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ABSTRACT 

A NOVEL APPROACH BASED ON BAGGING AND 

BOOSTING FOR IMBALANCED CLASSIFICATION 

PROBLEMS 

 

Muhammed Şafak PİNAR 

MSc. in Industrial Engineering 

Advisor: Prof. Dr. İbrahim AKGÜN 

 

August 2022 

 

 

Classification algorithms are employed in a wide range of real-world problems such as 

obstacle detection, fraud detection, medical diagnosis, spam detection, speech 

recognition, image processing, intrusion detection, and so forth. However, it is not always 

an easy task to propose a legitimate classifier. For a classification task, there are numerous 

limitations of datasets. One of the most confronted limitations in real-world classification 

tasks is skewed class distribution, also called the class imbalance problem. When learning 

is employed in class imbalanced datasets without incorporating appropriate adjustments 

into the existing algorithms, minority classes are mostly misclassified. This study 

introduces a novel classification algorithm that outperforms previous studies on 

benchmark datasets used for the class imbalance problem. The presented novel algorithm, 

namely, BagBoost, involves aggregating modified bagging and modified boosting 

algorithms to increase the visibility of minority class instances. 

The state-of-the-art algorithms in the classification of imbalanced datasets are 

investigated. The results of the best existing algorithms are compared with the proposed 

algorithm using benchmark datasets. Results show that BagBoost is a better classifier 

than commonly used classification algorithms in the literature for benchmark datasets 

according to F-measure and G-mean scores. 

Keywords: Classification, Class Imbalance, Ensemble Classifiers 
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ÖZET 

DENGESİZ SINIFLANDIRMA SORUNLARINA 

TORBALAMA VE ARTTIRMA ESASLI YENİ BİR 

YAKLAŞIM 

Muhammed Şafak PİNAR 

 Endüstri Mühendisliği 

Tez Yöneticisi: Prof. Dr. İbrahim Akgün 

 

Ağustos 2022 

 

Sınıflandırma algoritmaları, engel tespiti, dolandırıcılık tespiti, tıbbi teşhis, istenmeyen 

posta tespiti, konuşma tanıma, görüntü işleme, izinsiz giriş tespiti ve benzeri gibi çok 

çeşitli gerçek dünya problemlerinde kullanılır. Ancak, meşru bir sınıflandırıcı önermek 

her zaman kolay bir iş değildir. Bir sınıflandırma görevi için, çok sayıda veri kümesi 

sınırlaması vardır. Gerçek dünyadaki sınıflandırma görevlerinde en çok karşılaşılan 

sınırlamalardan biri, sınıf dengesizliği sorunu olarak da adlandırılan çarpık sınıf 

dağılımıdır. Öğrenme, sınıf dengesiz veri kümelerinde mevcut algoritmalara uygun 

ayarlamalar yapılmadan kullanıldığında, azınlık sınıfları çoğunlukla yanlış sınıflandırılır. 

Bu çalışma, sınıf dengesizliği problemi için kullanılan kıyaslama veri kümeleri üzerinde 

önceki çalışmalardan daha iyi performans gösteren özgün bir sınıflandırma algoritması 

sunmaktadır. Sunulan yeni algoritma, yani BagBoost, azınlık sınıfı örneklerinin 

görünürlüğünü artırmak için değiştirilmiş torbalama ve değiştirilmiş artırma 

algoritmalarının bir araya getirilmesini içerir. 

Dengesiz veri kümelerinin sınıflandırılmasında en gelişmiş algoritmalar araştırılmıştır. 

Mevcut en iyi algoritmaların sonuçları, kıyaslama veri kümeleri kullanılarak önerilen 

algoritma ile karşılaştırılmıştır. Sonuçlar, BagBoost'un F-ölçü ve G-ortalama puanlarına 

göre kıyaslama veri setleri için literatürde yaygın olarak kullanılan sınıflandırma 

algoritmalarından daha iyi bir sınıflandırıcı olduğunu göstermektedir. 

Anahtar kelimeler: Sınıflandırma, Sınıf Dengesizliği, Kolektif Sınıflandırıcılar 
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Chapter 1 

Introduction 

In the data age, extracting insights from data has attracted substantial research interest. 

However, the capacity of the human brain is not improved enough to process a large 

amount of data. To achieve better accuracy for learning tasks compared to the human 

brain, people generated algorithms on computers that can learn like a human being. For 

this reason, researchers are constantly developing new methods and algorithms to learn 

from data.  

The first imitation of the human neuron is discovered by McCulloch and Pitts in 1943 to 

mimic the human in a learning process [1]. This revolution is the first successful mimic 

of neurons. On top of the idea of imitating the human nervous system, Frank Rosenblatt 

discovered the Perceptron in 1957 and created the first algorithm that can recognize the 

letters of the alphabet by using the features of each letter [2]. Perceptron is the first 

“Machine Learning” (ML) algorithm. As the name implies, the aim of ML is that a 

computer (i.e., machine) ‘learns’ from the features of existing data to predict the label 

(i.e., the name of the letter for this example) for future, un-labeled observations. To 

recognize a new letter, Rosenblatt ‘trained’ his model by features and the names of letters. 

In ML, feeding the algorithm with labels of the instances to predict the classes or labels 

of new observations is called classification or supervised learning. In other words, using 

the names of letters with the features of corresponding letters in the above example is a 

classification problem. Even though the field of ML is enormously expanded today, and 

more accurate classification algorithms are developed, the very first ML algorithm 

Perceptron has the same idea of labeling an observation by its features. In other words, 

classification algorithms aim to categorize the data into previously determined classes by 

considering their features.  

Classification algorithms are employed in a wide range of real-world problems such as 

obstacle detection, fraud detection, medical diagnosis, spam detection, speech 

recognition, image processing, intrusion detection, and so forth. However, it is not always 
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an easy task to come up with a legitimate classifier. For a classification task, there are 

numerous limitations of datasets. One of the most confronted limitations in real-world 

classification tasks is to have skewed class distribution, which is also called the class 

imbalance problem. In class imbalanced domains, one or more of the classes, which are 

called minority classes, are significantly less represented than other classes in the data, 

i.e., majority classes. In other words, the instances belonging to minority classes are 

outnumbered by instances belonging to other classes. When learning is employed in class 

imbalanced datasets without incorporating appropriate adjustments into the existing 

algorithms, minority classes are mostly misclassified to maximize the overall accuracy, 

i.e., the ratio of correctly classified test instances to all test instances.  

In this study, the aim is to introduce a novel classification approach that outperforms 

previous studies on benchmark datasets used for the class imbalance problem.     

1.1 Class Imbalance Problem 

Class imbalance affects the performance of learning algorithms adversely. To understand 

the burden of classification algorithms on imbalanced domains, consider a binary case 

where there are only, two categories: -1 (negative) and 1 (positive). Suppose that the 

number of observations in the negative (majority) class is considerably high compared to 

the number of observations in the positive (minority) class. When algorithms do not take 

the class imbalance problem into account, the classification process is prone to ignore the 

minority class because the prior probability of the majority class is exorbitant compared 

to the minority class [3]. Learning algorithms aim to minimize a loss function, which is 

generally a misclassification rate. Since the observations of the positive class are 

extremely low in comparison to the negative class, learning algorithms tend to classify all 

examples as members of the negative class to minimize the misclassification error, and 

hence the positive class examples cannot be detected. To exemplify, consider a 

computerized network case where there are one hundred access requests from different 

users. Suppose that two of these requests are intrusions, i.e., unauthorized access requests. 

If an algorithm classifies all access requests as benign, i.e., authorized access, its overall 

accuracy will be 98%. However, all observations of the minority class will be 

misclassified. For problems such as medical diagnosis, fraud detection, intrusion 

detection, or obstacle detection as in autonomous cars, a misclassification may result in 

fatalities and/or big financial losses. In this regard, it is crucial to consider skewed class 
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distribution while learning from data and evaluating the results of each algorithm to have 

an operating learning algorithm [4]. 

