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ABSTRACT 

A RELIABLE AND SECURE COMMUNICATION 

DESIGN FOR UNDERWATER SENSOR NETWORKS 

CONCERNING ENERGY EFFICIENCY 
 

Osman Gökhan Uyan 
Ph.D. in Electrical and Computer Engineering 

Advisor: Prof. Dr. V. Çağrı Güngör  

 

January 2023 
 

 

Underwater Acoustic Sensor Networks (UASNs) recently attract scientists because 

of its wide range of applications and emerging technology. A design challenge in UASN’s 

is the limited network lifetime and poor reliability caused by limited battery supply of 

sensors and harsh channel conditions in underwater environment. Moreover, sensors 

might transmit sensitive data that must be disguised against eavesdropping attacks. To 

maintain a reliability level, packet-duplication and multi-path routing method are 

suggested, which renders eavesdropping attacks easier. For data security, cryptographic 

encryption is the most acclaimed method. However, encryption needs extra computations, 

which consume extra energy and cause a decrease in the network lifetime. As a 

countermeasure along with encryption against silent listening, fragmenting data and 

transmitting in pieces over different paths has been proposed. To address these 

challenges, an optimization framework has been developed to analyze the effects of multi-

path routing, packet duplication, encryption, and data fragmentation on network lifetime. 

However, the solution time of the proposed optimization model is quite high, and 

sometimes it cannot come up with feasible solutions. To this end, in this study, different 

regression and neural network methods have been proposed to predict the energy 

consumptions of underwater nodes as supplementary methods to optimization models. 

Performance evaluations show that the proposed methods yield remarkably accurate 

predictions and can be used for energy consumption prediction in UASNs.   
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ÖZET 

SU ALTI SENSÖR AĞLARI İÇİN ENERJİ VERİMLİ 

İSTİKRARLI VE GÜVENLİ BİR HABERLEŞME TASARIMI 

 
Osman Gökhan Uyan 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 
Tez Yöneticisi: Prof. Dr. V. Çağrı Güngör 

 

Ocak 2023 
 
Sualtı Akustik Sensör Ağları (UASN'ler), geniş uygulama yelpazesi ve gelişmekte 

olan teknolojisi nedeniyle son zamanlarda bilim insanlarının ilgisini çekmektedir. 

UASN'lerdeki bir tasarım zorluğu, sensörlerin sınırlı pil kaynağı ve su altı ortamındaki 

zorlu kanal koşullarının neden olduğu sınırlı ağ ömrü ve zayıf güvenilirliktir. Ayrıca, 

sensörler gizli dinleme saldırılarına karşı gizlenmesi gereken hassas veriler iletebilir. 

Belirli bir iletim istikrarı seviyesini korumak için, bu çalışmada paket çoğaltma ve çok 

yollu yönlendirme yöntemi önerilmiştir. Ancak bu yöntemler gizli dinleme saldırılarını 

daha kolay hale getirmektedir. Veri güvenliği için kriptografik şifreleme en çok bilinen 

yöntemlerdendir. Ancak, şifreleme fazladan enerji tüketen ve ağ ömründe azalmaya 

neden olan ekstra hesaplamalara ihtiyaç duyar. Gizli dinlemeye karşı şifreleme ile birlikte 

bir karşı önlem olarak, verinin parçalanması ve farklı yollar üzerinden parçalar halinde 

iletilmesi bu tezde önerilmiştir. Bu zorlukları ele almak adına, çok yollu yönlendirme, 

paket çoğaltma, şifreleme ve veri parçalamanın ağ ömrü üzerindeki etkilerini analiz 

etmek için bir optimizasyon çerçevesi geliştirilmiştir. Ancak, önerilen optimizasyon 

modelinin çözüm süresi oldukça yüksektir ve bazen uygulanabilir çözümler 

üretememektedir. Bu amaçla, bu çalışmada, optimizasyon modellerine tamamlayıcı 

yöntemler olarak sualtı düğümlerinin enerji tüketimlerini tahmin etmek için farklı 

regresyon ve sinir ağı yöntemleri önerilmiştir. Performans değerlendirmeleri, önerilen 

yöntemlerin oldukça doğru tahminler verdiğini ve UASN'lerde enerji tüketimi tahmini 

için kullanılabileceğini göstermektedir. 
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Chapter 1  

Introduction 
In this chapter, we introduce the study by giving a brief background information 

about Underwater Acoustic Sensor Networks (UASN). Then the motivation and the scope 

behind the idea of the study is presented. 

1.1 Background of UASNs 
 
 
The surface of the Earth is encircled by water with a percentage of approximately 

70%. Oceans, seas, lakes, and rivers forming this colossal water body have remained 

unexplored for centuries. The humans neither had adequate technology nor tools that 

would allow them to observe the realm under the water surface. 

Thanks to the technological developments in the last decades, new smart vehicles 

and tools were developed that can operate and accomplish desired operations under the 

water surface. This has made several applications possible including academic research, 

commercial and military applications. Moreover, there are numerous natural resources 

residing such as mines, natural gas, and oil, which can be used for humankind if 

processed. Academic research involves examining underwater ecosystem, measuring 

pollution, and observation of various aquatic living beings. Commercial applications are 

generally developed for human transportation, gas, oil and drinking water transportation 

and telecommunications. To maintain these facilities, monitoring the pipelines or cables 

against any accidents or leakage has utmost importance to recover from unwanted 

situations. Military applications are mostly implemented for security purposes such as 

intrusion detection and sea-mine detection. 

In the conventional approach, for amassing data from the underwater environment, 

several sensors were being deployed around a desired area, where they were left for a pre-

determined period. After the waiting time ends, the sensors were collected back, and their 

sensing data was exported for examination [1]. However, this approach had some 
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drawbacks. First of all, there was no communication between the operator and the sensor 

nodes during the data gathering period, which portends that there was no possibility for 

detecting device failures in the traditional approach. If a node halted for a reason after it 

was deployed in its location, the remaining time until the end of the application would be 

wasted without being able to collect data from the failed node. Moreover, there was no 

opportunity for reconfiguring or tuning the instruments according to different operational 

purposes. On the other hand, due to the lack of communication with the nodes, it was not 

possible to implement real-time applications. In some studies, like ecological research, 

real-time data might not be very essential as long-term observations are sufficient for 

conducting studies. Notwithstanding, time critical applications like monitoring pipelines 

against leakage or military invasion detection cannot be carried out without real-time data 

flow from the sensors. Second, the storage capacity of the sensor nodes was narrow and 

the amount of data that could be stored during the application period was bounded.  

Keeping the instruments in the area for a long time was unhelpful, because after the data 

storage was full, new data could not be saved. Furthermore, deploying and re-collecting 

the instruments was not easy, thus adjusting the duration of the application according to 

storage capacities would bring new challenges for the professionals. 

As it can be understood from the mentioned drawbacks of the conventional 

underwater sensor approach, the most essential function for developing better 

applications comes out as real-time communication ability. In the most accepted 

application scenario, a sink node or base station is placed at the surface of the water, 

which receives broadcasted data from the sensor nodes that are scattered below the 

surface. To add real-time communication ingenuity to the network, building wired lines 

between the sink and the sensor nodes is not a good choice because it is practically 

inapplicable due to long distances, and the nodes might move further from the sink 

because of the water current. Thus, wireless communication has been agreed as the de-

facto practice by the researchers in the field. In terrestrial sensor networks, radio waves 

are used for wireless communication between the nodes. However, the propagation 

distance of radio waves underwater is limited up to a few meters and it has a weak 

performance  [2 - 4]. Because of this problem, acoustic waves are used for wireless 

communication in most of the underwater networks instead of radio waves, while new 

studies are being held about using optical waves for transmissions. The transmissions may 
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not always be directly, and intermediary nodes might act as relays to deliver the data 

coming from another node to the sink, in a multi-hop fashion. 

1.2 Motivation and Idea 
 

In this thesis, a novel study is presented about designing a UASN with maximum 

applicability, considering several arduous application challenges. This study takes 

reliability, security, and energy efficiency problems into its focus, which have not been 

studied jointly to the best of our knowledge. 

In the literature, network lifetime is roughly defined as the period from the 

initialization of the network until the moment when the network becomes unworkable [5]. 

In this study, we define network lifetime as the span between the beginning of network 

operation and the moment when the first node in the network depletes its battery and stops 

working. The nodes forming the network operate using the power supplied by their 

limited batteries. Because of the wide application space of the networks and sharp 

environmental conditions, changing depleted batteries with new ones may not always be 

straightforward. Thence, it is important to design the network such that the energy 

consumption of the nodes is more controllable. This is the main justification of significant 

number of studies existing in the literature, which suggest new methods for using the 

energy efficiently and increasing the network lifetime. In addition to the limited battery 

matter of UASNs, the broadcast channel and data transmission qualities are narrow due 

to harsh underwater conditions. In some cases, the nodes need to use steep transmission 

power for successful data delivery, which leads to an increase in energy consumption and 

decrease in the network lifetime. From here, it is apparent that energy efficiency is an 

important design issue to be handled for UASNs. Furthermore, most of the UASN 

applications demand high number of packet transmissions, which makes reliability and 

energy efficiency problem more formidable.  

In this study, reliability is defined as the rate of successful deliveries of data packets 

generated by the sensor nodes to the sink node. When a desired portion of the transmitted 

packets of a source node reach the sink favorably, the network is designated as reliable. 

As noticed, due to the sharp channel conditions of underwater environment, packet 

delivery failures can occur frequently, and to maintain the desired reliability level, 

sending copies of the packets can become necessary. As mentioned above, transmission 
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operation requires high energy consumption, which draws a trade-off between reliability 

level and energy consumption of the network. Thus, being able to manage the number of 

duplications and the transmission channels for copied packets to preserve a desired 

reliability level is an essential feature that can limit energy spent for this task.  

Another important issue, which needs to be discussed while designing an 

underwater sensor network is the security of the communications. In this thesis, we define 

security as keeping the transmitted data out of reach for an adversary or rendering it 

meaningless even if it is captured. Security is a critical concern for UASNs because 

depending on the application, nodes may generate sensitive data that has to be kept as 

concealed. The sensors deployed in the underwater space run autonomously and the 

communications take place in a broadcast medium. As a consequence of this, there exists 

various types of attacks that a UASN can encounter. In this work, we take a special type 

of attack called eavesdropping into consideration. In eavesdropping attacks, a silent 

listener approaches as close as possible to the nodes or links in the network and tries to 

capture the transmitted data among the nodes without being caught [6]. Since data is 

broadcasted freely in the space, the eavesdropper can find a suitable place easily, from 

where it can record the data flowing in the medium. Differing from active type of attacks 

like physical attacks or jamming attacks in the field, eavesdropping is a passive type of 

attack because it does not aim at giving damage to the network, but it tries to stay stealth 

to record the data roaming on the network instead. Moreover, since it is a passive attack 

and the attacker preferably does not interfere with the network, detecting this type of 

attack is genuinely hard and needs excessive effort. For this reason, rather than trying to 

detect eavesdropping attacks, professionals try to keep the data undisclosed even if it is 

captured. To avoid the theft of sensitive data, the de facto application is encrypting the 

data before transmission, which renders the data meaningless unless it is decrypted. 

Encryption is a powerful technique for securing communications; however, it requires 

additional computing that leads to additional energy consumption, which is a 

disadvantage for underwater nodes operating with limited batteries. 

One more method that is suggested in this thesis as a countermeasure for 

eavesdropping attacks is data fragmentation. In this technique, instead of sending a whole 

packet over a single link, a node fragments its packet into pieces and transmits each piece 

of packet over a different link. This technique comes out as an efficient countermeasure 

against eavesdropping attacks, because even if the listener captures one piece of the data 



5 
 

over a link, other pieces of data are still missing, and the original data cannot be 

defragmented without having reach to the other pieces [7].  Furthermore, as different 

pieces of the data are transmitted over different links, it is nearly impossible for an 

adversary to travel around the network and capture other pieces to combine them. 

Fragmentation technique appears to be an efficient precaution for concealing the data, 

nevertheless if it is used along with encryption, it can provide even more protection 

against eavesdropping attacks. With this motivation in hand, fragmentation method is also 

examined in this work. 

Considering these important problems for designing an efficient UASN, our main 

motivation in this thesis is to propose robust solutions for the following questions: 

• If the UASN application requires a certain network reliability, such as a certain 

packet success rate, how can we design a system that maintains this requirement? 

Moreover, what is the effect of providing a certain reliability level on the energy 

consumption of the nodes and overall network lifetime under different conditions? 

• If the UASN application generates sensitive or confidential data, what are the 

methods that are applicable to increase the security of the communication? Which 

encryption algorithms are more convenient to use in UASNs, and in more detail 

what is the impact of assigning a single encryption algorithm to all nodes in the 

network instead of choosing a logical algorithm for different nodes? What is the 

impact of encryption and data fragmentation on the network lifetime, and should 

these two methods be used jointly to increase system security? 

• To address all abovementioned design issues, can an optimization framework be 

developed? Taking the computational complexity and long time that an 

optimization needs to complete into consideration, are other methods like heuristic 

algorithms or ML algorithms adequate for solving these design problems? 

1.3 Proposal 
 

In this study, to examine all the challenges and design issues mentioned in the 

previous section, an optimal multi-path routing strategy has been developed and analyzed 

via mixed integer programming (MIP) formulations. The MIP framework is prepared 

according to the necessary constraints to investigate the effects of multi-path routing on 
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the network lifetime along with packet duplication for reliability, encryption and data 

fragmentation for security. The developed MIP model maximizes the lifetime of the most 

energy-consuming sensor node while it guarantees a pre-determined reliability 

requirement. In addition, two different encryption algorithms, AES and Twofish, have 

also been utilized to balance the trade-off between security supplied by encryption and 

network lifetime in UASNs. A brief definition of these algorithms and why they were 

selected will be presented in the following chapters. 

Although the proposed optimal multi-path routing strategy has been modeled using 

an MIP framework, the computational complexity and long solution times arising from 

the nature of MIPs encouraged us to examine meta-heuristic solutions, ML regression 

models and neural network models as alternative design methods. Even in some cases 

optimizations cannot provide feasible solutions because of different arguments like the 

intricacy of the problem or the size of the network model. 

With this incentive, in this study, we propose using ML methods to reduce the 

computation time and energy spent on optimization operations. ML methods can generate 

models that have the potential to predict new values quite close to the optimal values with 

slight errors. Several regression and neural network methods are investigated during the 

studies to identify if ML is practical to be used in our network scenario. To the best of 

our knowledge, this study is the first one in the field, concentrating on energy efficiency, 

reliability, and security of the UASNs jointly. Moreover, meta-heuristic approaches and 

parameter prediction via ML methods has not been applied in UASNs before. 

