the FS algorithms for the
presence of viral shedding and the presence of symptoms is small. There could be several
reasons for this result. The first reason could be related to selecting minimum number of
features that give the best prediction performance during FS. The second reason is while
calculating the number of jointly selected genes, we considered the FS methods which
selected less than 100 features only. This is because we aimed to find out the top
representative genes in terms of prediction performance for different sub-challenges and
phases. When we also used other feature selection methods that selected more than 100
features, the intersection set was empty. The third reason for having a small number of
intersecting genes might be related to selecting features for each phase and sub-challenge
individually and then taking their intersections. When we examine Fig. 4, the total
numbers of selected genes are not quite small in each cluster. For example, the number of
jointly selected genes of only the SC1-Phase 3 is 104. However, when the intersections of
multiple clusters are taken, the numbers that show common effective genes decrease
considerably. The fourth reason could be related to having small number of samples in our
dataset. Due to the small sample size, there could be noise and variance in the outputs of
feature selection methods. This leads to ranking features differently for each feature
selection method. The fifth reason could be due to sub-challenge differences. Although the
same gene expression values are used for each sample, SC-1 aims to predict infection, while
SC-2 aims to predict symptom severity. Therefore, sample-wise class labels were not
always the same. For example, a subject could be labeled as infected but not labeled as
showing symptoms, or vice versa. Due to differences in the labels, feature selection
methods could select different genes for different sub-challenges.

As a further analysis to better understand the biological relationships of the selected
genes, an ORA was performed for each category and phase separately. Pathways associated
with “adaptive immune system” and “immune disease” were enriched in certain genes
according to the results of ORA. In particular, the fact that selected genes in phase 1 were
also associated with the immune system indicates that the immune system, the body’s
defense mechanism against viruses, is also statistically critical for protection against
respiratory infections. Moreover, according to the literature, genetic disorders of the
adaptive and innate immune systems are one of the key factors responsible for repeated
respiratory infections (Gibson et al., 2013; Lacoma et al., 2019).

CONCLUSION
Respiratory infections are widespread, symptomatic, and contagious diseases that occur in
all countries and regions of the world. Some people exposed to the virus are able to
completely avoid infection, while others develop severe symptoms. To enhance the

Işık and Aydın (2023), PeerJ, DOI 10.7717/peerj.15552 21/26

http://dx.doi.org/10.7717/peerj.15552
https://peerj.com/


predictive performance for both infection and symptom severity, we sought to improve
upon the results of the Respiratory DREAM Challenge, a significant competition in the
field. Results show that our proposed approaches have improved the prediction of
infection (up to 0.97 AUPRC) and symptom severity (up to 0.93 AUPRC) compared to the
methods submitted to the challenge. Furthermore, analysis of the mutual genes selected by
feature selection methods showed that the “immune system” has a strong association with
symptom development. These findings also showed congruity with the biological studies in
the literature.

In the next studies, the proposed approaches and methods will be performed on the
other gene expression dataset collected with a different microarray chipset, e.g., from
Illumina. The predominant genes will be investigated during symptomatic peak periods,
considering gene expression up to 120 h. Furthermore, the Gene Set Enrichment Analysis
(Subramanian et al., 2005) approach will be utilized to improve predictive performance
and identify the most enriched pathways according to infection.
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