Numerous algorithms have been proposed to mitigate the class imbalance problem. The 

literature on the classification of imbalanced datasets is divided into five main groups: (1) 

data-level methods, (2) algorithm-level methods, (3) cost-sensitive learning, (4) ensemble 

learning methods, and (5) ensemble of ensembles. In data-level methods, the aim is to 

manipulate the dataset and create a balanced classification task. This is achieved by 

generating new minority class examples or deleting instances from the majority class 

using different methods. It is the most straightforward way of tackling the class imbalance 

problem. Algorithm-level methods include the modifications of existing classification 

algorithms to mitigate the class imbalance problem. The general approach is to revise the 

loss function to better represent minority class instances in the learning process. Cost-

sensitive learning methods aim to assign a given misclassification cost to all observations 

or to each class to minimize the bias towards the majority class. Cost-sensitive methods 

assume a cost matrix for each class or each instance that is misclassified. Ensemble 

learning algorithms combine several learning algorithms to obtain a more accurate model. 

Another family of algorithms, which is generally considered a part of ensemble learning 

methods, is the ensemble of ensembles where two or more ensemble algorithms are 

combined to obtain a more accurate algorithm. Even though ensemble-of-ensembles 

learning algorithms are proven to be appropriate for most learning tasks, they are not 

developed to learn in imbalanced domains. However, they can better mitigate the class 

imbalance problem and especially ensemble-of-ensembles algorithms are superior to the 

aforementioned methods with regard to their classification performance when they are 

hybridized with data-level methods and cost-sensitive approaches (e.g., [4],[5],[6],[7]). 

The results of computational tests with the existing algorithms for imbalanced datasets 

show that their predictive accuracy on minority classes is too low, especially when the 

number of instances is comparatively less. In this regard, further investigation needs to 

be carried out on this family of algorithms. Motivated by this need, this study proposes a 

novel ensemble-of-ensembles classification approach to handle class imbalance problem 

that is a hybridization of bagging and boosting algorithm with better overall performance 

than that of previous models. The approach involves aggregating modified bagging and 

modified boosting algorithms to increase the visibility of minority class instances by 

rearranging the imbalance ratio at each bootstrap. Bagging is an ensemble learning 

algorithm that consists of several classification algorithms called base classifiers. The 
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base classifiers are trained on different samples of the original data then the prediction 

results of these classifiers are aggregated to have a superior classification algorithm to all 

base classifiers. With a similar manner Boosting is another aggregation of several 

classification algorithms. The difference is that, in Boosting the classifiers called weak 

learners, affects the weak learner by weighting the misclassified instances at each 

learning iteration. Computational results indicate that the proposed algorithm performs 

15% better than the second-best algorithm on average of 24 datasets according to F-

measure and 6% better than the second-best algorithm according to G-mean score. 

1.2 Thesis Structure 

The outline of the rest of the thesis is as follows. 

Chapter 2 states the problem and reviews the literature addressing the class imbalance 

problem as well as evaluation criteria. Existing learning algorithms are investigated under 

five main categories, namely, (1) data-level methods, (2) algorithm-level methods, (3) 

cost-sensitive learning methods, (4) ensemble learning methods, and (5) ensemble of 

ensembles, and benchmarking methods including the measurements are overviewed. The 

results of computational tests with the existing algorithms for imbalanced datasets 

indicate that their performance varies significantly depending on the features of datasets 

such as sample size or the imbalance ratio, which emphasizes the need to further 

investigate the classification task in imbalanced domains. 

Chapter 3 proposes a novel classification algorithm based on hybridization of bagging 

and boosting with a new approach to accurately classify imbalanced datasets and 

discusses logical and intuitive reasoning behind the good performance of the algorithm.  

Chapter 4 gives the experimental setup, benchmark datasets, and the algorithms used to 

compare to the proposed approach. The performance of the proposed algorithm is tested 

using four benchmark datasets that are proven to perform better than other approaches in 

the literature. 24 benchmark datasets are trained on each of the benchmark approaches 

and the proposed approach, and the F-measures and G-mean scores are compared to 

evaluate the approaches. 

Chapter 5 compares the results of existing best algorithms to those of the proposed 

algorithm using benchmark datasets. The results show that the proposed algorithm is a 

better classifier than commonly used classification algorithms in the literature for 

benchmark datasets according to F-measure and G-mean score.  
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Chapter 6 will conclude the study with a discussion on Societal Impact and Contribution 

to Global Sustainability as well as future research ideas.  
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Chapter 2 

Research Background 

In this chapter, we first discuss class imbalance problem as well as evaluation metrics 

appropriate in imbalanced domains. Secondly, we give a comprehensive review of the 

literature and emerging solutions to the class imbalance problem.  

2.1 Problem Statement 
 

As a part of ML algorithms, classification is one of the most used data processing 

methods. The aim is to categorize new instances into preassigned classes based on past 

data. As shown in Figure 2.1, classification algorithms consist of three main phases: 

Preprocessing, Training, and Prediction.  

In the preprocessing phase, the data is rearranged in a way that the classification algorithm 

can recognize the specificities of the instances. The feature space, the observation space, 

or in some problems the number of observations or the labels may be rearranged 

according to the needs of the applied algorithm. This phase differs from algorithm to 

algorithm and according to the needs of the decision maker. In the training phase, the 

minimizer parameters of a loss function are “learned” according to the classification 

performance of the learning algorithm using the labeled instances. The loss function 

differs from algorithm to algorithm. However, in traditional classification algorithms, it 

is generally an error term that represents the misclassification rate. To understand the 

learning process better, consider the following example of three students to be classified 

as “successful” or “not successful”. The students are instances in the learning algorithm 

in which two of them are from the negative class i.e., not successful and one is from the 

positive class i.e., successful. Suppose that we will decide whether a student is successful 

or not via the scores from two courses, “X” and “Y”. and we know if the student is 

successful or not. The loss function in this case is fed with the scores of each student from 

courses X and Y and outputs -1 (not successful) or 1 (successful). Then, to optimize the 

parameters of loss function the outputs of loss function is compared with actual classes 
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of students. After that, modifies the parameters of loss function to decrease the 

misclassification rate of students.  

In the prediction phase, the aim is to use the optimized loss function parameters during 

the training phase to predict the categories of new unknown and unlabeled instances. The 

performance of proposed models on new data is evaluated. Since both the loss function 

and the ranking of different models are extremely prone to changes in the evaluation 

method, there are several evaluation functions used with different learning tasks. To 

exemplify, overall accuracy, which is the ratio of the number of correctly classified 

instances to the number of all instances, is one of the mostly used evaluation metrics. 

However, it ignores the class imbalance problem. When the Imbalance Ratio (IR) is high, 

i.e., the majority class has much more instances than the minority class, the minority class 

instances are mostly misclassified even if the accuracy is high.  

 

Figure 2.1 Illustration of Classification Algorithms 

This generally results in a high misclassification error on minority class. In real-world 

problems, misclassifying almost all the minority class examples is an unacceptable flaw 

of the classification algorithm.  

To understand the class imbalance problem, one should understand the meaning of an 

under-represented sample. Figure 2.2 presents three different binary-labeled datasets with 

under-represented classes. Blue circles represent minority class instances while orange 

triangles represent majority class instances because the circles are outnumbered by the 

triangles. Traditional classification algorithms are biased towards the majority class 

because they try to minimize the overall accuracy. The next discusses appropriate 

measurements for class imbalance problem. 
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Figure 2.2 Class Imbalance Illustration 

2.2 Evaluation Metrics 

Several measures are used in classification algorithms. Accuracy is one of the mostly used 

evaluation metrics on classification tasks; however, it is not a proper performance 

measure for goodness of fit in imbalanced domains [8]. When the imbalance ratio (IR) is 

high, models trained according to accuracy tend to ignore minority class instances. In 

order to overcome this problem, three measures have been introduced as Area Under ROC 

curve (AUC), F-measure and G-mean.  

ROC (Receiver Operator Characteristic Curve) is a graph showing the change in True 

Positive Rate (TPR) over False Positive Rate (FPR) where TPR (also called recall) and 

FPR are defined as in Equation (2.1) and (2.2), respectively.  

𝐹𝑃𝑅 =
FP

𝐹𝑃 + 𝑇𝑁
 (2.1) 

 

𝑇𝑃𝑅 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.2) 

 

False Positive (FP) is the number of instances that are incorrectly classified as positive. 