The meta-heuristic approaches examined in the study are Simulated Annealing 

(SA), Golden Section Search (GSS), and Genetic Algorithm (GA). In the ML part, the 

regression methods that have been analyzed are Linear Regression (LR), Support Vector 

Machine (SVM), Gradient Boosting, k-Nearest Neighbors (kNN), Ridge Regression, 

Decision Trees, Random Forest and XGBoost Regression, and the neural network 

methods that have been analyzed are Artificial Neural Networks (ANN) and 

Convolutional Neural Networks (CNN). For each meta-heuristic algorithm, we 

investigate the near-optimal solution performance and for each ML algorithm we 

investigate the accuracy of the model and its predictions using several scores and error 

metrics. To this end, the main contributions of this study can be summarized as follows: 
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• We have developed a multi-path routing strategy via MIP formulations. The MIP 

model has the objective of maximizing the lifetime of the network by minimizing 

energy consumption of most energy depleting node and balancing the energy 

consumption among the nodes while satisfying a pre-determined link reliability 

requirement. The MIP model captures the energy consumption trends of using 

different encryption algorithms and employing packet fragmentation under the 

harsh channel conditions of underwater environments.  

• There are some certain network applications like military surveillance, where the 

network must maintain a requested data delivery rate to complete its duty 

successfully. In this study, we designed a network model which uses packet 

duplication in case of packet failures to provide a desired network success rate 

(NSR), i.e., desired network reliability. The nodes might send duplicated packets 

repeatedly over the same link or send them over separate paths. 

• We proposed the usage of two symmetric encryption algorithms, AES and 

Twofish, in the network to conceal the transmitted data during wireless 

communications. Against silent listening attacks, we also proposed using data 

fragmentation and transmitting each data fragment over separate links to make it 

harder for an adversary to collect all fragments and gather the entire data. 

• We have developed three meta-heuristic approaches and examined the near-

optimal solution performance of these algorithms. 

• We have employed eight regression methods and two neural network methods and 

examined their prediction performance using several scores and error metrics. 

1.4 Related Work 
 

The sensor nodes forming the UASNs commonly operate in a multi-hop fashion, 

where contiguous nodes towards the sink node are utilized as relays during data 

transmissions.  The intermediary nodes both transmit their own sensing data and the data 

they receive, coming from farther nodes to the sink node. These nodes naturally spend 

more energy than farther nodes since they make more transmission and reception 

operations.  Routing protocols can help unraveling this problem by sharing and balancing 

the operational loads among the nodes more equally. 
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Cao et al.  suggested a new transmission method named Energy Level Based Hybrid 

Transmission (ELT) that uses the remaining energy information of the nodes to decide 

whether using single-hop or multi-hop paths during data transmissions [8]. By using 

single-hop links, the load of the nodes close to the sink are balanced.  Multi-hop paths are 

used only if relay nodes have adequate remaining energy. ELT maintains better network 

lifetime when compared to using single-hop paths only. 

Su et al. presented another routing method, which chooses the relay node based on 

a cost parameter calculated for each link [9]. The cost parameter calculation considers the 

remaining energy levels of the nodes and the necessary transmission power between each 

connected node for achieving a high SNR value. They show that the algorithm increases 

network lifetime reasonably. 

In our proposed routing protocol, the nodes utilize packet duplication to be able to 

reach a desired NSR. A trade-off between reliability and network lifetime appears here, 

since maintaining a reliability level requires more energy consumption caused by packet 

duplication and multiple transmissions. Different authors tried to find a balance between 

reliability and network lifetime using by suggesting new routing protocols.  In their paper, 

Pompili et al.   presented two routing methods to minimize energy consumption for delay-

sensitive and delay-insensitive applications [10]. Both methods mitigate energy 

consumption by exploiting quality of the path from the source node to the next hop, 

necessary transmission power, and forward error correction rate. Using these parameters, 

the number of retransmissions needed for desired reliability level that cause higher energy 

consumption is evaluated. 

Chen et al. suggested blending reliability and network lifetime in a routing 

algorithm. They proposed an algorithm named Reliable and Energy Balanced Routing 

algorithm (REBAR), where a flexible packet transmission radius is set for the nodes 

according to their distance to the sink [11]. Nodes closer to the sink are given smaller 

radii to limit the possibility of them to become relays to prevent high energy consumption. 

However, while a small transmission distance is a positive idea for supporting energy 

efficiency, it decreases the probability of successful packet delivery.  By optimizing the 

parameters of the network, the authors manage to provide energy efficiency and 

reasonable reliability during packet transmissions. 
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In the literature, using encryption for concealing the transmitted data generated by 

the nodes of the UASNs is also suggested by scientists. In their paper, Xinbin et al. 

proposed an energy-efficient and secure data transmission method that uses encryption, 

based on chaotic compressive sensing (CCS) [12]. First, the method employs compressive 

sensing (CS) using the sparsity of sensing data in time domain. The method reduces 

number of transmissions in a period by sampling the data at each frame and transmitting 

the final data at the end of the period. Then, a CCS-based encryption scheme is used to 

cypher the data at the end of a period to maintain the secrecy of transmission. They 

compare the proposed scheme with a conventional TDMA scheme and RACS scheme to 

show that the proposed scheme improves bandwidth and reduces energy consumption 

while providing concealment. 

Castelluccia et al. proposed a simple and secure additively homomorphic stream 

cipher to achieve efficient aggregation of encrypted data [13]. The proposed cipher is 

lightweight, it uses modular additions, and it is suitable for CPU-constrained devices such 

as sensor nodes. They verify that data aggregation based on the proposed cipher can be 

used to efficiently compute statistical values such as mean, variance and standard 

deviation of sensed data, while achieving significant bandwidth gain and security. 

Uluagac et al. introduced an energy-efficient Virtual Energy-Based Encryption and 

Keying (VEBEK) scheme for traditional wireless sensor networks (WSN) that reduces 

the number of transmissions for rekeying to refresh stale keys [14]. VEBEK encodes the 

data generated by the nodes using a coding scheme based on a permutation code generated 

via RC4 encryption. The key to the RC4 encryption changes continuously as a function 

of the remaining virtual energy of the nodes. In the scheme, a one-time dynamic key can 

only be used for one packet. They show that the proposed scheme can eliminate malicious 

data from the network in an energy-efficient manner with a 60% to 100% improvement 

in overall energy efficiency of the network. 

Multi-path routing along with data fragmentation is another countermeasure that 

can be used against eavesdropping attacks. Moreover, multi-path routing can provide 

several other benefits, such as energy load balancing, reliability, and quality of service 

[15]. In their paper, Incebacak et al. investigates the energy overhead of route diversity 

for security against node capture and eavesdropping attacks in WSNs [6]. They define 

route diversity similar to data fragmentation, where each piece of data is sent through 
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diverse links toward the sink node. They developed an LP framework to model energy 

consumption and effects of route diversity in conventional WSNs. They conclude that 

energy overhead of route diversity increases with the level of security. If security is 

decreased, then the energy overhead also decreases, and for high degrees of security, 

energy overhead can be immense. 

Lee et al. studied data distribution as a remedy for silent listening attacks. They 

investigate the problem of data distribution over multiple paths to minimize the maximum 

harm that a network suffers when a single link attack occurs [16]. The solution is 

formulated as a maximum-flow problem that can be solved in a distributed manner. They 

show that both routing security and algorithm performance can be successfully achieved 

during real applications. 

Chen et al. proposed a safe method for choosing multiple paths as next hops for a 

source node and transmitting data over these paths [17]. Their objective is to minimize 

the percentage of captured data by an adversary. Every path is determined with a 

parameter that contains previous performance of the path about reliable data delivery. 

Multiple paths are selected based on these parameters and data is transmitted over these 

paths using min–max optimization and game theory. 

Metaheuristic methods are valuable for solving optimization problems in shorter 

time with less resources than optimizations for complex problems. These methods strive 

for finding approximately optimal solutions. Optimizations about routing protocols, 

reliability, and energy efficiency problems of WSNs are typically NP-hard problems, 

which encouraged researchers to use meta-heuristic approaches in order to bypass 

optimizations or solve the problems with alternative ways. In their paper, Xenakis et al. 

propose employing SA method to optimize network lifetime with regard to topology of 

the network, transmission power needed for the nodes and size of data packets [18]. The 

results of their simulations demonstrate that SA method, regarding given parameters can 

converge to near optimum values of minimum energy cost. 

Alrashed et al. proposed using meta-heuristic approach for solving the optimization 

of automatic actor deployment problem in WSNs [19]. In their WSN scenario, actors are 

described as nodes that do not have constraints about resources, and they are deployed in 

the network to improve computation and communication capability so that lifespan for 
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other nodes can be increased. Experimental results given in the paper shows that the meta-

heuristic approach can solve the problem adequately by covering at least 80% of the 

sensors with optimum number of allocated actors in the network. 

Zhong et al. used ant colony optimization method in their study to maximize the 

lifetime of WSNs by introducing mobile sink node [20]. To implement the algorithm, 

multiple parameters such as restricted areas and the maximum movement range of the 

sink are considered. Outcomes of the simulation indicate that the proposed method has a 

very propitious performance for solving the maximization problem. 

Han et al. proposed a meta-heuristic approach named CPMA, which is a clustering 

protocol for WSNs based on harmonic search and artificial bee colony algorithms [21]. 

The method aims at maximizing the lifetime of the network by selecting cluster heads 

that reduce the overall energy consumption while distributing the energy among the 

nodes. Their simulation results demonstrate that the approach can improve network 

lifetime and throughput. They also state that the approach can be adapted to work well 

for different network lifetime definitions. 

In their paper, Guleria et al. proposed a novel meta-heuristic method named unequal 

clustering based on ant colony algorithm for selecting optimal cluster head in WSNs [22]. 

Their approach focuses on choosing the optimal links among the nodes that increases the 

number of packets delivered. By this, the number of transmissions is reduced, and energy 

consumption of the nodes is decreased effectively. Analysis of proposed method with the 

existing approaches demonstrate the effectiveness of their work in WSN applications. 

Yildiz et al. proposed an MIP optimization model to maximize network lifetime and 

maintain non-repudiation security [23]. They consider communication/computation 

energy characters of some Digital Signature (DS) algorithms. This problem is stated as 

NP-hard and computationally complex, thus they implement and use SA and GSS 

methods to solve the problem in reasonable time. 

Hosseini et al. implemented GA for solution of the multi-objective optimization 

problem to design a self-organized WSN with minimum interference and power 

consumption [24]. In the study, reliability and power consumption of the nodes are 

evaluated jointly. Moreover, they proposed a Hierarchical Sub-Chromosome Genetic 

Algorithm (HSC-GA) to further decrease the solution time. Comparative analysis shows 
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that the proposed approach can poise power consumption and data reliability of the nodes 

and increase the network lifetime. 

The nodes in an UASN deplete the energy residing in their limited batteries to carry 

out their operations. While building an underwater sensor network, it is essential to follow 

the energy consumed for different sensor node processes, such as transmission, reception, 

and encryption. Nodes usually forward their sensing data to sink in a multi-hop fashion, 

where consecutive nodes have the role of relays, transferring the data to the sink node.  

To investigate energy consumption of the sensors, scientists mostly run optimizations and 

examine the outcome of them. Variously, instead of running heavy optimizations for 

individual networks, machine learning methods can be used to conceive accurate 

predictions about different network construction parameters. 

Hu et al. proposed a flexible and energy efficient routing protocol named QELAR 

built on reinforcement learning [25]. The presented routing protocol aims at extending 

lifetime of the network by trying to produce a balance and have the remaining energy of 

sensor nodes distributed equally. They compute a reward function using the residual 

energy of the nodes and the energy distribution among a node group. Then this reward 

function is used for deciding the next target for data transmission in a multi-hop manner. 

Their comparative analysis with existing protocols shows that the method can achieve 

20% longer network lifetime. 

Alsalman et al. introduced a balanced routing protocol for underwater sensor 

networks based on machine learning named BRP-ML, which makes use of several 

network parameters such as energy, latency, and void area [26]. The proposed protocol is 

also based on reinforcement learning and it is designed to reduce the energy consumption 

and latency in the network. Their simulation results show that the method is successful in 

increasing energy efficiency and decreasing latency throughout the network. 

Karim et al. proposed another novel routing protocol named QL-EEBDG built on 

Q-Learning, which is a kind of reinforcement learning methods. The target of the protocol 

is gathering data from the sensor nodes with commensurate and efficient energy 

consumption [27]. The task of the protocol is to predict the optimal path to transmit the 

data to the consecutive hop. They also define a method to avoid void hole probability, 

where a node is selected as the next destination only if there exists another available 
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destination it can send the data. They have run several simulations to demonstrate the 

efficiency of the proposed technique. The results of simulations shows that the method 

achieves increased network lifetime. 

Su et al. also proposed a deep Q-learning based routing protocol named DQELR, 

which takes energy efficiency and latency problems of UASNs into consideration [28]. 

The aim of the suggested method is to minimize energy consumption and network delay 

by finding global optima about routing paths. The method uses depth and energy values 

of the sensor nodes at each communication frame to calculate scores named Q-values and 

chooses the nodes with highest scores as the next hops. The results of the simulations run 

by the authors display that the method can achieve a better network lifetime with 

improved latency and energy efficiency performances compared to other widely used 

methods in UASNs. 

Ateeq et al. proposed a Deep Neural Network (DNN) based technique to model the 

relationship between delay and several different parameters such as queue size, traffic 

rate, and transmission power in an Internet of Things (IoT) [29]. According to the 

evaluations given in the study, the proposed model provides an accuracy of 98% in 

predictions, even if it is trained with a small amount of data. 

Akbas et al. used machine learning in classical wireless sensor networks for 

prediction of network parameters [30]. Instead of running optimizations to find optimal 

operation configurations of a WSN, they used a neural network-based approach to reduce 

the computational cost. They focused on predicting network parameters such as lifetime, 

transmission power, and distance between the nodes. To train the neural network, they 

have used the data generated via optimizations. The generated model makes predictions 

about mentioned parameters with acceptable errors. 

Huang et al. presented a deep learning method based on dual convolutional neural 

networks to make predictions about link reliability in a WSN routing mechanism [31]. 

Their method flexibly checks topological features of the nodes to compute the reliability 

of candidate target links. When compared to classical routing methods, the proposed 

algorithm improves the resilience of the network while depleting the energy efficiently. 

Yilmaz et al. suggested a machine learning model based on deep neural network 

(DNN) to determine the lifetime of a terrestrial WSN [32]. The proposed model was able 
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to make good predictions about networks with high number of nodes even if it was trained 

with a dataset generated with small number of nodes. 

In their study, Akbas et al. used single-based and stack ensemble-based machine 

learning models to make parameter predictions in terrestrial WSNs [33]. For single-based 

ML models, their test results show that Adaboost makes better estimations when 

compared to Elastic Net and SVR. Moreover, stack ensemble-based models make the best 

predictions for WSN parameters when compared to single-based models. 

In [34], Chen et al. used Logistic Regression algorithm to predict channel conditions 

according to the measured BER before transmitting data. They have collected data from 

the testbed that they set up to train and test the ML algorithm. Their results show that 

packet loss rates and energy consumption of the network can be decreased by the method 

they proposed.  

Kalaiarasu et al. proposed using Logistic Regression to predict the performance of 

an underwater sensor network based on several parameters like wind speed, tide, and 

modem features [35]. They collected testing data from experiments conducted in the field. 

Their results present that the proposed model can make predictions about network 

performance with good accuracy. 

Alamgir et al. used a Boosted Regression Tree method to predict a suitable link 

adaption procedure for modulation and coding [36]. They used the dataset collected by 

experiments in sea conditions. Their method makes predictions according to the data rate, 

SNR and BER of the communication links. Their method generates a model to classify 

moding schemes with an accuracy of 99%. 

In [37], Eldesouky et al. implemented four machine learning algorithms for 

handover prediction using the water flow speed and direction of the communication in 

underwater wireless sensor networks. For the training process, they used the data 

collected by The Korea Hydrographic and Oceanographic Agency from real marine 

experiments. Their results show that the generated models can make predictions with an 

accuracy of 95%. 

Liu et al. proposed using deep neural networks to predict channel state information 

for adaptive underwater downlink OFDMA system [38]. They used the data recorded in 
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marine experiments to train and test the model. They suggest that their model makes better 

predictions than the existing solutions in the literature.  

Table 1.1 Overview of the Related Work 

Study [#] Channel 
Model 

Multi-
path 

Min. 
reliability 

level 
Encryption Data 

fragmentation Heuristics ML 

[6] ⨯ ✓ ⨯ ⨯ ✓ ⨯ ⨯ 
[8] ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯ 
[9] ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ 
[10] ✓ ⨯ ✓ ⨯ ⨯ ⨯ ⨯ 
[11] ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ 
[12] ✓ ⨯ ⨯ ✓ ⨯ ⨯ ⨯ 
[13] ⨯ ⨯ ⨯ ✓ ⨯ ⨯ ⨯ 
[14] ⨯ ⨯ ⨯ ✓ ⨯ ⨯ ⨯ 
[16] ✓ ✓ ⨯ ⨯ ✓ ⨯ ⨯ 
[17] ⨯ ✓ ✓ ⨯ ✓ ⨯ ⨯ 
[18] ✓ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ 
[19] ⨯	 ⨯	 ⨯	 ⨯	 ⨯	 ✓ ⨯ 
[20] ✓	 ✓	 ⨯	 ⨯	 ⨯	 ✓ ⨯ 
[21] ✓ ⨯ ⨯	 ⨯	 ⨯	 ✓ ⨯	
[22] ⨯ ✓	 ⨯	 ⨯	 ⨯	 ✓ ⨯	
[23] ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯ 
[24] ⨯ ⨯ ✓ ⨯ ⨯ ✓ ⨯ 
[25] ✓	 ✓	 ⨯ ⨯	 ⨯	 ⨯ ✓	
[26] ✓ ✓ ⨯	 ⨯	 ⨯	 ⨯ ✓ 
[27] ✓ ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓ 
[28] ⨯ ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓ 
[29] ⨯	 ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓ 
[30] ✓	 ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓ 
[31] ✓ ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓ 
[32] ⨯ ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓ 
[33] ✓	 ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓ 
[34] ✓ ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓ 
[35] ✓ ✓ ⨯ ⨯ ⨯ ⨯ ✓ 
[36] ✓ ✓ ⨯ ⨯ ⨯ ⨯ ✓ 
[37] ⨯ ✓ ⨯ ⨯ ⨯ ⨯ ✓ 
[38] ✓ ✓ ⨯ ⨯ ⨯ ⨯ ✓ 
This study ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Table 1.1 gives an overview of the related work. There are recent studies in the 

literature that proposes using machine learning algorithms for predicting different design 

parameters for underwater acoustic networks. To the best of our knowledge, a study has 

not been conducted that uses machine learning and neural network algorithms to predict 

energy consumption values including reliability and security concerns in UASNs in the 
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literature. In the mostly used approach, setting up network parameters based on 

optimization frameworks is widely studied and it is an unquestionably efficient method. 

However, due to the hardness of the problems and the complexity of the calculations, 

optimizations generally take too much time to finalize and sometimes they cannot bring 

any feasible results forward. To avert running heavy and complex optimizations, we 

suggest employing machine learning methods, which can be beneficial for predicting 

network design parameters with nominal errors in a noticeably short amount of time. In 

this study, several different ML methods have been investigated to offer suitable 

candidates to be used for energy consumption evaluation and network parameter 

prediction instead of running computationally expensive optimizations. 

1.5 Outline 
 

The rest of this thesis is outlined as follows. In Chapter 2, the network model is 

presented along with application scenario, underwater channel model and network 

success rate. In Chapter 3, the optimization framework is explained in detail. In Chapter 

4, a brief description about encryption and the algorithms used in this study are given. 

Chapter 5 represents the results and discussions about optimizations. Chapter 6 presents 

an introductive information about heuristic approach and the algorithms used in this 

study, along with the performance results of the implemented algorithms. In Chapter 7, 

motivation of using machine learning is given, the algorithms and evaluation metrics used 

in the study are explained and performance results of the algorithms are presented. 

Finally, Chapter 8 concludes the thesis. 
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Chapter 2  

Network Model 

In this section, we demonstrate the network composition and application scenario. 

Additionally, we explain the underwater channel model in detail, and we present packet 

duplication method with formulas and definitions. 

2.1 Composition and Scenario 

The network architecture presented in this study is composed of arbitrarily 

disseminated nodes in a three-dimensional underwater space. In the UASN application, 

all nodes excluding the sink node generate data packets as they sense the environment.  

Then these data packets are transmitted to the sink node. For distant nodes, sending the 

generated data directly to the sink node requires high transmission powers and this is not 

an efficient method since network lifetime is an essential subject that should be enhanced. 

Hence, transmission of the generated data of the nodes is carried out over multi-hop paths, 

where the nodes in-between the source node and the sink node have the role of relaying 

the incoming data packets. 

The sensor nodes operate in an autonomous fashion, and we presume that there is 

not any data transmission from the sink to the sensor nodes. Moreover, we affirm 

occupying a TDMA based approach for scheduling the communications among the nodes, 

where each node sends its sensing data inside the timeframe allocated to it. Thence, we 

assure that there occurs no signal interference among the communications. 

In the network architecture, we use the parameters of micro-modems developed by 

Gangneung-Wonju National University of Republic of Korea for sensor nodes [39, 40], 

which make omni-directional broadcast and we assume that every sensor node is 

equipped with a camera, namely CMUcam2 [41],  that takes colored photographs form 

the environment with a resolution of 87x143 pixels. With this resolution setting, the 

camera produces 12441 pixels and 3 bytes of RGB data for each pixel, which means a 



18 
 

total of 37323 bytes of photographic data is generated at each sequence [42]. Figure 2.1 

illustrates a sample deployment of a UASN where sensor nodes are scattered in three-

dimensional space. 

 

Figure 2.1 Illustration of a sample UASN application 

In the application scenario, the network needs to maintain a predefined reliability 

level named Network Success Rate (NSR). In a network application, transmitting a 

definite proportion of data packets to the sink successfully can be a critical feature. 

Especially, for time-critical application scenarios delivering contiguous data profitably to 

the sink node is imperative. In order to maintain this predefined reliability threshold, we 

propose a multi-path routing protocol which uses packet duplication and transmits the 

copied packets repeatedly. Sustaining NSR might affect energy consumption and network 

lifetime, thus we have built an MIP optimization to analyze the possible effects. 
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At this point, it is important to mention that the network running autonomously is 

vulnerable to several attacks. The attack types can be put into two categories as active 

attacks and passive attacks. Examples of active attacks are physically harming the sensor 

nodes or jamming attacks that render the network non-operatable. In passive attacks, the 

adversary prefers not to engage with the network but tries to record the transmitted data 

between the nodes silently without being noticed. It is nearly impossible to detect a 

passive attack in a UASN because there is no interference between the nodes of the 

network and the attacker. In such a case, it is more adequate to secure the sensing data 

instead of trying to detect the attacker. In the network scenario, one silent listener roams 

around a close location to randomly selected nodes of the network and it tries to eavesdrop 

transmitted sensing data among the nodes. Thus, one of the focuses of the network design 

is to keep the sensing data concealed.  

Security of the network communications can be increased by using encryption and 

data fragmentation. When the data is encrypted, it will stay concealed even it is recorded 

by a silent listener unless the attacker knows how to decrypt the cipher. Furthermore, 

transmitting data in pieces over diverse links, instead of sending the entire data over a 

single link to the sink node can also be used as a security countermeasure in conjunction 

with encryption. Although encryption is a good defense against silent listening attacks, 

multi-path routing renders eavesdropping more difficult and helps augment the data 

security of the network. By slicing the data into fragments and transmitting each fragment 

through different paths, we force an adversary to record all fragments to be able to 

reconstruct a node's original data. Another important point to mention is that, since the 

nodes are allowed to transmit duplicated packets over different links in order to increase 

the reliability of the network, it makes the listening task easier for an adversary to observe 

any of these links that the duplicated data is transmitted. Hence, data fragmentation comes 

out as an efficient solution for the security weakness caused by packet duplication. 

Moreover, gathering fragments of data from scattered links will demand more energy 

consumption for an attacker compared to gathering data from a single path. Definitely, 

the adversary has to consume more energy to record all the data fragments to reconstruct 

the complete original data if data fragmentation is employed. On the other hand, data 

fragmentation not only makes the adversaries spend more energy but also it brings an 

energy burden to the nodes in the UASN. When the data is fragmented and pieces are 

transmitted through multiple paths, it is evident that all of these pieces cannot be 
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transmitted over optimal paths. Some pieces of the data will need to be transmitted over 

non-optimal paths, which will in return increase energy consumption of the nodes and 

cause a decrease in the network lifetime. 

2.2 Underwater Channel Model 

In the underwater medium, propagation distance of radio waves is very meagre, 

limited to only a few meters. Due to this natural reason, using radio waves for underwater 

communication is not suitable for applications, particularly the ones designed for 

covering a wide range of space. Nevertheless, when the communications between aquatic 

creatures are observed, it is discovered that especially whales and dolphins use sound 

waves even in very long distances. This discovery has leaded researchers in the field to 

use acoustic communications for underwater wireless sensor networks. 

In the underwater acoustic channel model, one of the most critical problems about 

evaluating lifetime of the network is calculating the transmission power of the sensor 

nodes in communications, because most of the energy is spent for data transmission and 

reception operations by the nodes. Considering that the underwater environment has 

challenging channel conditions, minimum required transmission power to send a data 

packet successfully between the nodes depends notably on the transmission distances. In 

this study, we have used the underwater channel model proposed by Felemban et al. in 

their research paper [43]. To calculate the required transmission power between the 

nodes, we used the formulas presented below. 

First, the propagation of acoustic weaves in the underwater medium are determined 

by sonar equations that are commonly studied [44]. In the literature, there are two types 

of acoustic systems that are called active or passive systems. In active systems, a node 

generates a sound and listens back for its echoes like a radar. Oppositely, in passive 

systems, a node simply listens to sounds coming from other sources. We define the UASN 

as a passive system because the nodes listen only acoustic waves coming from other 

nodes, and they do not listen to their own echoes. The passive acoustic formula uses the 

produced sound and background noise.  

In [45], Urick defines the passive acoustic formula as follows: 
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                     𝑆𝐿(𝑑, 𝑓) = 𝐴(𝑑, 𝑓) + 𝑁(𝑓) + 𝑆𝑁𝑅 + 𝐷𝐼                                   (2.1) 

In (2.1), DI represents directivity index. Nevertheless, since the sensor nodes use 

omni-directional broadcast, directivity index is taken as 0. SNR is the abbreviation for 

Signal to Noise Ratio that is observed at the receiver node. A(d,f) is the attenuation for 

distance d and frequency f for underwater sound. N(f) is the power spectral density of 

ambient noise for given frequency value f, which is modeled by four factors in 

underwater environment. These four factors are water turbulence Nt, ship noise Ns, 

thermal noise Nh, and wave noise Nw. From these factors, the equation of ambient noise 

is found as: 

                     𝑁(𝑓) = 𝑁! + 𝑁" + 𝑁# + 𝑁$                                          (2.2) 

In [44], formulas for these four factors given in the formula (2.2) of ambient noise 

are defined as follows: 

10𝑙𝑜𝑔(𝑁!(𝑓)) = 17 − 40log	(𝑓)                                     (2.3)      

10𝑙𝑜𝑔(𝑁"(𝑓)) = 40 + 20(𝑠 − 0.5) + 26 log(𝑓) − 60 log(𝑓 + 0.03)       (2.4) 

                  10𝑙𝑜𝑔(𝑁#(𝑓)) = −15 + 20log	(𝑓)                                     (2.5)     

10𝑙𝑜𝑔(𝑁$(𝑓)) = 50 + 7.5𝑤
!
" + 20 log(𝑓) − 40 log(𝑓 + 0.4)          (2.6) 

 

Equation (2.3) calculates water turbulence for a given frequency, equation (2.4) is 

given to calculate the ship noise for frequency f, equation (2.5) calculates the thermal 

noise for the given frequency, and equation (2.6) calculates the wave noise for frequency 

f.  

In equation (2.1), A(d, f) defines the attenuation or path loss in underwater acoustic 

medium and it is affected by two factors, energy spreading and wave-absorption. Energy 

spreading factor is related to the transmission distance of the sound [45]. But wave-

absorption is related to communication frequency because signals with higher frequencies 

are subject to more attenuation as acoustic energy turns in to thermal heat. In [46], the 

equation for attenuation is given as: 

𝐴(𝑑, 𝑓) = 𝑘𝑙𝑜𝑔(𝑑) + 𝛼(𝑓)𝑑	 ×	10%&	                                (2.7) 
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In equation (2.7), a(f) is given as absorption coefficient while k is given as the 

energy spreading coefficient. In common use, for spherical or omni-directional spreading, 

k is accepted as 20. For absorption coefficient, the formula proposed by Ainslie et al. is 

used [47], which considers various features such as water temperature, depth in meters, 

acidity, and salinity of the water. 