In other words, they are the instances classified as positive class observations, but they 

are negative class observations. True Positive (TP) is the number of instances correctly 

classified as positive class observations. False Negative (FN) is the number of instances 

that are incorrectly classified as negative. AUC is not biased towards the majority class, 

but it suffers from underrepresenting FN [9]. The representation of FPR which normalizes 

FP with TN represented in Equation 2.1 decreases the importance of FN [10]. Hence, the 

importance of misclassification of a positive class example as negative is decreased. In 

this case, minority class examples are ignored during the learning process. To that extent, 

using measures that do not ignore FN is crucial on imbalance domains. For this reason, 

using precision and recall-based metrics that do not fail on representing FN is a better 
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approach on imbalance domains. Hence, using precision with recall is a better way to 

tackle the class imbalance problem. For this reason, both F-measure and G-mean that 

using precision instead of FPR are better measurements on imbalanced domains.  

F-measure also known as the harmonic mean of precision and recall is known to be a 

proper and widely used measure on imbalanced domains. Precision is defined as in 

Equation (2.3). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 (2.3) 

 

Hence, the F-measure is defined in Equation (2.4). 

𝐹𝛽score = (1 + β2) × 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

(β2 × 𝑝𝑟𝑒𝑐𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
 (2.4) 

 

where β is a coefficient that represents the importance of recall against precision. In 

general, β is set to 1 to give equal importance to precision and recall.  

G-mean is the geometric mean of precision and recall and defined in Equation (2.5). 

𝐺𝑚𝑒𝑎𝑛 =  √𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙 (2.5) 

 

Both F-measure and G-mean are considered to be the performance measures for 

imbalanced domains. Hence, in this study, to evaluate proposed model and give a 

comparison with existing literature F-measure and G-mean will be used.  

2.3 The Literature Review 

The solution techniques to learn from imbalanced data are divided into five categories 

according to the mitigation strategy used: (1) Data-Level Methods, (2) Algorithm-Level 

Methods, (3) Cost-sensitive Methods, (4) Ensemble Learning Methods and (5) Ensemble 

of Ensembles according to following studies [11],[12],[13],[14],[15],[16],[17],[18]. In the 

following, we give the literature related to these five categories. 

2.3.1 Data-Level Methods – Sampling 

In the data-level approaches, the idea is basically to sample data to have a balanced 

dataset. Since skewed data lead to an insufficient learning process, these methods 
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preprocess data to prepare for the actual learning process. Data-Level Approaches can be 

categorized into three groups: Under Sampling (US), Over Sampling, and a blend of these 

two, namely, Hybrid Methods. 

2.3.1.1 Under-Sampling 

The first method dealing with imbalanced data is Under-Sampling Method which, creates 

a balanced dataset by deleting instances from the majority class. In this way, the 

imbalanced ratio (IR) (i.e., the ratio of the cardinality of majority class to the cardinality 

of minority one) is decreased close to 1.  

The downside of an under-sampling algorithm is the loss of potentially useful 

information. Moreover, in the case that the prior imbalance ratio is as high as 99, the 

deleted instances may be fundamental to frame the majority class.  

Several algorithms were created using the under-sampling idea. These under-sampling 

techniques differ in the removal process to achieve less information loss. The primary 

idea is to remove instances from majority class examples randomly until the imbalanced 

ratio is 1 (i.e., Random Under-Sampling). As there is a big loss of meaningful data with 

this method, researchers came up with more clever ideas than randomly discarding some 

majority class examples. Some of the methods built on top of this idea are Tomek Links 

[19], One-Sided Selection [20], Under-sampling Based on Clustering [21], Class Purity 

Maximization [22], and so forth.  

2.3.1.2 Over-Sampling 

Over-Sampling method creates new instances from minority class examples.  In the most 

primitive case, the minority class examples are replicated until the imbalanced ratio is 1.  

The main drawback of the over-sampling method is overfitting [3],[18]. Overfitting is the 

problem of fitting a too complex curve on the training data. In this case, the learning 

algorithm memorizes the training data instead of learning from it and thus, the evaluation 

of the test set fails to yield good results. In other words, at the training stage of the learning 

process, the learning algorithm tries to classify all the examples correctly by increasing 

the complexity of the fitted curve. Additionally, since the number of instances is increased 

enormously according to the IR, the computational complexity is increased in the training 

phase of learning algorithms. When IR is very high, oversampling algorithms are not 

compatible with other learning algorithms according to model performance in class 

imbalance problems.  
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The most promising and widely used algorithm that follows an over-sampling procedure 

is SMOTE (Synthetic Minority Oversampling Technique) [23]. In SMOTE, instead of 

copying minority class examples several times, new minority class examples are 

populated using interpolation of minority class examples. Even though SMOTE creates 

achieves a balanced dataset with a smart approach, there is a crucial drawback of this 

algorithm; interpolated new instances may be in the majority class space and thus, 

segregating the new instances created from the majority class is hard to handle. Having 

instances labeled as minority class in majority class space yields the wrong labeled 

training dataset, which may cause overfitting [24]. Additionally, SMOTE with 

imbalanced data gives a bad classification performance at the borders of minority space 

[25].  

To solve these problems, many extensions of SMOTE have been generated. However, 

these extensions cannot solve the mentioned problems of SMOTE. 

2.3.1.3 Hybrid Approaches 

Using undersampling and oversampling in a standalone mode is not promising for 

imbalanced data classification tasks however, using them together enhances the 

performance of classification algorithm. Hybrid methods arise from the main downsides 

of undersampling and oversampling methods. They minimize information loss by 

reducing fewer data points from the majority class. Moreover, the overfitting probability 

is somehow decreased since algorithms copy fewer minority class examples to 

oversample. In this way, the results of hybrid algorithms are more promising than 

undersampling and oversampling. The aim is to find a balance between undersampling 

and oversampling that increases the model performance on imbalanced domains. For this 

reason, minority class examples are firstly oversampled and then, the majority (sometimes 

both majority and minority) class examples are undersampled. Traditional classification 

algorithms perform better on this preprocessed training dataset.  

Even though hybrid methods are better at classification performance than their 

predecessors, it is not quite a solution to all the problems of data-level approaches to 

imbalanced problems. Because in the oversampling phase, new instances from minority 

classes are created by interpolation, some of the instances lie deep in the majority class 

space and hence, the hybrid approaches may suffer from overfitting [25]. 

Data-level approaches are used in a variety of studies in the literature. However, they 

have key deficiencies such as overfitting or loss of information.  
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2.3.2 Algorithm-Level Methods 

Algorithm-level approaches aim to create a robust classification model that can accurately 

classify datasets with skewed class distribution by improving the traditional classification 

algorithms. To alleviate the bias towards the majority class, several existing learning 

algorithms are revised as Support Vector Machines (SVM), Neural Networks (NN), 

Decision Trees, and so forth. In each of these algorithms, several different modifications 

lead to different algorithms. As in data level approaches, there are several limitations of 

these modifications.  

For algorithm-level approaches, due to flexibility and generalization ability, one of the 

mostly used methods for imbalanced classification tasks is the modification of SVMs. 

Using Kernels with SVMs provides a more flexible model that allows for specific changes 

in the loss function. Kernels are used to map the complex decision surface into a higher 

dimensional space to have a less complex decision boundary. In this way, learning gets 

easier and computational complexity is decreased. Additionally, by definition, Kernel 

functions give inner products of support vectors and hence the data itself is not important 

after the training phase. Feeding the Kernel function with support vectors and new 

instances is enough to predict the label of the new instance.  

Considering the ability of Kernels on manipulating data, modifying Kernels to provide a 

better classification performance on imbalanced domains is not a surprise. One Kernel 

modifications is the conformal transformation of SVMs. The trick is to increase the 

precision of the ML algorithm around the decision boundary and decrease when the 

instances are away from the boundary [27] aims to give more priority to the instances 

around the decision boundary and so decrease the misclassification rate around the 

decision boundary. To handle class imbalance problem, Kernel Matrix which is the 

support vector is modified in the favor of minority class instances. Over the years, the 

algorithm is improved preserving the main idea of shifting the decision boundary between 

negative and positive classes. Two useful modifications of the shifting strategy are 

weighting classes with the inverse proportions of class labels [28] and optimizing the 

decision threshold alignment by maximizing the intra-class margin [29]. 