In Felemban’s study [43], Orthogonal Frequency Division Multiplexing (OFDM) 

encoding technique and Quadrature Amplitude Modulation (QAM) scheme are adopted 

for the communications. In our network model, we assumed using OFDM with 16-QAM 

modulation, and the formula for calculating bit error rate (BER) for the channel is given 

by Proakis in [48] as: 

𝐵𝐸𝑅 = &
'(
𝑒𝑟𝑓𝑐 JK (

)*
+#
,$
L                                         (2.8) 

In formula (2.8), k is equal to log216 (=4), Eb / N0 is the power spectral density ratio 

given by energy per bit-to-noise, and erfc is the complementary error function which 

represents the area under a Gaussian probability density function and is used to compute 

the probability of a Gaussian process. The following equations is given for calculating 

Eb/N0: 

+#
,$
= SNR -%

.
                                                     (2.9) 

In equation (2.9), R is the bit-per-seconds data rate and BN is the noise bandwidth 

measured in hertz. Using equation (2.8) and (2.9), for a given BER, SNR (non-dB) is 

derived as: 

𝑆𝑁𝑅 = 10
&%'(),+)

!$                                                      (2.10) 

Equations (2.2) to (2.10) are used to calculate the components on the right-hand 

side of equation (2.1), and SL(d, f) is computed accordingly. In the formula (2.1), SL(d, f) 

represents the source level of sound broadcasted by a source node which is at a distance 

d to the target node and uses frequency f for transmissions. Moreover, in [37] SL(d, f) is 

also defined as: 
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                     𝑆𝐿(𝑑, 𝑓) = 10log	(/-
/$
)	                                       (2.11) 

 

In formula (2.11), I0 represents the reference intensity of sound in water, and it is 

equal to 6.7 x 10-19 W/m2 [49]. The intensity of generated sound is It and it can be 

computed by reversing the equation (2.11) as: 

                     𝐼! = 10
&.(),+)
!$ 	× 	 𝐼*	                                         (2.12) 

 

Finally, from formulas (2.1), (2.11), and (2.12), the equation to compute 

transmission power for a node that targets another node at distance d using frequency f 

can be written using sound intensity It and depth of the node h (in meters) underwater as: 

                     𝑃! =	 𝐼! 	× 	2𝜋	 × 	1𝑚	 × 	ℎ	                                (2.13) 

 

According to the topology of the UASN nodes, for each node pair necessary 

transmission power is calculated and given to the optimization as input for determining 

optimal paths that will maximize lifetime of the network. Furthermore, throughout the 

network, for each link the reception power of the destination node is accepted as 10% of 

the transmission power that the source node uses. 

 

2.3 Network Success Rate 

In the proposed UASN scenario, the network needs to maintain a predefined 

reliability threshold named Network Success Rate (NSR), which defines the minimum 

necessary requirement for a generated packet to reach the sink node successfully, namely 

the percentage of completed packet delivery. In the sharp conditions of underwater, if the 

possibility of successful transmission of a packet on a single link is below the NSR 

threshold, data packets might need to be duplicated, and copied packets need to be sent. 

A copied data packet can be sent through the same path in multiple times, or it can be sent 

through multiple paths synchronously. The decision for the number of duplications and 

the paths to be used is taken according to a parameter named packet success rate (PSR), 

which is calculated for a given packet with length l and bit error rate (BER) by: 
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                     𝑃𝑆𝑅 = (1 − 𝐵𝐸𝑅)0                                             (2.14) 

If a node transmits a packet to another node over a single path without using 

duplication, PSR for the utilized path is equal to the NSR for that packet. But if packet 

duplication is preferred, then the NSR for the transmitted packet from a node is computed 

based on the PSRs of all the links where an individual packet is transmitted on according 

to the following formula: 

                          𝑁𝑆𝑅 = 1 −	∏ (1 − 𝑃𝑆𝑅1)1∈3 	                                    (2.15) 

In the equation (2.15), 𝐷 is the set of duplicate packets and 𝑃𝑆𝑅1 is the PSR of the 

𝑖!# path where the packet will be transmitted through. For simplicity, BERs are assumed 

equivalents for all paths, which makes PSR values same for all of them. Thence, whether 

all the packets are sent through the same path or through different paths does not affect 

NSR calculation. In this case, for both sending duplicate packets over 𝑛 multiple paths or 

sending 𝑛 duplicate packets over one path, the formula of NSR can be written as: 

                          𝑁𝑆𝑅 = 1 − (1 − 𝑃𝑆𝑅)4	                                       (2.16) 

From the formula (2.16), the minimum number of duplicate packets M, which is 

enough to satisfy a predefined NSR threshold is given by: 

                          𝑀 =	 567()%,9.)	
567()%<9.)

                                               (2.17) 

During data transmissions, an intermediary node might also need to duplicate the 

data coming from a source node according to the PSR between itself and the sink node. 

The decision of occupying multiple paths or single path for satisfying the NSR is 

important for balancing energy consumption among the nodes, and it is taken by the 

optimization model given in Chapter 3.  
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Chapter 3  

Optimization Model 

In this thesis, we have studied about building a UASN that focuses on reliability 

and security. When designing a wireless sensor network, there are different parameters 

that must be considered, nevertheless, the most essential issue that must be analyzed is 

the lifetime of the network. For analyzing different design subjects, we have developed 

an MIP framework with necessary constraints, definitions, sets, parameters, and decision 

variables. The MIP model will be elaborated in this chapter. 

3.1 Optimization Concept 

A mixed integer programming model is built to solve an optimization problem 

where a set of unknown variables is determined using a set of continuous variables. In the 

model, the constraints that define the rules of the problem are linear equations or 

inequalities, and the objective function is the target to be optimized either by minimizing 

or maximizing [50]. 

Modelling composite frameworks using mixed-integer programming routinely 

consists of a three-step operation [51]. In the first step, the decision variables of the 

framework that describe the objective that is to be optimized are defined. Then the 

constraints that the model must obey are written. Finally in the third step the determined 

objective function is given. After preparing the initial framework, constraints can be 

refined or sometimes re-written according to the problem definition. 

3.2 MIP Framework 

The main target of the proposed framework is to minimize the maximum energy 

consumed by the nodes in every single transmission round. The problem of network 

lifetime maximization is handled by minimizing the highest presumed energy consumed 
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by the nodes at each round. A transmission round can be defined as the required duration 

for all the packets generated by all the nodes to arrive at the sink node. The optimization 

model is given below: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝜃	 (3.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜:	  

𝜃 ≥ 	 𝑡=`𝑃(

4

(>)

a ` 𝑃?,ℓ𝓎ℓ(
ℓ∈B/(C)

+	 ` 𝑃!,ℓ𝓍ℓ(
ℓ∈B0(C)

d + ` 𝐸(𝓍ℓ(
ℓ∈B/(C)

	 , ∀𝑗 ∈ 𝑁\{0},	 (3.2) 

𝑀 ` 𝓎ℓ(
ℓ∈B/(C)

≥	 ` 𝓍ℓ(
ℓ∈B0(C)

	 , ∀𝑗 ∈ 𝑁\{0}, ∀𝑘 ∈ 𝑁\{0}, 𝑗 ≠ 𝑘,	 (3.3) 

𝑀	𝑢1( ≥ 𝓍1( 	, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\	{0},	 (3.4) 

` 𝓍ℓ(
ℓ∈B0(C)

≤ 𝑀𝑟D , ∀𝑗 ∈ 𝐴, ∀𝑘 ∈ 𝑁\	{0},	 (3.5) 

` 𝓎ℓ(
ℓ∈B/(C)

≤ ` 𝓍ℓ(
ℓ∈B0(C)

, ∀𝑗 ∈ 𝑁\{0}, ∀𝑘 ∈ 𝑁\{0}, 𝑗 ≠ 𝑘,	 (3.6) 

` 𝓍ℓ(
ℓ∈B0(C)

≥ 1, ∀𝑘 ∈ 𝑁\{0},	 (3.7) 

𝓍1( = 𝑀𝓎1( , ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.8) 

` 𝓎ℓ(
ℓ∈B/(C)

≥ 𝑟D , ∀𝑘 ∈ 𝑁\{0},	 (3.9) 

`𝑃(

4

(>)

a ` 𝓎ℓ(
ℓ∈B/(C)

+ ` 𝓍ℓ(
ℓ∈B0(C)

d ≤ 𝑡? , ∀𝑗 ∈ 𝑁\{0},	 (3.10) 

𝑣!1( − 𝑣#1( + 𝑛𝑢1( ≤ 𝑛 − 1, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.11) 

𝓍1( ≥ 0, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.12) 

𝓎1( ≥ 0, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.13) 

𝑢1( ∈ {0,1}, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.14) 

𝜃 ≥ 0, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.15) 

` 𝓎ℓ(
ℓ∈B/(C)

≤ 𝐿4EFG , ∀𝑘 ∈ 𝑁\{0}.	 (3.16) 
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In the model, objective function (3.1) is given to minimize the maximum energy 

consumption. Equation (3.2) states that 𝜃 must be greater than or equal to the energy 

consumption of each node calculated by transmission, reception and encryption energies. 

Equation (3.3) provides that if a relay does not receive a packet from node k, then it cannot 

transmit anything originating from node k;  (3.4)  and  (3.14)  ensure that if there is traffic 

on a path, then it is occupied; (3.5) limits packet duplication that will restitute only the 

losses of the next path. (3.6) supports packet duplication and confirms that total outbound 

traffic from a relay is at least as great as the total inbound traffic; and (3.7) confirms that 

at least one packet should go out from original nodes, which approves packet duplication 

if it leads to a better network lifetime.  (3.8) models packet failures, while (3.9) ensures 

that NSR is achieved. (3.10) limits the number of packets a node can send and receive to 

the period of a single round (𝑡?).  (3.11) confirms that there are no cycles in the routes; it 

is acclaimed as MTZ constraints [52]. (3.12), (3.13), and (3.15) ensure the nonnegativity 

of the decision variables and (3.14) ensures that 𝑢1( variables are binary. 

Finally, (3.16) is given for packet fragmentation, the sum of all flows carrying node 

k's data to node i is limited by 𝐿4EFG, so that only a fragment of the data of node k is 

assured to reach the relay. For instance, if 𝐿4EFG is selected as 0.25, it means that we limit 

the data fragments reaching a relay such that it can receive at most 25% of the source 

node’s packets, which portends that source node must divide its packet into four 

fragments. Similarly, if 𝐿4EFG is equal to 1, it implies that there is no limitation for a relay, 

and it can receive a whole data submitted by the source node. 

3.3 Explanation of the Symbols 

The symbols given in the optimization framework consist of sets, indices, 

parameters, and decision variables that define the connections among the nodes, 

transmission and packet duplications rules, and constraints about data flow and energy 

consumption. The explanation of the symbols used in Figure 3.1 is as follows: 

Sets: 

 N:        Set of the sensor nodes. 

 A:        Set of the links between the nodes (arcs). 
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 δ+ (j): Set of arcs that are incoming to node j. 

 δ- (j): Set of arcs that are outcoming from node j. 

Indices:  

 i:         Indexes of set A; i∈1,…,m. 

 j:         Indexes of set N; j∈0,…,n. 

 k:         Index of the source node; k∈N\{0} implies that the sink cannot be a source 

(no data outcomes from the sink). 

 l:       Indexes sets δ+ (j) and δ- (j). 

Parameters: 

 P(t,l):  Transmission power spent over arc l. 

 P(r,l):  Reception power spent over arc l. 

 Ek:     Encryption energy spent by node k. 

M:     Number of duplicate packets. 

ra:      Success rate for the network. 

 tr:       Duration of 1 transmission round. 

 tp:       Duration needed for transmission of 1 packet. 

 hi:       Receiving node of arc i (head). 

 ti:        Transmitting node of arc i (tail). 

Decision Variables: 

 xik:     Fraction of packets coming from node k to node i. i=(u,v) implies that u 

transmits 100*xik packets to v. 

 yik:    Fraction of packets coming from node k received by node i. i=(u,v) implies 

that v received 100*yik packets from u (and xik- yik is lost because of bit errors). 

uik:       Equals to 1 if arc i is occupied and 0 otherwise. 

vjk:       Used to break any cycles. It implies position of node j on the path between 

node k and the sink. 
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θ:          Maximum amount of expected energy consumption of nodes 1 to n.  
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Chapter 4 

Encryption Algorithms 

In the field, there are several types of UASN applications. Some of these 

applications need utmost concealment for the data that is prepared and transmitted to the 

sink node. In every kind of computer networks including computer networks, ad-hoc 

networks, internet of things (IoT), and wireless sensor networks, cryptographic 

encryption is a widely used technique that renders the data meaningless even if it is 

recorded by adversaries. In this chapter, we will give brief definitions about encryption 

and types of encryption algorithms, selection of suitable algorithms for UASNs, selection 

of suitable employment of algorithms for different nodes, and energy consumption 

evaluation of encryption operations for selected algorithms. 

4.1 Encryption Concept 

The convenience of telecommunications and network technologies allows people 

to share vast amounts of information in various kinds of operations. Information is always 

sensitive, and it is quite valuable in modern world. Because of its value, there are various 

methods for accessing information, both legally and illegally. However, in most of the 

cases, the valuable information must be kept secret. 

Usually, it is not easy to detect an attacker especially if it tries passive attack. 

Therefore, the shared data needs to be secured before transmitting it. In general 

expressions, encryption is defined as the process that takes a plain text as input, cyphers 

it, and returns the cipher text as output [53].  

In cryptographic encryption, a plain text is the raw data that will be transmitted to 

the target node. In the scenario depicted in this study, the plain text is the image data 

generated using the cameras attached to the sensor nodes. On the other hand, the cipher 

text is the processed version of the plain text. An encryption algorithm is used to generate 

the cipher text. 
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The encryption process requires two components basically. One of the components 

is called a key, which is used inside the second component that is the encryption method. 

During the process, an encryption method applies several mathematical and binary 

operations on the plain text using the encryption key to turn plain text into cipher text. 

After encrypting data and completing the transmission, to be able to read the 

original data, the receiver needs to apply decryption on the cipher text. Briefly, decryption 

is the reversed process of encryption, which again uses the key along with several 

computations to retrieve the plain text. 

4.2 Encryption Types 

In the literature, according to the type of encryption keys, there are two basic types 

of encryption schemes named as Symmetric (Secret) Key Encryption and Public 

(Asymmetric) Key Encryption [54]. As it can be understood from its name, in symmetric 

key encryption schemes, the keys that are used for encryption and decryption operations 

are the same. Both nodes that are communicating need to retain the identical key to be 

able to complete the encryption and decryption operations successfully. AES, Blowfish, 

Twofish, DES, 3DES, RC5 and RC6 are some of the example cryptography algorithms 

that use symmetric key schemes.  

In public key encryption schemes, there are two discrete keys, where one key is 

used for encryption and the other key is used for decryption operations. This scheme is 

called public key encryption because the key used for encryption is published for anyone 

who is willing to encrypt a plain text with that key. On the other hand, the key that is 

necessary to decrypt the ciphertext is only available to the intended receiver that is 

authorized for decrypting and reading the plain text. The most well-known cryptography 

algorithms that use public key schemes are RSA and Elliptic Curve Cryptography. 

4.3 Selection of Encryption Type for UASNs 

Encryption has been used for both military and civil purposes for a long time to 

maintain security of the data shared in communications. In this study, we propose using 

encryption to secure the data that is transferred between the sensor nodes against the type 
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of attacks that is called silent listening or eavesdropping to the network traffic by 

unauthorized parties. When we have assessed which type of encryption scheme to use, 

we ascertained that it is more convenient to use a symmetric key scheme in a UASN. 

Because the nodes in the network are determined before deploying them underwater, and 

we do not need to publish a public encryption key throughout the network after 

deployment if symmetric key is used. Moreover, key distribution is an important issue in 

WSN design, and it is another topic independent of our study.  