Another approach using conformal transformation of Kernel is called Kernel scaling. This 

approach despite the boundary shift algorithm focuses on increasing the precision on both 

sides of the decision boundary. Since the enlargement of the positive and negative spaces 
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are independent and decided according to the IR it is possible to prioritize the minority 

class space above the majority class space to ensure taking the imbalance data into 

account. This approach requires two consecutive learning phases.  

Choosing the best Kernel function according to the classification problem at hand using 

Kernel alignment is yet another approach. To ensure the fitness of the used Kernel, inter-

class and intra-class distances are compared. A higher inter-class and lower intra-class 

margin yield a good fit of model/Kernel. By this model/Kernel selection procedure, one 

may ensure to alleviate the bias toward the majority class [30]. 

Besides modifications, there are several weighting approaches to modify SVMs to handle 

imbalanced datasets. These approaches are mainly divided into two main groups: instance 

weighting and support vector weighting. In instance weighting the importance of 

instances from different classes are rearranged to mitigate with imbalance data. By the 

nature of imbalanced classification tasks, the minority class instances are unfavorable 

since their prior probabilities are less than majority class instances. Arranging the class 

weights, i.e., assuming the same weight for each instance in a class according to the 

likelihood of each class in a reverse manner is proposed in [31]. Weighting outliers, 

borderline instances, support vectors, or small disjuncts are other developments of the 

instance weighting approach. One of the most popular developments is using boosting 

algorithms to assign weights. In that case, boosting algorithms are used to optimize the 

instance importance according to the base classifier [32]–[35]. Another division of 

weighting approaches is called support vector weighting which, it aims to alleviate the 

impact of skewed class distribution by multiplying the margin of minority class support 

vectors with a positive coefficient [36]. Since the importance of minority class support 

vectors is increased, the bias towards the majority class is decreased.  

Since in data level approaches the data to feed the ML algorithm is preprocessed, it 

enables us to use any ML algorithm afterward. However, the training algorithm itself is 

revised in algorithm-level approaches and hence we sacrifice that ability. In counter, 

algorithm-level methods may be tuned specifically to the problem better than sampling 

methods [26] and hence in general, algorithm-level approaches yield a better 

classification performance on imbalanced domains.   
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2.3.3 Cost-Sensitive Learning 

Classification is (in most cases) minimization of misclassification error by assigning 

instances to classes. In imbalanced cases, the main problem is the cost functions inability 

properly to explaining that the minority class is misclassified so that even though all the 

instances of minority class are misclassified the error is reasonable. Cost-sensitive 

methods are investigated under two main groups, namely, direct approaches and meta-

learning approaches [37]. In the direct approaches misclassification cost for each class is 

introduced. In this case, the cost function of the classification algorithm is manipulated, 

hence this type of cost-sensitive method resembles algorithm-level approaches. In meta-

learning approaches, a misclassification cost is assigned to all instances to prevent bias 

towards the majority class. Since assigning a cost to instances is preprocessing and no 

structural change is made to the classification algorithm, this type of cost-sensitive 

approach is like a data-level approach. Since it is a data manipulation as in data-level 

approaches, most of the classification algorithms can be trained after preprocessing phase. 

However, since the algorithm is modified (mostly the cost function) with direct 

approaches, it is harder to apply compared to meta-learning approaches.  

The main contribution of cost-sensitive approaches is to introduce the cost of 

misclassification in the favor of minority class. This idea is applied to various algorithms 

such as SVMs [38], Neural Networks ([39], [40]) and decision trees ([41]–[43])  to 

prevent bias toward the majority class. In this family of algorithms, the most promising 

methods to tackle skewed class distribution problems are the modifications of decision 

trees. While applying meta-learning approaches, the instance weights are calculated, and 

a decision tree classifier is trained on the weighted dataset. While applying direct 

approaches, the cost function of the decision tree algorithm is rearranged to alleviate the 

effect of imbalance. By assigning a higher misclassification cost is assigned to the 

minority class during the training of the algorithm the bias towards the majority class is 

decreased.  

Even though cost-sensitive algorithms are promising, producing a proper cost matrix is 

hard. Since the algorithm learns the classes according to the given cost matrix in both 

meta-learning and direct approaches, the cost matrix is significant for an adequate 

learning algorithm. The root cause of problems related to the creation of a cost matrix is 

that the cost matrix is dependent on the training data. There are infinitely many cost 
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matrices that may be assigned to the classes (in direct approaches) or instances (in meta-

learning approaches). For this reason, it is hard to select the best cost matrix that will 

maximize the classification performance. Additionally, if the data has limitations such as 

noisy class distributions, the presence of instances that have a small inter-class margin or 

overlap of classes on instance space, it is even harder to procure a proper cost matrix 

([44], [45]). To tackle with the aforementioned problems, hybrid methods are proposed 

that uses the data-level approaches as preprocessing to direct cost-sensitive approaches. 

Hence, the preprocessing phase is used to eliminate the data-related limitations ([46], 

[47]).  

2.3.4 Ensemble Learning Methods 

Ensemble Learning is a fusion of several classifiers namely base classifiers to create a 

better performing model than the best one of base classifiers. Base classifiers should yield 

different outcomes called diversity of base classifiers, because having the same result in 

each base classifier will not improve the performance aggregate classification model. This 

requires, the models or the training dataset is variable at each training process of base 

classifiers [48]. Ensemble learning algorithms used to tackle class imbalance problems 

are mainly investigated in two parts: bagging and boosting. Bagging introduced by 

Breiman [49] is a combination of bootstrap and aggregate. In the bootstrap phase, several 

datasets are sampled from the original data called bags. Each of these samples is trained 

with a base classifier. Base classifiers are the same algorithm trained on different bags. In 

aggregating phase, the trained models are aggregated to make a prediction. The training 

sample at each iteration is different to preserve different results for each base classifier 

called diversity of the model. On the other hand, boosting as proposed by Schapire [50] 

assigns weights to instances in an iterative manner. In every iteration, weights of the 

instances that are correctly classified at the previous iteration are decreased and weights 

of the ones that are misclassified are increased. The learning process in each iteration is 

mediated through the weak learners. Weak learners are classification algorithms that have 

classification performance slightly better than a random guess. In each iteration, weak 

learners are fed with a weighted dataset from the previous iteration and weights are 

updated accordingly. In this way, in each iteration, a new result is created. Hence, as in 

the bagging model, the results of weak learners are aggregated to have a better learner 

than all the weak learners.  



16 

 

Ensemble-based learning methods addressing imbalanced classification problems are 

generally hybrid methods. As known, they are sensitive to skewed class distribution with 

a stand-alone setup. In a hybrid setup, ensemble-based learning algorithms are broadly 

used with data-level approaches and cost-sensitive learning algorithms.  For this reason, 

they are frequently classified as hybrid methods in literature [13], [51], [52]. In the 

following part, the ensemble-based algorithms that are created to handle class imbalance 

problem will be discussed.  

Ensemble classifiers may be combined with cost-sensitive methods in two ways: cost 

sensitive boosting approach and cost-sensitive weak learners. Cost-sensitive boosting 

approach rearranges the weights of instances in each iteration of boosting algorithms to 

handle class imbalance problems [53]. There are several applications of these algorithms 

e.g., AdaCost [54], RareBoost [55] and AdaC (from 1 to 3) [12]. They differ in their 

weighing procedure as cost-sensitive algorithms do.  

In cost-sensitive weak learners in each iteration of ensemble the weak learner is cost-

sensitive. They are generally differentiated on the base classifier itself. In some cases, not 

the classifier but the way of handling the cost matrix is changed. Some successful 

applications of this type of cost-sensitive ensembles are BoostedCS-SVM [56], 

BoostedWeightedELM [57], CS-DT-Ensemble [58], AL-BoostedCS-SVM [59] and IC-

BoostedCS-SVM [32]. However, the main drawback of cost-sensitive boosting is creating 

a proper cost matrix by the nature of cost-sensitive algorithms as explained in Section 2.3.  

Ensembles built upon data-level approaches are divided into three main categories: 

boosting-based, bagging-based, and hybrid methods. There may be confusion on the 

usage of the word hybrid twice, one for the ensemble built on top of data level approaches 

and the other for the hybridization of bagging and boosting methods. The hybrid 

approaches mentioned in this part represent the aggregation of bagging and boosting even 

though the main algorithm is a combination (i.e., hybridization) of data-level methods 

and ensembles. Boosting-based methods differ in the way they sample the data to obtain 

a balanced or nearly balanced dataset. Under-sampling, oversampling, and a combination 

of both techniques are used extensively. Moreover, the weights assigned to instances by 

the nature of boosting algorithms may change from one approach to another. Even in 

some applications, the order of weight assignment is changed to be before the training 

phase of boosting algorithms as in DataBoost-IM [57]. Other application using data level 

approaches prior to an ensemble learning algorithms are SMOTEBoost [60], 
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MSMOTEBoost [61], RUSBoost [62], EUSBoost [63], BalancedBoost [64], 

RAMOBoost [65], GESuperPBoost [66] and RB-Boost [67].  

Another hybrid approach is a combination of data-level approaches and bagging 

classifiers. Since the bootstrapping phase of the bagging algorithm is a sampling from 

original data, bagging itself is like a data-level approach. Therefore, bagging is a less 

complex method compared to boosting methods that weigh individual instances at each 

iteration according to previous classifiers' accuracy on the instance. Additionally, after 

bootstrapping, any base classifier would be used without manipulating the algorithm. On 

the other hand, maintaining the diversity of bootstraps is the main issue. The algorithms 

of this type of hybridization are distinguished on that issue. Each algorithm has its 

sampling technique to preserve diversity. As explained in Section 2.1, data-level 

approaches are divided into three groups, namely, oversampling, undersampling, and 

hybrid methods. Bagging-based algorithms may be investigated under a similar 

terminology as over-bagging, under-bagging, and hybrid-bagging, respectively. Since 

bagging may be applied subsequentially to any preprocessing algorithm, all mentioned 

algorithms in Section 2.1 may be integrated with it. SMOTEBagging [68] is one of the 

best performing applications of over-bagging in imbalanced domains. Balanced Bagging 

Classifier (BBC) [69] created by Lemaitre et al, Roughly Balanced Bagging(RBB) [70], 

Balanced Random Forest (BRF) [71], Exactly Balanced Bagging [72], QuasiBagging 

[73], Asymmetric Bagging [74], Bagging Ensemble Variation [75], IRUS [76], α-

TreeEnsembles [77], PUSB [78] are some of the mostly used under-bagging applications. 

UnderOverBagging [68], IIVotes [79], and RB-Bagging [67] are hybrid methods that use 

both undersampling and oversampling approaches. However, there are several algorithms 

proposed that are differentiated from this classification due to small changes in the 

sampling or learning algorithms such as USwitchingNED [80] and EPRENNID [81]. To 

the best of our knowledge, Balanced Bagging Classifier and Balanced Random Forest 

perform better than others where the sample size of the original dataset is small, and the 

IR is high.  

2.3.5 Ensemble of Ensembles – Double Ensembles 

Ensemble of ensemble is the hybridization of bagging and boosting algorithms. Bagging 

is the main classifier while the base classifiers are boosting algorithms. The main 

difference between these algorithms is the way that they handle bootstrap. There are 
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several applications adopting bagging and boosting together to increase diversity, 

accuracy, and robustness of ensemble models. In preparation for an imbalanced domain 

application, firstly we will discuss different algorithms within this context.  

The first double ensemble strategy applied is Multiboosting [82] where the aim is to tackle 

bias and variance at the same time. The idea is built on top of Breiman’s “Bagging 

Predictors” [49] and Freund’s “Adaboost Algorithm” [83].  Breiman’s search shows that 

bagging classifiers are strong in decreasing the variance of a classifier. Additionally, 

Friedman’s discussion on bias/variance [84] and statistical analysis on boosting 

algorithms [85] show that boosting algorithms appear to be one of the most powerful bias 

reduction methods even though weak learners are highly biased. It is known that boosting 

algorithms also tackle the high variance problem on a stand-alone setup. However, 

bagging algorithms are known to be a more effective classifier for reducing the bias 

compared to boosting [86]. To that extent, training bagging classifiers using boosting 

classifiers as base classifiers decreases the bias and variance simultaneously [82]. The 

algorithm Multiboosting is a not direct combination of bagging and AdaBoost algorithm. 

Instead of bagging, wagging, which is admitted as a variant of bagging, is used. In 

wagging the idea is to give weights to each instance and then sample according to the 

given weights. There are several other applications that use bagging instead of wagging, 

e.g., Stochastic Gradient Boosting [87], MEL [88] and Iterated Bagging [89]. Cocktail 

Ensemble [90] is another ensemble of ensembles that combines different ensembles in 

parallel. The main idea is to learn without sampling by ensembles and to aggregate the 

results to decrease the bias and variance of the model. However, the Cocktail classifier is 

proposed not as a classifier but as a regressor. The aim is to predict a continuous label.  

Liu et al. [4] are the first to propose a study that hybridized ensembles for imbalanced 

domains. They propose two algorithms, EasyEnsemble and BalanceCascade. They both 

originate from the major drawback of undersampling approaches. EasyEnsemble is likely 

to be the most straightforward aggregation of bagging and boosting. It is a bagging 

algorithm using AdaBoost as a base classifier. The usage of modified bagging algorithm 

together with AdaBoost results in an enormous decrease in bias and variance. Hence, the 

classification performance on minority class for imbalanced test set is superior compared 

to most of the other algorithms.  

HardEnsemble [5] is another application of double ensembles on imbalanced domains. 

The proposed algorithm combines under-sampling and oversampling techniques. The 

bags are acquired by Reward-Punishment [90] and CSMOTE [5] and a RUSBoost model 
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[62] is trained on each bag. Fusion of RUSBoost classifiers is used to predict the label of 

new instances.  

Cluster-based Under-sampling with Boosting (CUSBoost) [6] algorithm is proposed by 

Rayhan et al. Authors suggest a novel sampling technique for imbalanced domains. The 

instances of the majority class are clustered using the k-means algorithm. Then, each 

cluster is undersampled to form the majority class space of each balanced bag. A copy of 

minority class instances is used in each class as is. Each bag is trained with AdaBoost, 

and the results are aggregated. Since similar instances are clustered, intra-bag diversity 

increases but a loss of information occurs. The removed instances from the undersampling 

phase may be important identification of the majority class. Compared to other similar 

undersampling methods, information loss is decreased since the clustering phase ensures 

to have similar (clustered together) instances of majority class yield in the same bag and 

at each undersampling phase deletes instances from these bags of similar instances. In 

other words, there will be observations from each cluster of the majority class during the 

final learning process. Hence, the shape of the majority class space is preserved but the 

density of instances is decreased from each cluster. However, to ensure this, one should 

find a split in the majority class space that will yield optimal segregation in the clustering 

phase, which is not logical to expect. If the clusters are not segregated optimally then 

there may be some instances that are crucial to define majority class are removed from 

the training data. 

EUSBoost: [7] propose by Lu et al. is another approach developed for learning in 

imbalanced domains. It samples a subset from the original majority class without 

replacement. The cardinality of subsets is equal to the minority class. Then, AdaBoost is 

trained on each of these samples. A weighted voting approach is used to aggregate the 

results of AdaBoost classifiers. Then a decision boundary search algorithm is used to 

increase the inter-class variance. Since the minority class is copied to each of the bags 

created, the inter-bag diversity while the bagging process is controversial.  
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Chapter 3 

The Proposed Approach 

In this chapter, we propose a novel classification algorithm for imbalanced datasets. Since 

the proposed algorithm is a hybridization of bagging and boosting algorithms, it is crucial 

to understand these algorithms. In the following, we first explain the Bagging and 

Boosting algorithms and then give the details of the proposed algorithm.  

3.1 Bagging and Boosting Algorithms 

Bagging, first proposed by Breiman [49], is an ensemble learning algorithm that is divided 

into two parts, namely, bootstrapping and aggregating as shown in Figure 3.1. The aim is 

to create a better learner by combining several learning algorithms. The bootstrapping is 

in the most basic terms randomly sampling from the original dataset with replacement 

and hence the new dataset is not the same as the original one.  

  

Figure 3.1 Bagging Classifiers 

Because of the sampling strategy, there may be some instances represented more than 

once and ones not represented at all as shown in figure 3.1. After a given number of 

bootstraps are sampled from original data, a traditional learning algorithm chosen to 

optimize model performance, called base learner, is trained on each of the samples. Then, 
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the resulting trained models are aggregated for new unlabeled instances. The aggregation 

is created based on the “Wisdom of the Crowd” idea. The baseline is that having several 

independent and diverse learners that decide on the label of a new observation rather than 

a single learner is better results according to model performance. In the light of this idea, 

the resulting aggregated classification model is considered and proven to be better than 

single learners in general [49].  