Instead of distributing keys, we offer placing the symmetric encryption key -which 

is different for every node- into the nodes’ memories before deployment and we use that 

key for encryption operations during the lifetime of the network.  The sink node does not 

have ant constraint about memory, and it holds every source node’s encryption key to be 

used for decrypting the received data. During the process, only the sensed data is 

encrypted and the communication stack headers including routing data are clear so that 

routing operations can be completed, and the sink node can understand from which node 

the data is coming to use the symmetric key of the source node.  

The sink node owns the whole set of the encryption keys of each sensor node while 

sensor nodes have only the key that they will use for encryption. A relay node does not 

have the key of other nodes and cannot decrypt the message coming from other nodes. 

One of the reasons for giving only its own key to a node is to increase security under a 

node capture attack. If an active attacker physically captures a node, it can access the data 

in the memory of that node. And if encryption keys of other nodes reside in a node’s 

memory in such a situation, the attacker will have the ability to decrypt data coming from 

other nodes, which can render a security risk for the network. A point to be mentioned 

here is that, under a node capture attack the symmetric key can be captured too, however, 

if the node can be captured, the sensor data that it produces can be read directly without 

the need of decryption.  

Another reason for selecting symmetric key encryption scheme is that, despite 

providing privacy and easy key management, public key algorithms make encryption 

much slower than symmetric key algorithms and they need very intensive computation 

[55]. For instance, a public key algorithm named RSA has been investigated and it is 

shown that RSA is 10 to 10000 times slower than DES algorithm, which is a symmetric 
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key encryption algorithm, in various environments and it needs more computational 

energy which is not a desired condition in a UASN. 

Based on these ideas, we suggest that it is more convenient to use symmetric key 

encryption in UASNs. The selected encryption algorithms have been explained in the 

following subsections. 

4.3.1 AES Algorithm 

AES is an important encryption algorithm that is an example of symmetric key 

schemes. It is a specific subset of the Rijndael block cipher, with a block size of 128-bits 

and key sizes of 128, 192 and 256-bits [56, 57]. In 2002, it was selected as the US federal 

standard, and it became a de facto encryption algorithm since then. The algorithm of AES 

relies on the design principle known as substitution-permutation network [58], which 

consists of several connected procedures. These procedures replace their inputs by 

explicit outputs and these operations are called substitutions. They also shuffle the bits 

around and these operations are called permutations.  

AES uses a fixed, 128bit input block size and one of the predefined key sizes of 

128, 192 or 256-bits [56]. The key size denotes the number of transformation rounds 

where a higher key size means improved security with a price of more computations. The 

algorithm runs for 10, 12 and 14 rounds for 128, 192 and 256-bit keys respectively. Each 

round consists of several processing steps, with one specific step that depends on the 

encryption key itself. Since AES is a symmetric key encryption algorithm, a collection of 

reverse rounds is applied to decrypt the cipher text using the same encryption key. As a 

remark, in the proposed UASN design, sensor nodes in the network will not make any 

decryption operations, though decryptions will be carried out by the sink node or base 

station which do not have any constraint about memory or energy consumption. 

The reason behind the selection of AES algorithm for use in UASNs is that it is 

much stronger and faster than its predecessors, it is comparably straightforward to 

implement, and it can be implemented in both software and hardware easily. Since the 

encryption operations will be done on the hardware of the nodes, it is convenient to select 

this algorithm. To make the operations easier, we assume that the implementation of AES 

algorithm is installed on the nodes before deployment, and it can be executed on the 

sensed data as the plain text before transmission of the data. We propose using 128-bit 
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keys for encryption, which is more than enough for maintaining security of the encrypted 

data. A 128-bit key provides 3.4*1038 possible combinations of keys which is almost 

impossible to be cracked using brute-force attacks. Moreover, using a larger sized key 

instead of 128-bit key makes the implementation more complex, increases the number 

and duration of operations, and increases energy consumption as a result. 

4.3.2 Twofish Algorithm 

Twofish algorithm is another example of symmetric key encryption schemes. It was 

first introduced in 1998 by Counterpane Labs, and it was one of the five finalists of 

Advanced Encryption Standard (AES) but was not selected as AES [59]. It is one of the 

most secure encryption algorithms presented in the literature [60] and it has not been 

cracked until now [61]. Even though there is no incident in the history about cracking of 

Twofish algorithm, it has some known vulnerabilities, and it is considered somehow less 

secure than AES even though it has passed many tests [62]. This algorithm was not 

patented, and it was placed in the public domain so that anyone willing to use the 

algorithm is allowed. 

As in Rijndael, Twofish also uses one of the key sizes of 128, 196 or 256-bits, and 

a block size of 128-bits. However, it is more lightweight than AES-128, it can be 

implemented easily, and as the most important feature for encryption in UASN, it 

consumes lesser energy when compared to AES.  

During the process, the algorithm uses pre-computed key-dependent S-boxes, and 

a relatively complex key schedule. One half of a key is used as the encryption key while 

other half of the key is used to modify the encryption algorithm (key-dependent S-boxes). 

It is slightly slower than AES when 128bit keys are used while it is faster when 256bit 

keys are used.  

In our study, we include Twofish [19] as a second encryption algorithm. Two design 

challenges for UASNs considered in this study are energy efficiency and security. To 

maintain the security of the sensed data in the network, we suggest using encryption. 

However, encryption operation needs additional energy consumption, and it is a 

disadvantage for network lifetime. Since Twofish requires lesser energy than AES, we 

proposed using it as a secondary encryption algorithm in the network. The selection 
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process for which node will be using which encryption algorithm is explained in the 

following sections. 

4.4 Calculating Energy Consumption for Encryption 

In the network architecture, we provide that every sensor node is attached with a 

camera that is able to generate approximately 36 kilobytes of raw photographic data at 

each step. In order to measure the speed performance of the AES and Twofish algorithms, 

we used the technique proposed by Akbas in [63].  

First, we have implemented both algorithms in C language according to their 

definitive documents to calculate their speed performances. To obtain the CPU runtime 

values for the algorithms accurately, all unused CPU peripherals, interrupt routines, 

timers, and ports were disabled before the algorithms were run.  

Next, the encryption processes of both algorithms were executed a thousand times 

in an infinite loop to avoid the looping latency in the measurements. Furthermore, in order 

not to produce a delay, a logic analyzer was occupied to measure the runtime of the 

algorithms electronically through the CPU port pin, which is toggled in the encryption 

loop, generating the square waveform generated on the pin. The final measured wave 

period was divided by 1000 to compute the average pure CPU time for the encryption 

algorithms. In these experiments, we used the CPU parameters of the micro-modems 

developed by Gangneung-Wonju National University of Republic of Korea, since we 

used the same parameters to evaluate transmission and reception energies of the nodes. 

The parameters of the micro-modem given in the researchers’ white sheet [40] are listed 

in Table 4.1. 

Table 4.1 Parameters of the micro-modem 

Feature Description 
CPU STM32F103 (Cortex-M3) 
Size 70mm radius, 40mm height 
Frequency 70kHz 
Missing cells (%)  0.0% 
Transducer size 34mm radius 
Interface SPI, UART 
Battery 29.6V, 8.8 AH (Li-ion) 
Power 8W 
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After the experiments, execution runtimes of the algorithms were measured as 

64,601 msec for AES and 31,549 msec for Twofish algorithms. Selected sensor nodes 

draw 17,4 mA during the encryption process, consuming 57,42 mW of power.  As a result, 

energy requirements to complete AES and Twofish encryption operations are calculated 

as 3,710 mJ and 2,038 mJ respectively. 

Note that the selected sensor nodes are used in an “as is” style, which means we do 

not consider any modification like adding a second board to the configuration for heavy 

computation duties, because it needs both altering the software of the modem and it brings 

an additional hardware cost as well. Furthermore, the newly added hardware would still 

need a separate battery to operate, and energy consumption of a new configuration needs 

a profound study that is out of scope of this thesis. 

4.5 Assigning Encryption Algorithms 

In the network scenario, each node can be assigned with one of the three encryption 

options. A node can use either AES or Twofish algorithm for encryption, or it does not 

use encryption and transmits the sensed data as plain text. Since encryption operation 

requires additional energy consumption, there is a trade-off between securing the sensed 

data and increasing network lifetime. While assigning the nodes with encryption schemes, 

the aim is finding a balance against the mentioned trade-off. 

To decide on assigning which encryption algorithm to be used by a node, we 

consider depth of the node in the three-dimensional underwater space. The depth of a 

node means the vertical distance of the node to the water surface. If the depth of a node 

is shorter than half of the total depth of the network, it uses Twofish algorithm, and 

otherwise it uses AES-128 algorithm for encryption. Figure 4.1 depicts an exemplar 

encryption configuration for a 10-node network. 
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Figure 4.1 Example encryption configuration 

The reason behind making the assignments in such a way is that energy 

consumption of Twofish is nearly 45% smaller than AES, and the nodes that are closer to 

sink consume more energy than further ones because they need to relay other nodes’ 

packets along with their own data. By using Twofish with less distant nodes, we still aim 

to provide security for the data they produce, and we allow them to spend lower energy 

for encryption operation. In the simulations, we have selected 4 encryption options: no 

encryption, network-wide encryption with Twofish, network-wide encryption with AES, 

and AES-Twofish mixed encryption according to the idea given in Figure 4.1. 
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Chapter 5 

Optimization Results 
 

In this study, we have designed a multi-path routing protocol for UASNs 

considering energy efficiency, reliability, and security challenges. To evaluate the effects 

of proposed methods, we have developed an MIP framework and we have implemented 

optimizations. In this chapter, we present the results of the optimizations in detail. 

5.1 Implementation of Optimization Model 

The results presented in this work are gathered using MATLAB software [64] for 

generating network parameters, and IBM’s CPLEX solver [65] for solving the 

optimization model. The CPLEX solver calculates net energy consumption values at each 

single transmission round. The maximum energy consumption among all the nodes is 

represented with θ in the model. During each round, every node in the network -except 

the sink node- generates a single packet. To deal with high amount of relay packets that 

might be caused by packet duplication, period duration is set sufficiently long to let 

transmissions of up to 500 packets. Size of each packet is determined as 10000 bytes. 

The main target of this study is to analyze the effects of reliability and security 

configurations on the network lifetime. During the simulations, the network parameters 

are chosen accordingly: The simulations are run for networks consisting of 10, 20, 30 or 

40 nodes, with 100 randomly chosen topologies for each network size. For simplicity, we 

have chosen relatively small network sizes which are sufficient to demonstrate the 

functionality of the proposed network model. Running simulations with larger sized 

networks takes too much time to complete and in some cases the solver cannot come up 

with a feasible solution or cannot terminate within an acceptable timeframe. Furthermore, 

no assumption is made, and no default topology is adopted about the distribution of the 

nodes in the 3D underwater space. Instead, we are investigating to gain a broad 
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understanding of the performance of the suggested techniques by choosing different 

random topologies for each network size. In the simulations, NSR is taken as 0.6, 0.7, 0.8 

or 0.9. NSR is not a computed parameter, and it needs to determined according to the 

requirements of the UASN application. Thus, we selected these values by considering 

different network scenarios that might demand these network success rates. For 

simulating data fragmentation, Lnode values are selected as 1.0 (indicating no data 

fragmentation), 0.5, 0.33, or 0.25, which means a node does not use data fragmentation 

or splits its data at least into 2, 3 or 4 fragments before transmission respectively. For 

encryption, we have four options as described in Chapter 4; no encryption, network-wide 

encryption with Twofish, network-wide encryption with AES, and AES-Twofish mixed 

encryption scheme according to the viewpoint given in Figure 4.1. 

As a remark, in the simulations, the packet overhead coming from data 

fragmentation and encryption operations are omitted, since they are relatively too narrow 

(a few bytes) when compared to packet size. The final energy consumption results are 

found by taking average of 100 different results found by solving optimizations for 100 

randomly generated network topologies for each network size. 

5.2 Optimization Results 

The energy consumption values for each parameter combination are presented in 

Figure 5.1 which represents energy consumption as a function of number of nodes, 

encryption type, NSR and L_node. 

Figure 5.1 indicates that, increasing the number of nodes increases energy 

consumption of the nodes jointly. The main reason behind this is, larger number of nodes 

generate and transmit more data and the relays between the source node and the sink node 

need to make more reception and more transmission operations in larger sized networks. 

Since transmission and reception operations require high energy in UASNs, larger 

networks tend to spend more energy for these operations. 

When different encryption types are considered, using only Twofish algorithm 

throughout the network causes a short decrease in network lifetime, while using only AES 

algorithm for all nodes causes a higher decrease. When AES and Twofish algorithms are 
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used together in a mixed fashion, energy spent for encryption is delimited and the system 

still maintains the required security.  

 

Figure 5.1 Energy consumption as a function of node number, NSR, Lnode and 
encryption type 

For different NSR values, it can be understood that imposing the nodes to maintain 

a higher reliability threshold causes a higher decrease in the network lifetime. Enlarging 

NSR causes extra packet duplications and increased data transmissions, some of which 

are on sub-optimal paths, thus energy consumption of the nodes increases accordingly. 

Similarly, increasing the number of data fragments causes some of the transmission 

operations carried out over sub-optimal paths, which causes an increase in the energy 

consumption. Nevertheless, when data fragmentation is used jointly with encryption, it 

causes a small increase on the energy consumption depending on the number of 

fragments, which is acceptable and makes it logical to be used along with encryption to 

improve the security of the network. 

Figure 5.2 depicts energy consumption values as a function of NSR only, for 10 to 

40 nodes. To show only the effects of NSR, in this parameter combination no encryption 

is used and Lnode is set to 1 meaning no data fragmentation is applied. As it can be seen 

from the figure, increasing NSR increases energy consumption visibly. Carrying NSR 

from 0.6 to 0.9 induces approximately 150% increase in terms of energy consumption at 
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each network size. This is an anticipated result because by increasing the NSR, we force 

the system to make packet duplications and as a result more transmission and reception 

operations are held, some of which are through sub-optimal paths. 

 

Figure 5.2 Energy consumption as a function of NSR 

Figure 5.3 shows the simulation results as a function of encryption type only, for 

10 to 40 nodes. To show only the effects of encryption types, in this parameter 

combination NSR is selected as 0.6 and Lnode is again set to 1. As the figure depicts, using 

Twofish throughout the network causes around 4-7 Joules increase in terms of energy 

consumption while this amount is about 8-13 Joules for using AES algorithm solely. 

Employing AES and Twofish algorithms together limits the increase in energy 

consumption while supplying a sufficient security level. 



42 
 

 

Figure 5.3 Energy consumption as a function of encryption type 

Figure 5.4 depicts simulation results as a function of Lnode only, for 10 to 40 nodes. 

Again, in this configuration NSR is selected as 0.6 and no encryption is applied 

throughout the network. As the figure indicates, increasing the number of data fragments 

increases the energy consumption of the network. For different Lnode values, it can be 

understood that imposing the system to make more fragmentation causes a higher 

decrease in the network lifetime. Because, as in packet duplication, increasing number of 

fragmentations requires more transmissions, some of which are through sub-optimal 

paths, and energy consumption increases accordingly. 
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Figure 5.4 Energy consumption as a function of Lnode 

 

5.3 Understanding the Results 

In the literature, there are several studies that present diverse routing protocols to 

offer a reliability level for underwater sensor networks. However, our study is the first 

one which suggests using packet duplication to maintain a reliability level and examines 

the effects of packet duplication on the energy consumption of the network. Our study 

presents that, if the network application is sensitive about the success of the transmission 

of the data to the sink as in a military duty, packet duplication is a good method for 

reliability. On the other hand, as Figure 5.2 demonstrates, a more reliable network needs 

to consume more energy. Hence, optimization of energy consumption via the MIP 

framework we prepared is an important contribution of this study.  

Again, if we consider military applications, securing the submitted data is another 

important challenge. Encryption methods are used in every kind of telecommunications 

for maintaining security, however, in UASNs, the nodes have limited batteries and energy 
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consumption is very important. In this work, we present an encryption scheme which can 

limit energy spent for encryption operations while maintaining secure communications, 

and then we evaluate the energy consumption values of this scheme in our MIP 

framework to show that it can be used in real networks. Moreover, we suggest using data 

fragmentation together with encryption to improve the data security.  

Finally, we believe that, analyzing packet duplication for reliability and encryption 

and data fragmentation for security jointly is the most important contribution of this study. 

Since packet duplication makes the network more defenseless against eavesdropping 

attacks, an attacker can capture the data easily as the nodes broadcast the same data over 

different paths. Against this vulnerability, we introduce the solution of encrypting the data 

and employing data fragmentation so that it is still concealed even if it is captured, and 

we analyze the effects of these methods on the lifetime of the network. 
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Chapter 6 

Heuristic Approach 
After gathering results of optimizations, we decided to implement some well-

known heuristic algorithms to ease the solution of the network model, because solving 

optimization models can take seriously high amount of computing time and resources, 

and even in some cases optimizations cannot come up with a feasible solution within an 

applicable timeframe. We have implemented and examined three well-known heuristic 

algorithms to solve the problem of assigning encryption algorithms to the nodes in the 

network optimally. A brief description and pseudocode for these algorithms are given in 

the following section. 

6.1 Heuristic Algorithms 

Heuristic algorithms require less resource than optimizations, however they do not 

always provide optimal solutions, instead they usually produce approximately optimal 

results. In general, heuristic methods start with an initial solution and try to improve the 

solution iteratively by refining the results at each step. To be able to use heuristic 

algorithms, we defined the problem as a binary search problem [66] to assign each node 

to use one of the Twofish and AES encryption algorithms. We defined a binary solution 

vector S = [S2, S3, ..., Sn] that is given as the initial solution for heuristic algorithms. In 

the solution vector, Si = 1 means that node-i uses AES and Si = 0 means that node-i uses 

Twofish method for encryption. The heuristic algorithms we implemented are Simulated 

Annealing, Golden Section Search and Genetic algorithms, which will be introduced 

briefly in the following subsections. 

6.1.1 Simulated Annealing 

Simulated Annealing (SA) algorithm is a probabilistic method for approximating 

the global optimum. The name comes from the annealing technique used in metallurgy, 

which is a technique used for heating and supervised cooling of a material to reduce its 
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defects. SA is an efficient method, and it can be used to approximate the global minimum 

for a function with many variables. In 1983, this method was proposed for solving the 

traveling salesman optimization problem [67]. At each iteration, SA chooses a random 

step while searching for the global optimum. If the selected step improves the solution, 

then it is accepted without any condition. On the contrary, if the new step does not 

improve the solution, it can still be accepted with a probability given as 𝑒%(∆IJC/!) 

depending on the success of the step, where ∆𝑂𝑏𝑗 is the difference with the result of new 

step and the best result. The reason behind accepting a bad move within a given 

probability is to provide an escape from getting lost in a local optimum and missing the 

global optimum. The pseudocode for the algorithm is given in Table 6.1. In the algorithm, 

curSol is the current solution, bestSol is the best solution, curE is the current energy 

consumption given by curSol, bestE is the best energy consumption value, and candSol 

is the candidate solution found.  

Table 6.1 Pseudocode for SA 
Simulated Annealing Algorithm 
Input: Number of the nodes, initial temperature t, cooling parameter α, and maximum 

iteration number maxite. 
Output: Minimum energy consumption of the highest energy consuming node, best solution. 
1: Initialize parameters; Iteration (ite ← 0), Best Energy (bestE ← 0); 
2: Find initial solution and set it to current and best solutions (curSol and bestSol). Find 

the energy consumption using current solution, set the result as current energy and 
best energy (curE and bestE);  

3: while ite <= maxite do 
4: Assign temperature (t ← t × α). Find a candidate solution (candSol) by 

reversing one random element in curSol. Find its solution as candidate energy 
(candE); 

5: if candE < curE then 
6:         curE ← candE; 
7:         curSol ← candSol; 
8:         if candE < bestE then 
9:                bestE ← candE; 
10:                bestSol ← candSol; 
11:         end if 
12: else 
13: ∆Obj ← curE – bestE. Assign candSol ← curSol with probability: 𝑒2(∆456/8). 
14:  end if 
15:  ite ← ite + 1; 
16: end while 
Return: bestE, bestSol. 

6.1.2 Golden Section Search 

Golden Section Search (GSS) was proposed by Kiefer for computing a 

minimum/maximum of a unimodal function [68]. The notion of unimodality in 

mathematics describes that there is only a sole minimum - maximum point for a defined 
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function. The target of GSS is continuously reducing the solution interval, namely section, 

to locate the global minimum. Independent of how many iterations are passed and how 

many points have been evaluated, the global optimum value always remains within the 

interval defined by the two points adjacent to the point with the least value found. The 

pseudocode for GSS is given in Table 6.2. In the algorithm, λ1 is the new lower bound, λ2 

is the new upper bound for the interval and bestE is the best energy consumption value. 

Table 6.2 Pseudocode for GSS 
Golden Section Search Algorithm 
Input: Number of the nodes (n), lower bound for interval (lb ← 0), upper bound for 

interval (ub ← n -1), and golden ratio (Φ ← (−1+ √(5))/2). 
Output: Minimum energy consumption of the highest energy consuming node, best 

solution. 
1: Compute λ1 ← ⌈(ub – Φ × (ub − lb)⌉ and λ2 ← ⌊(lb + Φ × (ub − lb)⌋; 
2: while |ub−lb| >= 1 do 
3: Assign AES to first λ1 + 1 nodes, and Twofish to remaining nodes for 

encryption. Estimate the energy consumption as E1; 
4: Assign AES to first λ2 + 1 nodes, and Twofish to remaining nodes for 

encryption. Estimate the energy consumption as E2; 
5: if E2 < E1 then 
6:      ub ← λ2; λ2 ← λ1; λ1 ← ⌈ub – Φ × (ub − lb)⌉; bestE ← E2; 
7: else 
8:      lb ← λ1; λ1 ← λ2; λ2 ← ⌊lb + Φ × (ub − lb)⌋; bestE ← E1; 
9: end if 
10: end while 
Return: bestE, AES ← 2 <= i <= lb, Twofish ← lb+1 <= i <= <. 

6.1.3 Genetic Algorithm 

In computer science, Genetic Algorithm (GA) is used as a metaheuristic impressed 

by the means of natural selection phenomenon. GA is used to find adequate solutions to 

optimization problems by imitating biological procedures such as mutation, crossover, 

and selection. It is commenced by defining an initial population with a set of solution 

vectors named chromosomes. Each chromosome in the population is evaluated by 

considering the objective function. As in natural selection, the main idea behind GA is 

searching for more healthy chromosomes within the population (which generate better 

solutions for the objective function), and then crossover and mutation stages are applied 

to the chromosomes to generate new solutions. Crossover operation is carried out to 

generate new individuals in the population, and mutation operation is involved to make 

slight changes for escaping the local minima or maxima. In the algorithm, chromosomes 

are symbolized as binary values of 0s and 1s, which conforms appropriately to our binary 

search problem. The pseudocode for GA is given in Table 6.3. In the algorithm, curE is 

the current energy consumption, bestE is the best energy consumption found. 
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Table 6.3 Pseudocode for GA 
Genetic Algorithm 
Input: Size of population (pSize), maximum number of generations (maxGen), probability 

of mutation (pMut). 
Output: Minimum energy consumption of the highest energy consuming node, best 

solution. 
1: Initiate parameters; Current generation (curGen ← 0), generate population (P ← 

{C1, … , CpSize}), evaluate best energy for population P (bestE ← bestE(P)). 
2: while curGen <= maxGen do 
3:  Pick two chromosomes using Roulette Wheel function; {Cc1, Cc2} ← 

rouletteWheel(P); 
4:  Crossover the picked chromosomes; Cnew ← crossOver(Cc1, Cc2); 
5:  Mutate Cnew with probability pMut; Cnew ← mutate(Cnew, pMut); 
6:  Evaluate the energy consumption for Cnew as curE. 
7:  if curE < bestE then 
8:         Assign new chromosome as best solution; bestSol ← Cnew; 
9:         Pick the chromosome giving highest energy consumption; Ch ← 

pickChromosome(P); 
10:         Extract Ch from P; P.extract(Ch); 
11:         Include new chromosome to P; P.include(Cnew); 
12:  end if 
13:  curGen ← curGen + 1; 
14: end while 
Return: bestE, bestSol. 

6.2 Evaluation of Heuristic Algorithms 

We implemented and examined three heuristic algorithms in MATLAB to evaluate 

their performances about making the decision of the encryption algorithm to be assigned 

for each sensor node in the network. In this scenario, we configured the networks to use 

data fragmentation with 𝐿4EFG 	= 0.5, we selected NSR as 0.8, and as initial solution we 

have provided the encryption scheme according to Figure 4.1. Figures 6.1, 6.2 and 6.3 

depicts the results generated by Simulated Annealing, Golden Section Search and Genetic 

algorithms respectively. For the analysis of the system, we again ran the algorithms 100 

times for 100 different randomly generated topologies for 10, 20, 30 and 40 nodes in the 

network and we took the average of the 100 results as the final result. The reason for 

running the algorithms 100 times with different topologies is to enlarge the number of 

samples and generalize the performance of the algorithms. 
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Figure 6.1 Results of Simulated Annealing algorithm 

Figure 6.1 shows the results generated by Simulated Annealing algorithm. It tries 

to find the optimal energy consumption about assigning Twofish and AES algorithms for 

encryption. When we examine the results, we can see that it gives lower results than 

optimization for using Twofish and AES algorithms together as suggested by our 

proposed method. We have not limited the algorithm with any constraint about which 

encryption algorithm to use in the simulations, thus the optimal solution is to assign 

Twofish algorithm to all nodes as energy consumption of Twofish is smaller than AES. 

As expected, SA assigns Twofish algorithm to more nodes opposed to our proposed 

method, and this is the reason behind producing lower energy consumption results. If we 

consider the success of the algorithm, we can infer that it has a medium performance 

about decreasing energy consumption of the nodes by assigning Twofish to most of the 

nodes, which is the expected behavior. Moreover, if the iteration count of the algorithm 

is increased, it can generate better results with a cost of longer runtimes. 
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Figure 6.2 Results of Golden Section Search algorithm 

Figure 6.2 presents the results generated by Golden Section Search algorithm. From 

the results, we can see that it produces quite lesser energy consumption results than 

optimization and Simulated Annealing algorithms for using Twofish and AES encryption 

algorithms in the network. When we compare the results generated by GSS with the 

optimization results, we can observe that the algorithm can produce very close results to 

optimization when only Twofish is occupied as the encryption algorithm for all nodes. 

These energy consumption results indicate that the algorithm tends to assign Twofish to 

every node as the encryption algorithm. The success of the algorithm can be observed at 

this point such that energy consumption required for Twofish is lesser than AES and to 

decrease the overall energy consumption, assigning Twofish to all of the nodes is the 

expected behavior from the algorithm. Since we did not give any constraints about 

encryption selection, GSS seems very successful about finding optimum energy 

consumption values for the nodes. Another fact that the figure also presents is, GSS 

algorithm works better when the network size is larger. 
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Figure 6.3 Results of Genetic Algorithm 

Figure 6.3 presents the results generated by Genetic Algorithm. From the results, 

we can see that GA produces close energy consumption results to optimization and 

Simulated Annealing algorithms for using Twofish and AES algorithms together. But the 

results are less successful when compared to GSS. If we compare the results of GA with 

the optimization results as presented in Figure 6.4, we can observe that this algorithm 

produces nearly close results to our proposed method for deciding encryption algorithm 

for nodes and does not make a remarkable change about assigning different encryption 

schemes to the nodes. This situation shows that GA does not work very efficiently for 

solving this problem. The algorithm uses a method called Roulette Wheel for selecting 

two chromosomes to generate new solutions via mutation and crossover, and in this 

method weaker chromosomes (solutions) can also be selected to escape from local 

optima. Nevertheless, in current case new solutions does not provide better results for the 

problem. From here, one can infer that it is not a very suitable heuristic algorithm for the 

proposed scenario. 
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Figure 6.4 Comparison of maximum energy consumption of optimization vs. 
heuristic algorithms 

Figure 6.4 depicts a comparison of optimizations ran with AES method only, 

Twofish method only, and AES and Twofish method together against the implemented 

heuristic methods. In the sub-plots, X-axis represents the number of nodes in the network 

and Y-axis represents the minimum energy spent by the maximum energy consuming 

node in the network. The results in the Y-axis of the sub-plots in the first row are found 

by running simulations for 100 randomly generated networks with 10, 20, 30 and 40 

nodes, and then taking their average.  

From the figure, it can be observed that using Twofish throughout the network 

achieves the best energy consumption results, oppositely AES produces the highest 

energy consumption results. Using AES and Twofish together as proposed in this study 

limits the increase in the energy consumption, while this strategy maintains an acceptable 

security level. When we consider the heuristic methods, Golden Section Search comes 

out as the best solution among the three implemented algorithms for generating the nearly 

optimum values. The algorithm works better when the number of nodes in the network 
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are higher, and especially for networks containing 30 and 40 nodes, the results generated 

by Golden Section Search is quite close to the optimization results. 

An important point to express here is that, when running heuristic methods, we did 

not give any constraints about which encryption algorithm can be selected, hence the 

expected behavior from the heuristic algorithms is to find closer results to Twofish-only 

optimization results. When viewed from this perspective, Golden Section Search gives 

the best results among heuristic methods, while Simulated Annealing gives moderate 

results and Genetic Algorithm gives poor results. On the other hand, Simulated Annealing 

produces the best result for 10 node networks, which can imply that it might be suitable 

to use this method for small sized networks. Figure 6.4 indicates that Genetic Algorithm 

causes nearly zero change from the initially given solution and this makes it a weak 

candidate for further usage in the studies. 
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Chapter 7 

Machine Learning Approach 
In this study, one of the main objectives is to make use of different machine learning 

algorithms to generate predictions about the energy consumption values of the UASNs 

instead of running ponderous optimizations. The main reason behind this idea is that 

optimizations can provide accurate values about energy consumption of the nodes in the 

UASN, however they take a long time, and in some instances, they cannot find feasible 

solutions, or they cannot even finish in an acceptable time frame. Instead of running 

optimizations, if we can build successful regression models using the data we have 

produced, we can make very accurate predictions about the network parameters. In this 

manner, after producing a good regression model, we can run simple mathematical 

functions to predict data instead of running heavy optimizations, with a sacrifice of 

accuracy in the range of 2 to 5 percent. Furthermore, this error rate is acceptable and ML 

methods provide a way to avoid running optimizations. 