Boosting, developed by Schapire [50], uses the original dataset at each iteration and 

rearranges the weights of instances at each training step according to the classification 

accuracy of “weak learners” as shown in Figure 3.2. Weak learners are known to be 

learning algorithms slightly better than a random guess. In other words, the classification 

accuracy of a weak learner is expected to be slightly more than a random categorization. 

After a weak learner is trained on the predecessor weak learner, the instances are weighted 

accordingly by using the classification accuracy and used at the next iteration until the 

number of iterations is equal to the pre-assigned value.  

 

Figure 3.2 Boosting Classifiers 
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To explain the weighting process more intelligible, consider a small binary class 

classification task that uses a breast cancer dataset consisting of ten observations. At the 

first iteration, the weak learner is trained with the original data with an initial weight of 1 

for each instance. Consider that 3 of these 10 observations are misclassified. In the next 

iteration, the weights of misclassified instances are increased and the weights of correctly 

classified instances are decreased. Let us set the weights of misclassified instances be 1.5 

and the weights for correctly classified instances be 0.5. The weighted instances are used 

as input for the next iteration. Tweaking the weights of instances in the explained way 

causes an increase in the importance of misclassified instances for the next iteration. For 

this reason, at each iteration, the misclassification error decreases. After a given number 

of iterations is carried out, a linear combination of the weak learners is used to form a 

final strong learner by weighting according to the classification accuracy of each weak 

learner.  

3.2 The BagBoost Algorithm 

The proposed algorithm is a modified bagging classifier that uses boosting classifiers as 

base classifiers. Two main modifications are made to original bagging classifiers: a new 

bootstrapping algorithm and boosting base classifiers. The bagging classifiers have 

bootstrap and training phases as shown in Figure 3.1. In bootstrapping phase, the 

algorithm of sampling from original data is modified to handle the class imbalance 

problem. Additionally, the base learners of bagging are set to be tuned XGBoost 

classifiers to have a better-aggregated result.  

 

 

Figure 3.3 The BagBoost Algorithm 
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On the original bagging algorithm, the bootstraps are the same size as the original dataset. 

Additionally, positive and negative class instances are sampled simultaneously. Hence on 

the average, i.e., considering the average of all bootstraps, the IR stays the same. On the 

contrary, the BagBoost Algorithm first divides the original dataset into positive and 

negative instances as shown in Figure 3.3. Then, instances are sampled from negative and 

positive classes separately with different sample sizes that change at each iteration for 

each class. To determine the number of instances in positive and negative classes at each 

iteration, we generate two random numbers within a given range. The range is a parameter 

of the BagBoost algorithm that requires to be optimized according to the dataset and 

mostly affected by the sample size and IR. Two random number are selected within this 

range at each iteration, one number represents the positive class sample size while the 

other represents negative class sample size. The lower and upper bounds of the range are 

some ratios of minority class examples. For example, suppose that we have two positive 

class observations and eight negative class observations as in the Figure 3.3 with an initial 

IR value of 4. If the lower bound and upper bounds are chosen to be 50% and 250% of 

the original positive class by the parameter optimization tools, the range will be [1, 5]. 

Assume that, at the first iteration the random numbers for positive and negative class 

sample sizes are drawn from the range as four and three respectively as in the first iteration 

in Figure 3.3. Note that, the first bag is imbalance and the IR is smaller than one, which 

means that the number of instances in the positive class is higher than the number of 

instances in the negative class. For the second iteration assume that the sample sizes for 

positive and negative classes are two and five. In this case, the IR for the second bag is 

greater than one. This enables to increase the diversity of bags compared to the original 

bagging algorithm.  

There are N bags are created according to the number of iterations (N) parameter of the 

BagBoost algorithm as stated in Algorithm 1. In the next phase of BagBoost algorithm, 

an XGBoost classifier, i.e., represented as base classifiers in Figure 3.3, is trained on each 

of these bags. In the training process of XGBoost algorithm at each iteration, the 

parameters of the algorithm are tuned according to the G-mean loss function instead of 

overall accuracy loss function. In this way, we ensure to consider the imbalance samples 

at each iteration to have better performing base classifier at each iteration. Note that, 

having different parameters of the XGBoost algorithm at each step of the BagBoost 

algorithm increases the diversity of base classifiers. For this reason, the BagBoost 
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algorithm increases the performance of classification compared to original bagging 

algorithm.  

In the next step, the results of XGBoost algorithms are aggregated according to majority 

voting approach. Majority voting is one of the methods widely used to provide a single 

classifier from several base learners. The aim is to propose a better classifier than each of 

the base classifiers by using the “Wisdom of the Crowd” idea.  

 

Algorithm 1  The BagBoost Algorithm 

input: An input dataset: Consists of a set of minority class examples Sp and a set of 

majority class examples Sn, where |Sp| < |Sn|, 

 Two input parameters:  

 a- The number of iterations N, specifies the number of bootstraps 

 b- A range of the number of positive [nps, npe], and negative [nns, nne] class 

instances  

output:  A robust classification model 

1 begin 

2  i = 0 

3  while i ≤ N do 

4   Randomly create npi ∈ [nps, npe] and nni ∈ [nns, nne] as the cardinality of positive and 

negative class 

5   Randomly sample Spi from Sp, and Sni from Sn where;|Spi| = npi, and |Sni| = nni 

6   Concatenate Spi, and Sni into Ii 

7   Train XGBoost algorithm on Ii and save the predictions of the unlabeled test set. 

8   i ⇐ i + 1 

9  end while 

10  Majority Voting 

11 end 

 

There are two benefits of BagBoost algorithm in imbalanced domains: increasing the 

diversity of bag set and using G-mean score function while training base classifiers. In 

the following, we will explain these benefits in detail, respectively.  

As shown in Figure 3.3, the IR is change within the range [0.2, 5] according to the range 

parameter and will be different at each bag which means we may have IR smaller than or 

bigger than one in any bag. Since, in the original data the number of positive class 

instances are two and we may have a bag that has more than two instances, e.g., four in 

the first bag of Figure 3.3, the BagBoost algorithm followed an oversampling approach 
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in the first bag for positive class. Similarly, the original sample size of negative class is 

eight but the sample size of negative class in the first bag is three and hence the BagBoost 

algorithm followed a undersampling approach for negative class of first bag. In the 

bootstrapping phase both undersampling and oversampling from original data is used and 

hence, bootstrapping phase of BagBoost algorithm may be considered as an advanced 

hybridization of undersampling and oversampling algorithms that increases the diversity 

of bags.  

Using G-mean score is important to classify the imbalanced bags accurately. Since the 

dataset at each bagging iteration is not also completely balanced in the proposed 

bootstrapping algorithm, traditional algorithms often failed to accurately classify the 

minority class examples. Even though the IR is decreased considerably, it is hard to build 

a valid classification model when the bags are imbalanced. To handle this problem at each 

iteration parameters of XGBoost algorithm are tuned according to the G-mean score 

which priorities the misclassification on minority class. In this way, the base classifiers, 

i.e., XGBoost algorithms, do not ignore the minority class and result well performing base 

learners that increases the overall performance of BagBoost algorithm.  
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Chapter 4 

Experiments 

In this chapter, we give the result of computational tests. The proposed algorithm, namely, 

BagBoost algorithm is compared to the state-of-the-art algorithms in the literature trained 

on all benchmark datasets and hence the results are compared.  

4.1 Benchmark Datasets 

There exist several benchmark datasets in the literature to compare the performance of 

classification algorithms in imbalanced domains. However, these algorithms are mostly 

developed for different application areas and hence proposed algorithms in the literature 

are tested with only some of these datasets. Accordingly, there is not a common set of 

benchmark datasets to be used for a fair comparison. Since the classification algorithms 

are highly prone to changes in the dataset, the computational results in the related studies 

cannot be used directly for comparison and there is need to train these algorithms in the 

same set of imbalanced datasets. In this regard, we use several datasets from different 

repositories that are used as benchmark datasets for imbalanced domains, namely, UCI, 

LIBSVM, and KDD to fairly compare the performances of classification algorithms. 