7.1 What is Regression? 

Regression is a statistical method used in many disciplines, that tries to discover the 

relationship between a dependent variable and several independent variables and present 

it mathematically [69]. A mathematical formula called a regression model is developed 

by the regression method which tries to represent the relationship between the dependent 

variable and the independent variables best. The general form of a regression function is: 

        𝑌 = 𝑎 + 𝑏)𝑋) + 𝑏'𝑋' + 𝑏&𝑋& +⋯+ 𝑏4𝑋4 + 𝑢                         (7.1) 

In the formula (7.1), Y is the dependent variable that the function tries to express its 

relations, Xs are the independent variables used for determining Y, a is the intercept, b is 

the slope and u is the remainder. 

A regression method receives a collection of variables as inputs that are related to 

the independent variable and tries to discover the mathematical relationship between these 
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variables. The mathematical relationship is normally in the form of a straight line or 

hyperplane that fits all the individual data points approximately. To produce a model, a 

machine learning method must be provided with pre-generated data, so that it can try to 

find the relationship between the variables.  

7.2 Collecting Data 

A machine learning algorithm needs to be fed with data to train the model and test 

its performance. Input data can be collected either via running field tests by placing sensor 

nodes in a testbed and recording the output of different network configurations or running 

network simulations on a computer. Albeit, since we do not have a testbed setup, we have 

used network simulations in this study. To collect the data that will be given as input to 

the machine learning methods, we have begun by running optimizations with several 

different network parameters. We have run the simulations according to the MIP model 

that we have presented in Chapter 3. We have prepared our parameters using MATLAB 

and run our optimization algorithm in CPLEX Solver with different combinations of the 

parameters to generate a dataset to train and test the regression methods. We have run the 

simulations with the following combinations of different parameters: 

• Node Numbers: {10, 15, 20, 25, 30, 35, 40} 

• NSR: {0.5, 0.6, 0.7, 0.8, 0.9} 

• 𝐿4EFG : {1, 0.5, 0.33, 0.25, 0.2} 

• BER: {1e-5 1e-4 1e-3 1e-2 1e-1} 

• Packet Size: {256 512 1024 2048 4096 8192 10000} 

• Encryption Type: {No encryption, Twofish, AES, Mixed} 

We have run the optimizations with every combination of these variables. The 

number of these combinations is 24500 in total. As in evaluating the performance of the 

network using optimizations, we have run the simulations for every variable combination 

100 times with different random topologies of the nodes and we took their average energy 

consumption as the final value. As we stated in the introduction part of this chapter, 

optimizations need a long time to complete, and we will also give a comparison for the 

runtimes of optimizations and machine learning methods. Table 7.1 presents the runtimes 

for the optimizations that were held with combinations of the parameters above. From the 
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table, it can be seen that increasing the number of nodes increases the runtime 

exponentially, since the solver makes calculations for every candidate node on a path in 

multi-hop fashion and high number of nodes increases the number of candidate nodes for 

a source node to send its packet. The total runtime of the optimizations takes more than 

60 days, which is an unacceptable long time, and this situation supports the motivation of 

using ML for parameter predictions. 

Table 7.1 Runtimes for optimizations 

 Number of nodes  

 
10 15 20 25 30 35 40 Total 

Average time for 
1 parameter 
configuration 
(sec) 

0.106524 0.488621 1.11469 2.112113 6.016837 14.41891 38.23250 62.490 

Average time for 
running 100 
times for random 
topologies (min) 

0.177540 0.814368 1.857828 3.52019 10.02806 24.03151 63.72084 104.15 

Average time for 
running 100 
times for random 
topologies (hrs) 

0.002959 0.013573 0.03096 0.05867 0.167134 0.400525 1.062014 1.7358 

Total time for 
running 100 
times for random 
topologies (hrs) 

2.485563 11.40115 26.00959 49.28263 140.3929 336.4412 892.0918 1458.1 

Total time for 
running 100 
times for random 
topologies (days) 

0.10357 0.475048 1.083733 2.053443 5.849702 14.01838 37.17049 60.76 

At the end of the optimizations, we were able to collect 5880 rows of data while the 

rest of the simulations could not produce a feasible solution. As it can be seen, only 24% 

of the simulations managed to produce feasible results, which supports the idea of using 

regression methods for predicting data, both to avoid the computational and time burden 

of the optimizations and to be able to make predictions where optimizations fail to 

produce results. Figure 7.1 shows a flowchart for the steps taken while preparing the 

dataset to train and test the machine learning methods. 
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Figure 7.1 Data preparation flowchart 

After generating the dataset, we have used Python 3.9 [70] with Scikit-learn [71] to 

produce regression models and Keras [72] running on Tensorflow [73] to model neural 

networks for the prediction of energy consumption values. Before starting to build 
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models, we used Pandas package [74] to process and Pandas-profiling package [75] to 

analyze our data. We employed Jupyter Notebook [76] as the development platform. We 

have used Seaborn [77] package to plot our results. The results of data analysis generated 

using pandas-profiling package are shown in Table 7.2. In the dataset, there are six 

independent variables, which are Node Number, NSR, Lnode, Encryption Type, BER, and 

Packet Size. The dependent variable in the dataset is the Energy consumption value. There 

are 5880 rows of data that have been collected by running optimizations. Since the data 

is not gathered via observation, there are no empty or duplicate cells in the dataset. While 

generating the models, we have used the data in two ways. First, we used 80% of the 

dataset for training and 20% for testing purposes. After that we used 10-fold cross-

validation which is a resampling process for evaluating models for a dataset. The process 

is used with a parameter k which indicates the number of groups that the dataset is divided 

into. Generally, this process is named as k-fold cross-validation. At each step, one of these 

groups are used for testing and rest of the data is used for training and evaluation metrics 

are calculated for the model. The final result of cross-validation is usually calculated as 

the mean of the metrics. 

Table 7.2 Dataset statistics 
Dataset statistics 
Number of variables  7 
Number of observations  5880 
Missing cells  0 
Missing cells (%)  0.0% 
Duplicate rows  0 
Duplicate rows (%)  0.0% 
Total size in memory  321.7 KiB 
Average record size in memory 56.0 B 

Figure 7.2 illustrates the Spearman’s correlations between the variables. The 

Spearman's rank correlation coefficient (ρ) is a statistical nonparametric measure that 

presents a description about the monotonic correlation between two given variables [78, 

79]. To compute ρ for two variables, the covariance of the rank of these variables is 

divided by the multiplication of their standard deviations. If there are no duplicated values 

in the dataset, an absolute Spearman correlation of +1 or −1 appears indicating that each 

one of the given variables is an absolute monotonic function for the other. Apparently, 

the Spearman correlation for two variables should be higher if they have a similar rank, 

and lower if they have a dissimilar or opposite rank between them. As it can be seen from 
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Figure 7.2, energy consumption is highly correlated with the encryption type, and it is 

strongly correlated with Bit Error Rate (BER) and Packet Size.  

 

Figure 7.2 Correlations between the variables in the dataset 

Figure 7.3 demonstrates a pair-plot of the variables illustrating the relations between 

them. Pair-plot visualization is a broadly used technique in data analysis that helps to 

identify the best set of features that describes a relationship between two variables. The 

pair-plots are shown in matrix composition where the row name indicates y axis and 

column name indicates x axis. The sub-plots on the main-diagonal illustrate the 

distributions for each variable, whereas the sub-plots under the diagonal present the data 

distribution for each pair of variables. For instance, from the Energy – BER sub-plot in 

the figure (row 7, column 5), it can be seen that energy increases if BER is higher, except 

for a few outliers. This is an expected tendence because if BER is higher, nodes need to 

use more transmission power to increase the SNR and complete the transmission 

successfully. If Energy – NSR subplot (row 7, column 2) is examined, again it is obvious 

that energy consumption increases if NSR is defined higher for the network. Again, this 
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is an expected tendence since higher NSR forces nodes to make packet duplications and 

increase the number of transmissions. Similarly, if all the sub-plots are checked, energy 

consumption is mainly affected by NSR, Encryption Type, BER and Packet Size.  

 

Figure 7.3 Pair-plot of the variables in the dataset 
 

In Figure 7.3, the subplots over the diagonal show the distributions of the variables 

using kernel density estimation (KDE) [80]. KDE is one of the most acclaimed methods 

for calculating density estimation and it is defined using the following equation: 

                               𝑝4t(𝑥) =
)
4#
∑ 𝐾(L1

#
)(

1>)                                            (7.2) 

In the equation (7.2), K(x) is called the kernel function which is commonly a 

symmetric function and h is the smoothing bandwidth used for controlling the amount of 
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smoothing. Substantially, KDE smooths out every point Xi into small density areas and 

sums these areas to find the conclusive density estimate. In the subplots over the diagonal 

in Figure 7.3, smooth densities for each variable pair are pictured. For instance, Energy – 

NSR subplot (row 2, column 7) in the figure shows the density of the energy values 

according to NSR values including a few outliers. If the NSR is increased, energy 

consumption values also increase as expected, since maintaining a higher NSR causes 

more transmission and reception operations. Similarly, Energy – Lnode subplot (row 3, 

column 7) in the figure presents the density distribution of the energy values according to 

Lnode. It can be seen that if data fragmentation ratio is increased (Lnode is decreased), 

energy consumption increases as some of the data fragments are transmitted over less 

optimal paths. 

7.3 Machine Learning Algorithms 
In the study, we have examined eight regression methods and two neural network 

methods to generate models for predicting energy consumption values in the UASNs. The 

regression methods examined in the study are Linear Regression (LR), Support Vector 

Machines Regression (SVM), Gradient Boosting, k-Nearest Neighbors (kNN), Ridge 

Regression, Decision Tree, Random Forest, and XGBoost Regression. And the examined 

neural network methods are Artificial Neural Network (ANN) and Convolutional Neural 

Network (CNN).  

While building prediction models, the data gathered via optimizations was used in 

two ways. First, the data was used as raw and then it was normalized using min-max 

scaler and used in the normalized form. Min-max scaler transforms features by scaling 

each feature to a desired range, and generally values are scaled to the range [0,1]. The 

formula used for min max scaling is given as: 

                               𝑥M = N%OPQ(N)
ORS(N)%OPQ(N)

                                                 (7.3) 

In the formula (7.3), X’ is the normalized version of X value which is calculated by 

dividing the difference between the original value and the smallest of the values by the 

difference between the highest of the values and the smallest of the values.  

Normalization is an important technique used in machine learning, because it fits 

the raw data into a definite range to avoid problems about datasets by generating new 
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values and maintaining a general distribution on the dataset. Furthermore, it extends the 

efficiency and accuracy of the machine learning models. In the study, we used normalized 

data to amend the performance of the ML models. Another method for finding the best 

models is hyper-parameter optimization. In this method, the hyper-parameters that affect 

the performance of the models are tuned so that the model can produce better scores and 

make better predictions. After generating models with raw data and normalized data, we 

have applied cross-validation and hyper-parameter optimization techniques using the 

normalized dataset to further improve the success of the regression methods. Analysis of 

these procedures will be presented in the following sections of the thesis.  

7.3.1 Linear Regression 

In the science of statistics and mathematics, linear regression is used for defining 

the relationship between a dependent variable and one or more independent variables. If 

there is a single independent variable, the regression operation is called a simple linear 

regression, and if there are multiple independent variables, the operation is called multiple 

linear regression [81]. 

In this method, the relationship between the variables is defined using linear 

predictor functions where the parameters of the model are evaluated by processing a given 

data. In general, the conditional average of the dependent variable according to the 

independent variables is presumed as an affine function of these variables. Linear 

regression is one of the first regression methods that has been studied commonly by many 

researchers, and it is still used in many practical applications. A linear regression model 

is learnt by computing the values of the coefficients (b values) used in the equation (7.1) 

using the given variables. 

7.3.2 Support Vector Machine 

Support vector machines are a type of supervised learning models used in machine 

learning both for classification and regression procedures. SVM was developed and 

presented in 1995 by Vapnik et al [82]. The algorithm tries to discover a boundary or a 

hyperplane that separates variables according to their given features. After that, it makes 

predictions about a new instance according to the side of the hyperplane it remains. 
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When accomplishing a regression operation with SVM, the target is to find a 

determinate boundary at some distance from the separation hyperplane such that the data 

points close to the hyperplane are inside that boundary. Thus, it takes the points that 

remain inside the decision boundary with the lowest error rate, or that are inside the 

predefined margin of tolerance. 

7.3.3 Gradient Boosting 

In the field of machine learning, the expression boosting indicates integrating 

several basic models into a single complex model. Boosting is also expounded as an 

additive model because basic models are added to the compound at each iteration, without 

altering the other basic models in the final composite model. Integrating more basic 

models step by step makes the final model more forceful. In most of the applications, 

decision trees are chosen as the basic models in gradient boosting method [83]. The term 

gradient is selected because the algorithm utilizes a gradient descent to minimize the loss 

and errors of the predictions. 

At the end of every iteration, the algorithm calculates the error between the new 

prediction and the pregiven test value. This error is called as the remainder or the residual. 

After calculating the error, the algorithm generates a simple model to match the weights 

of the variables to the residual. Finally, the residual is given as a feedback to the existing 

model as input and the algorithm uses the feedback to move the model closer to the 

accurate prediction value. 

7.3.4 K-Nearest Neighbors 

K-Nearest Neighbors is a simple yet powerful supervised machine learning 

algorithm which can be employed for carrying out both classification and regression 

operations. The algorithm was first proposed by Evelyn Fix and Joseph Hodges in 1951, 

in their project report [84]. The fundamental assumption behind the KNN algorithm is 

that similar objects or similar points reside closely to each other. 

It is not hard to develop and comprehend the algorithm, however it can become 

apparently heavy as the size of the evaluation data increases. First KNN starts by taking 

a random prediction point. Then it continues with calculating the errors between the 

prediction and the real data and chooses k samples (neighbors) which are nearest to the 
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prediction, and lastly it takes the average of the selected samples as the new prediction. 

The k parameter can be changed to increase or decrease the number of neighbors to refine 

the accuracy of the algorithm [85]. Nevertheless, selecting large numbers for k parameter 

will cause the algorithm to work slower. 

7.3.5 Ridge Regression 

Ridge regression is another method that is used typically when the independent 

variables in a dataset are strongly correlated [86]. It is used in a diversity of areas 

including economics, natural sciences, and engineering. The method was first proposed 

in 1970 by Hoerl et al. [87]. 