Table 4.1 shows the name, the target, the IR, and the sample size of each dataset. There 

are 24 datasets of varying sample sizes and IRs. The target stands for the class label for 

each dataset. Note that, IR varies from 9.3 to 42 and sample size varies from 450 to 

145825 meaning that the chosen datasets are fair to conclude on classification 

performance of trained algorithms.  
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Table 4.1 Benchmark Datasets 

Name Target IR 

Sample 

Size Name Target IR 

Sample 

Size 

satimage 4 9.3 6471 coil_2000 minority 16 9907 

pen_digits 5 9.4 11008 arrhythmia 06 17 730 

abalone 7 9.7 4187 solar_flare_m0 M>0 19 1421 

sick_euthyroid sick 9.8 3205 oil minority 22 986 

spectrometer ≥44 11 624 car_eval_4 goodness 26 1749 

car_eval_34 goodness 12 1749 wine_quality ≤4 26 4909 

isolet A, B 12 8414 letter_img Z 26 20016 

us_crime >0.65 12 2094 yeast_me2 ME2 28 1492 

yeast_ml8 8 13 2520 webpage minority 33 35080 

scene label 13 2701 ozone_level data 34 2608 

libras_move 1 14 450 mammography minority 42 11189 

thyroid_sick sick 15 3824 protein_homo minority 11 145825 

        

4.2 Benchmark Algorithms 

The algorithms selected to compare the performance of BagBoost algorithm according to 

their performances on imbalance domains are EasyEnsemble, BBC, BRF and RusBoost. 

EasyEnsemble is a double ensemble algorithm that is a hybridization of modified bagging 

and boosting algorithms. It consists of three parts: bootstrapping, training and 

aggregating. It ensures balanced bags while bootstrapping phase and uses AdaBoost to 

train on each bag at training phase. Each bag has a size equivalent to twice the size of the 

minority class and the minority classes are the same in each bag and hence the diversity 

among the bags is low compared to BagBoost algorithm. In training phase, the Adaboost 

algorithm is not tuned according to each bag and thus, the outputs of each base classifier, 

i.e., Adaboost classifiers, are similar.  

EasyEnsemble is the only double ensemble algorithm used as a benchmark in this thesis. 

The rest of the algorithms that are compared to the BagBoost algorithm is from the family 

of ensemble algorithms. They all are hybridizations of data-level approaches with 

boosting or bagging ensembles. For this reason, there are only small changes in these 

algorithms.  

BRF [71] is a decision tree-based ensemble classifier which has three phases (1) 

Bootstrap, (2) CART, and (3) Aggregate. (1) several bags are sample from original data 

with replacement. Each bag has a size equivalent to twice the size of minority class. (2) 

CART, which is a classification tree algorithm is induced without pruning the resulting 
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tree. (3) the results of each CART algorithm are aggregated. BRF created bags that have 

an IR of one in each iteration and hance, diversity of bags may be low. 

RusBoost [62] is a hybridization of data-level methods and boosting algorithms. Mainly, 

it consists of two phases (1) RUS i.e., Random Under-sampling, and (2) AdaBoost. The 

RUS phase aims to under-sample from the majority class until the desired IR is ensured. 

In the AdaBoost phase Adaboost algorithm is trained on this new dataset. RUSBoost 

deletes several instances from the majority class randomly, which may cause loss of 

useful information that may be mandatory to define the majority class.  

BBC [69] is a hybridization of bagging algorithm with data-level methods which differs 

from traditional bagging algorithms in the bootstrapping phase as BRF. The difference in 

the first phase is that BBC uses the RUS algorithm, i.e., randomly under-samples from 

majority class, and thus, the minority class is the same at each iteration. In other words, 

its under-samples from the majority class. In the second phase, it uses the Decision Tree 

Classifiers to learn from each bag. BBC randomly deletes several instances from negative 

class which may be mandatory to define majority class.  

4.3 Experimental Results 

This section presents the results of computational tests. Because the overall accuracy is 

not a good performance measure on imbalanced domains, F-measure and G-mean metrics 

are chosen to evaluate the performance of the algorithms.  

The proposed algorithm BagBoost and benchmark algorithms are all coded using Python 

Programing Language. All algorithms are trained on 24 different benchmark datasets, and 

each dataset is split into 80% train and 20% test sets. Table 4.2 summarizes the average 

F-measures for all algorithms and datasets. The bold number for each dataset shows the 

best-performing algorithm for the dataset each row. The results show that the proposed 

algorithm outperforms benchmark algorithms except for three datasets, namely, 

sick_euthyroid, yeast_ml8 and ozone_level. For two datasets, sick_euthyroid and 

ozone_level BagBoost performed slightly worse than the best performing algorithm, 

BBC. For yeast_ml8 the performance of BagBoost is significantly worse than BBC. We 

think that this may be caused by class overlap or small sample size. The average of F-

measure obtained by BagBoost is better than the average F-measure obtained by 

benchmark algorithms by about 33-53%.  
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Table 4.2 F-measures of Algorithms on Benchmark Datasets 

Dataset  BagBoost BBC BRF RusBoost EasyEnsemble 

satimage 0.64198 0.59307 0.54800 0.50663 0.54510 

pen_digits 0.99764 0.91453 0.94798 0.84856 0.82191 

abalone 0.44853 0.39464 0.39770 0.32897 0.37387 

sick_euthyroid 0.80000 0.81443 0.75771 0.69795 0.74348 

spectrometer 0.84211 0.61190 0.62381 0.64667 0.53357 

car_eval_34 0.88525 0.74194 0.69305 0.82026 0.73871 

isolet 0.81679 0.71199 0.65871 0.51268 0.70151 

us_crime 0.53488 0.40399 0.42536 0.36087 0.40122 

yeast_ml8 0.08696 0.20359 0.20142 0.07454 0.19391 

scene 0.28947 0.17996 0.27216 0.15709 0.23903 

libras_move 0.66667 0.23333 0.34000 0.50000 0.27333 

thyroid_sick 0.89583 0.76150 0.68714 0.64034 0.72806 

coil_2000 0.19289 0.13158 0.15190 0.12905 0.15875 

arrhythmia 0.88889 0.50000 0.16333 0.21667 0.51667 

solar_flare_m0 0.21277 0.19798 0.14376 0.04929 0.12560 

oil 0.18182 0.18024 0.16639 0.15000 0.12824 

car_eval_4 0.76471 0.58040 0.41192 0.72825 0.46654 

wine_quality 0.31461 0.25693 0.21916 0.13051 0.19437 

letter_img 0.93197 0.65811 0.63212 0.60822 0.60412 

yeast_me2 0.43478 0.33690 0.26849 0.25746 0.24745 

webpage 0.78422 0.36040 0.38022 0.19001 0.40425 

ozone_level 0.17391 0.17497 0.13338 0.15111 0.13511 

mammography 0.76923 0.44558 0.39634 0.40994 0.34754 

protein_homo 0.85825 0.37635 0.40066 0.27755 0.34523 

Average 0.60059 0.44851 0.41753 0.39136 0.41532 

      

Table 4.3 illustrates the percentage differences between F-measure values of the proposed 

algorithm and those of benchmark algorithms. In nineteen benchmark datasets, the 

percentage change in F-measure value is greater than 10% and so, there is a significant 

improvement. The proposed algorithms perform better for hard classification tasks where 

IR is high. On the average, the percentage change in F-measure value is 38% higher than 

the second-best algorithm, BBC.  
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Table 4.3 Percentage Differences in F-measure 

Dataset BBC BRF RusBoost EasyEnsemble 

satimage 8.25 17.15 26.72 17.77 

pen_digits 9.09 5.24 17.57 21.38 

abalone 13.66 12.78 36.34 19.97 

sick_euthyroid -1.77 5.58 14.62 7.60 

spectrometer 37.62 34.99 30.22 57.83 

car_eval_34 19.32 27.73 7.92 19.84 

isolet 14.72 24.00 59.32 16.43 

us_crime 32.40 25.75 48.22 33.31 

yeast_ml8 -57.29 -56.83 16.66 -55.15 

scene 60.85 6.36 84.27 21.10 

libras_move 185.72 96.08 33.33 143.91 

thyroid_sick 17.64 30.37 39.90 23.04 

coil_2000 46.60 26.98 49.47 21.51 

arrhythmia 77.78 444.23 310.25 72.04 

solar_flare_m0 7.47 48.00 331.67 69.40 

oil 0.88 9.27 21.21 41.78 

car_eval_4 31.76 85.65 5.01 63.91 

wine_quality 22.45 43.55 141.06 61.86 

letter_img 41.61 47.44 53.23 54.27 

yeast_me2 29.05 61.94 68.87 75.70 

webpage 117.60 106.25 312.73 93.99 

ozone_level -0.61 30.39 15.09 28.72 

mammography 72.64 94.08 87.64 121.34 

protein_homo 128.05 114.21 209.22 148.60 

Average 38.14 55.88 84.19 49.17 

 

Table 4.4 shows the G-mean scores of the algorithms for all datasets. The bold values 

show the best classification algorithm for the corresponding dataset. BagBoost performs 

better than benchmark algorithms for 14 of 24 benchmark datasets.  

G-mean scores are higher than F-measure values because G-mean gives less importance 

to minority class than F-measure, which causes a decrease in the F-measure values 

resulting from the misclassification of minority class instances. Since it is crucial to detect 

minority class instances in many imbalanced classification tasks, F-measure may be 

chosen above the G-mean.  
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Table 4.4 G-mean of Algorithms on Benchmark Datasets 

Dataset  BagBoost BBC BRF RusBoost EasyEnsemble 

satimage 0.8909 0.8585 0.8806 0.7685 0.8671 

pen_digits 0.9919 0.9558 0.9827 0.9303 0.9604 

abalone 0.7849 0.7456 0.8030 0.6309 0.7839 

sick_euthyroid 0.9419 0.9254 0.9279 0.8711 0.9346 

spectrometer 0.9742 0.7524 0.8774 0.7051 0.8807 

car_eval_34 0.9615 0.9451 0.9617 0.9557 0.9681 

isolet 0.9529 0.9103 0.9330 0.7007 0.9539 

us_crime 0.9118 0.7374 0.8286 0.5310 0.8142 

yeast_ml8 0.5552 0.5547 0.6304 0.2067 0.6140 

scene 0.6633 0.4722 0.7110 0.3685 0.6714 

libras_move 0.8534 0.4897 0.5349 0.8000 0.4523 

thyroid_sick 0.9652 0.9428 0.9098 0.8249 0.9675 

coil_2000 0.6506 0.4783 0.5972 0.5200 0.6137 

arrhythmia 0.9456 0.7882 0.3499 0.4881 0.7760 

solar_flare_m0 0.7930 0.6105 0.5848 0.2266 0.5790 

oil 0.9018 0.5078 0.5853 0.1694 0.4864 

car_eval_4 0.9676 0.9406 0.9389 0.9545 0.9495 

wine_quality 0.7733 0.6902 0.7748 0.4454 0.7628 

letter_img 0.9829 0.9544 0.9671 0.8667 0.9664 

yeast_me2 0.8325 0.7904 0.8571 0.5189 0.8496 

webpage 0.9382 0.8743 0.9210 0.7525 0.9209 

ozone_level 0.7383 0.6592 0.6609 0.3314 0.6783 

mammography 0.9214 0.8985 0.9242 0.7833 0.9120 

protein_homo 0.9519 0.9305 0.9380 0.8215 0.9542 

Average 0.8685 0.7672 0.7950 0.6322 0.8049 

 

Table 4.5 shows the differences between the G-mean scores of BagBoost algorithm and 

those of benchmark algorithms. On the average, EasyEnsemble is the closest to the 

BagBoost with a difference of 11.3%, i.e., BagBoost performs better than EasyEnsemble 

by about 11.3% with respect to G-mean score. BagBoost is slightly worse than the best 

performing benchmark algorithm for 6 of 10 datasets where BagBoost cannot outperform 

benchmark algorithms. In the 4 datasets there considered to be a significant change, 

namely, abalone, yeast_m18, scene and yeast_me2 the percentage changes in G-mean 

score are 2.26%, 11.93%, 6.71% and 2.87%, respectively. According to these results, 

BagBoost algorithm performs better than the benchmark algorithms considering G-mean 

score. 
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Table 4.5 Percentage Differences in G-mean 

Dataset BBC BRF RusBoost EasyEnsemble 

satimage 3.78 1.17 15.93 2.74 

pen_digits 3.78 0.94 6.63 3.28 

abalone 5.27 -2.26 24.40 0.13 

sick_euthyroid 1.78 1.51 8.13 0.78 

spectrometer 29.47 11.03 38.16 10.61 

car_eval_34 1.73 -0.02 0.61 -0.68 

isolet 4.68 2.13 35.99 -0.10 

us_crime 23.66 10.04 71.71 11.99 

yeast_ml8 0.09 -11.93 168.62 -9.58 

scene 40.48 -6.71 80.00 -1.21 

libras_move 74.26 59.55 6.68 88.69 

thyroid_sick 2.38 6.08 17.00 -0.24 

coil_2000 36.03 8.94 25.12 6.01 

arrhythmia 19.96 170.25 93.75 21.86 

solar_flare_m0 29.89 35.61 249.89 36.96 

oil 77.58 54.08 432.38 85.40 

car_eval_4 2.87 3.05 1.38 1.90 

wine_quality 12.04 -0.20 73.62 1.37 

letter_img 2.99 1.63 13.41 1.70 

yeast_me2 5.33 -2.87 60.42 -2.01 

webpage 7.31 1.86 24.68 1.88 

ozone_level 12.00 11.72 122.76 8.85 

mammography 2.55 -0.31 17.64 1.03 

protein_homo 2.30 1.48 15.87 -0.24 

Average 16.76 14.87 66.87 11.30 
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Chapter 5 

Conclusion and Future Prospects 

5.1 Conclusions 

In this study, we have addressed the class imbalance classification problem where 

majority class outnumbers minority class. Class imbalance problem is confronted in a 

variety of real-world classification tasks, namely, obstacle detection, fraud detection, 

medical diagnosis, spam detection, speech recognition, image processing and intrusion 

detection. The traditional classification algorithms cannot perform well for class 

imbalance domains because they are essentially overfitting the data to obtain a better 

overall accuracy and hence, ignore the minority class instances on training phase. Even 

though several algorithms in the literature developed for class imbalance problem, they 

are still not considered good enough according to the model performance on minority 

class instances. For this reason, we propose a novel classification algorithm that is a 

hybridization of modified bagging and boosting algorithms, namely, BagBoost. BagBoost 

algorithm differs from the previous ones in handling the bagging and boosting. While the 

previous state-of-the-art algorithms suffers from loss of information and/or overfitting 

BagBoost algorithm is developed to overcome these problems and hence, outperforms 

the state-of-the-art classification algorithms on most of the imbalanced benchmark 

datasets.  

5.2 Societal Impact and Contribution to Global 

Sustainability 

Classification algorithms are employed in a wide range of real-world problems such as 

obstacle detection, fraud detection, medical diagnosis, spam detection, speech 

recognition, image processing and intrusion detection. The BagBoost algorithm is a better 
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classifier than the others according to F-measure and G-mean performance metrics on 

imbalance domains. In this regard, in the various fields that class imbalance problem is 

confronted, this algorithm may contribute the sustainability of these fields. To exemplify, 

in health sector, may help for early detection of a cancer patient and hence, may save the 

life of the patient and decrease the cost of treatment. When applied in cybersecurity field, 

may contribute the sustainability of systems in banking, transportation, 

telecommunication, production, and so forth.  

5.3 Future Prospects 

In this study, the focus is on the classification of imbalanced datasets. Class imbalance 

problem is one of the most confronted issues in classification tasks. The currently 

proposed algorithms in the literature are unable to accurately detect minority class 

instances and hence, there is a need for accurate classifiers in imbalanced domains. We 

proposed a novel algorithm which is a hybridization of bagging and boosting classifiers 

that outperforms the state-of-the-art algorithms in the literature for most of the benchmark 

datasets. However, considering several other problems which may affect the performance 

of classification algorithms in imbalance domains, such as small sample size problems, 

class overlap problems, or within-class concepts [12], [13], the classification performance 

of BagBoost algorithm may be improved in other datasets. In the next stage, these 

problems may be incorporated in BagBoost algorithm.  
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