The method proposes a solution to the inaccuracy of least square calculations 

particularly if the dataset has vastly correlated independent variables. Because, if there 

is multicollinearity between independent variables, least squares are unbiased, but their 

variances become higher, and the generated model might lead to predictions distant from 

the target value. The contribution of the method is that it adds a level of bias to the 

regression model to decrease the standard errors. 

7.3.6 Decision Trees 

Decision trees are one of the most acclaimed and most applied methods in machine 

learning. A decision tree can be built from examinations about an attribute that is placed 

at the branches of the tree and the tree completes with the predictions about the target 

value that are presented at the leaves [88, 89]. 

To improve the accuracy of the predictions, a method called pruning can be applied 

on the built decision tree. Pruning is a method used for compressing the data in machine 

learning that aims at lowering the number of the branches by eliminating the parts that 

are not essential or unnecessary to generate the regression model. Pruning also decreases 

the composition of the decisive model, which enhances the accuracy of the predictions 

by decreasing overfitting. 

7.3.7 Random Forest 

Random Forest is a composite machine learning method that can be used both for 

classification and regression operations. As its name implies, the method is applied by 
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building and combining multiple decision trees while building the regression model. 

After building the model, the average, or the mean of the prediction errors from 

individual decision trees are calculated to evaluate its accuracy [90, 91].  

The advantage of Random Forests is their defiance to overfitting that the decision 

trees can face during predictions. Overfitting indicates that the model produces too close 

or exact predictions with the real values by the means of memorizing the dataset. At first 

glance, the accuracy of the regression model might seem quite good, however there is a 

possibility that it might be unsuccessful at fitting additional data or making predictions 

about extra observations [92]. On the other hand, random forest method usually runs 

slower and needs more time to generate the regression model when compared to other 

methods because building multiple decision trees is a costly operation. 

7.3.8 XGBoost Regression 

XGBoost is an abbreviation for Extreme Gradient Boosting, and it is developed as 

an efficient successor of the gradient boosting algorithm [93, 94]. In the classical gradient 

boosting, the basic models are usually decision trees, where every tree allocates an input 

to a leaf that has a continuous value. As in gradient boosting, the training runs iteratively 

in XGBoost, adding new trees at each step to make new predictions according to the 

prediction errors of preceding trees. In gradient boosting, the decision trees are connected 

to each other one by one, however in XGBoost the trees are connected parallelly and new 

trees are merged with previous trees to complete the final model. 

7.3.9 Artificial Neural Network 

An artificial neural network (ANN) is a computational model that simulates the 

nerve cells in human brain [95, 96]. An ANN consists of three or more layers that are 

connected to each other. The first layer is called the input layer and it consists of the input 

neurons. It moves the input data to the hidden layer(s), and hidden layers move the 

computed data to the output layer.  

The intermediary layers are hidden, and they adaptively change their weights 

according to the information received from the previous layer. They both act as input and 

output layers that help the model to complete more complex tasks. Each neuron in the 

hidden layers holds a weight and at each iteration these weights are adjusted according 
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to the error calculated by comparing actual value and the predicted value. The calculated 

errors are fed back to the first layer to restart the iteration and to refine the weights, and 

this process is called backpropagation. By using backpropagation, the calculated errors 

are employed to adjust the weight of the neurons and decrease the errors in the following 

iterations. 

7.3.10 Convolutional Neural Network 

Convolutional neural networks (CNN) are a customized version of ANNs, which 

use a mathematical procedure named as convolution for making general matrix 

multiplication in at least one of its layers [97]. 

CNNs are especially developed to deal with pixel data of images and are frequently 

used in image processing for making classifications. Nevertheless, they can also be used 

for different classification and regression operations. In a CNN, there are extra hidden 

layers which are responsible for convolution operations. These hidden layers include a 

layer that calculates the dot product of the convolution kernel, which consists of a set of 

weights, with the layer's input matrix. As the kernel moves over the input matrix, the 

convolution process produces a feature map, which advances as the input of the next 

layer. 

After the convolutions, another operation named pooling is applied on the matrix. 

Pooling receives results from convolution layer and compresses it. The number of 

convolutions and pooling can be increased to decrease the number of features and the 

size of the matrix for improving the accuracy of the model and decreasing the complexity 

in the data. After finishing convolution and pooling layers, the results are flattened and 

turned into a form of column vector and passed to the ANN layer to carry on the 

conventional regression operation. 

7.4 Evaluation Metrics 
To evaluate the performance of the regression models, we have used nine metrics 

including R2 score, mean absolute error, mean squared error, mean squared log error, root 

mean squared error, mean absolute percentage error, median absolute error, max error, 

and explained variance score metrics. R2 score and explained variance score are used to 

measure how a dependent variable is defined the weights of independent variables in the 
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model. Maximum value that these scores can take is 1, and calculated scores for these 

metrics that are close to 1 indicates that a model is good at defining the relation between 

the variables. On the other hand, as the name implies, error metrics are used to calculate 

the differences between the predictions of a model and the actual test values. For the error 

metrics, a calculated value close to 0 indicates that a model makes predictions with less 

errors. In the convention, scores and error metrics are analyzed together to decide the 

success of a model and most acclaimed metrics are R2 score, mean absolute error and 

mean squared error. In most of the cases, if errors are low then scores become high or 

vice versa. Nevertheless, instead of analyzing metrics for each model separately, 

comparing the errors and scores of models helps better interpret the success of the models.  

The evaluation metrics that we have used in this study are explained in the following 

subsections. 

7.4.1 R2 Score 

R2 score is a metric used in statistics that illustrates the fraction of the variance for 

a dependent variable that is explained by some independent variables in a regression 

function. R2 depicts how variance of a variable is defined by the variance of another 

variable [98]. For instance, an R2 score of 0.50 for a regression model indicates that 

approximately half of the calculated variations can be explained by the independent 

variables of the model. R2 is formulated as: 

                            𝑅' = 1 − 𝑆𝑆?G"/𝑆𝑆!E!D0                                          (7.4) 

In the formula (7.4), SSres is the sum of squares of the residual errors and SStotal is 

the sum of squares of all errors. R2 score is calculated as a value between 0 and 1, where 

a score closer to 1 means that the model is more successful for defining the relationship 

between the variables. 

7.4.2 Mean Absolute Error 

The mean absolute error (MAE) value of a regression model is the average of the 

absolute error values evaluated for separate predictions targeting all the data values in the 

test set [99]. A prediction error is the difference between the correct value and the 

predicted value for a data point. A lower MAE indicates that the predictions match the 

expected values better while higher MAE means that the model is not very successful and 

produces erroneous predictions about the given dataset. 
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7.4.3 Mean Squared Error 

Mean squared error (MSE) indicates how distant a set of predicted values are from 

a regression line. The formula takes the errors (distances of the predicted points to the 

regression line) and takes their squares. The idea is to avoid negative signs in the values 

and improve the weight of the errors [100]. A lower MSE value indicates that the model 

is good at predictions while a lower value means that the model cannot explain the 

relationship between the variables well. 

7.4.4 Mean Squared Log Error 

Mean Squared Log Error (MSLE) is a modification of MSE that considers the 

proportional difference between the actual and the predicted values which are log-

transformed [101]. Its goal is to explain smaller errors between smaller real and predicted 

values the same as larger differences between larger real and predicted values. Since it is 

an error metric, smaller values of MSLE indicates that the predictions of the model are 

less erroneous and higher values of MSLE indicates that the predictions have high errors 

and the model cannot explain the relationship between the variables well. 

7.4.5 Root Mean Squared Error 

Root Mean Squared Error (RMSE) is defined as the standard deviation of the errors 

of predictions generated by a regression model [102]. Prediction errors are the distances 

of the predicted values from the regression line; and the aim of RMSE is to measure how 

these errors are scattered around the line. It indicates how the predicted data is residing 

around the best fit line. 

In general, a prediction error tries to calculate how far the prediction values are from 

the regression line. On the other hand, RMSE is a measure to express how these errors 

are separated from the line. A lower RMSE indicates that predictions match the expected 

values better while higher RMSE values mean that the model cannot make accurate 

predictions. 

7.4.6 Mean Absolute Percentage Error 

Mean Absolute Percentage Error (MAPE) is another measure that helps the 

observers to understand the efficiency of a regression model. It is also used as a loss 
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function in analyzing regression models. It considers accuracy as a percentage, and it is 

computed as the average absolute percent error minus actual values divided by actual 

values [103]. It gives better interpretations if there are no outliers in the data because the 

outliers tend to produce higher error values in predictions and the MAPE value can be 

misleading since the distribution of the variables are not balanced. To decrease the effect 

of the outliers, normalizing the data into a defined range helps diminish the effects of 

outliers while calculating error metric values.  

7.4.7 Median Absolute Error 

The median absolute error is a measure that is expected to be robust to outliers 

oppositely to MAPE. The error value is calculated by computing the median of all 

absolute errors between the target and the prediction values [104]. Smaller median 

absolute error value indicates that the regression model is more successful while higher 

error values mean that the model is not very good at explaining the relation between the 

variables in the dataset. 

7.4.8 Max Error 

As its name implies, Max Error is directly the largest residual error among the actual 

values and the predicted values. It might not have a significant meaning alone for 

regression evaluation, but it can be useful to understand the accuracy of the regression 

model when combined with other error metrics. 

7.4.9 Explained Variance Score 

Explained variance score (EVS) is used to measure the proportion of the variability 

of the predictions produced by a regression model. It is calculated by subtracting variance 

of the prediction error divided by variance of the correct data from 1 [105]. The difference 

between explained variance and the R² scores is that explained variance score does not 

consider systematic offset about the predictions. Hence, frequently the R² score is 

preferred instead of explained variance. 

7.5 Evaluation of ML Algorithms 
In this section, the performance results and evaluations about these results are 

presented. During the study, we have implemented ten ML algorithms, eight of which are 
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regression methods and two of them are neural network algorithms. To analyze the 

performance of these algorithms, we have used several evaluation metrics and we have 

shown the prediction points on scatter plots separately for the algorithms running with 

raw data and normalized data. On the scatter plots, the line shows the regression line or 

best fit line, which indicates the exact positions of the prediction points if they are 100% 

accurate and the prediction points are shown as crosses (x). The distance between the 

prediction points to the regression line are the errors of the predictions. If the prediction 

points are farther from the regression line, it means the prediction highly erroneous. 

Oppositely, the prediction points close to the regression line indicates that the predictions 

have small errors. 

Before discussing the evaluation scores, training and testing time of the algorithms 

are presented in Table 7.3 for three processes, which are models generated with raw data 

and normalized data with %80 of the dataset for training and 20% of the dataset for 

testing, and 10-fold cross-validation with hyper-parameter tuning. As it can be seen from 

the table, if hyper-parameter tuning is not used, model training times are quite short, 

sometimes even negligible when compared to optimization runtimes given in Table 7.1. 

This supports the proposal of using machine learning methods for network parameter 

prediction instead of running heavy optimizations. Nevertheless, when doing hyper-

parameter optimization, we make the solver to try every possible combination of hyper-

parameters for a given method to find the best parameter combination, and this situation 

increases the testing time apparently. 

Table 7.3 Runtimes for ML algorithms 

         Runtimes (secs) 
 
 
Algorithms 

Raw Data Normalized Data 
10-fold cross-validation 
with hyper-parameter 

tuning  
Train Test Train Test Train Test 

Lin. Reg. 0.0421 0.0005 0.0011 0.0003 6.4800 0.0004 
SVM 0.3438 0.0869 0.0853 0.0132 6878.7 0.0146 
Grad. Boost. 0.1572 0.0028 0.1398 0.0023 31163 0.1905 
KNN 0.0117 0.0059 0.0013 0.0041 3.0187 0.0221 
Ridge Reg. 0.0059 0.0007 0.0007 0.0003 1.7849 0.0005 
Dec. Tree 0.0103 0.0007 0.0042 0.0004 3.0954 0.0006 
Rand. Forest 0.1726 0.0059 0.1704 0.0057 351.68 0.0273 
XGBoost 0.1380 0.0021 0.1016 0.0017 428.16 0.0033 
ANN 6.1751 0.0344 6.3844 0.0372 1498.2 0.1356 
CNN 8.0554 0.0389 8.2937 0.0378 1735.8 0.1109 

Table 7.4 demonstrates a comparison of scores and errors for all the examined 

methods that were run using raw data. Regarding R2 scores, the highest values are 
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provided by Decision Tree and XGBoost. Furthermore, Gradient Boosting and Random 

Forest methods provide quite good scores even when they are run with raw data. A 

negative R2 score means that the chosen model does not follow the trend of the data and 

scores close to 0 indicate that the model cannot interpret the data very well. Mean 

Absolute Error is the mean of sum of all errors of the predictions against real values. A 

MAE close to 0 means that the predictions of the model are less erroneous. When we 

check MAE values, again Decision Tree and XGBoost provide very small error numbers. 

Also, Gradient Boosting and Random Forest produce acceptably small errors which are 

adequate for a successful regression method. 

Table 7.5 represents a comparison of evaluation scores and errors for all the applied 

methods that were run using normalized data. When compared to the results generated 

using raw data in Table 7.4, the metrics show that all the methods perform better with 

normalized data. The unsuccessful algorithms for the current dataset are Linear 

Regression and Ridge Regression as they produce predictions with high errors against 

low scores. However, the highest scores and lowest errors are again provided by Decision 

tree and XGBoost algorithms, and the other successful algorithms are again Gradient 

Boosting and Random Forest. From the results, it can be inferred that SVM and KNN 

algorithms generate moderate results. When the metrics of neural network models are 

observed, CNN generates very high scores and very low errors like Decision Tree and 

XGBoost methods. On the other hand, ANN also generates a quite successful model with 

low errors and high scores, and it can be used with the dataset in hand. 

Table 7.6 presents a comparison of evaluation scores and errors for the implemented 

methods that were run using 10-fold cross-validation and hyper-parameter optimization 

with normalized data. If the results are compared to the values in Table 7.4, the metrics 

indicate that all the methods perform better after hyper-parameter optimization. Again, 

Linear Regression and Ridge Regression show poor performances. However, all of the 

algorithms generate better scores as optimal hyper-parameters are selected for the dataset. 

Gradient Boosting, KNN, Random Forest and ANN increase their scores the most. From 

the results, it can be inferred that hyper-parameter optimization is quite important for 

increasing the success of machine learning models. The names of the algorithms giving 

the best performances are highlighted on the tables.  
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Table 7.4 Scores and errors of analyzed methods using raw data 
         Method 

 
 
Metrics 

Lin. 
Reg. SVM Grad. 

Boost. KNN Ridge 
Reg. Dec. Tree Rand. 

Forest XGBoost ANN CNN 

R2 score 0.076 -0.054 0.987 0.332 0.0237 0.999 0.981 0.999 -0.004 -0.660 
Mean Abs. Err. 0.815 0.575 0.111 0.495 0.870 5.434e-6 0.118 0.001 0.906 1.630 
Mean Sq. Err. 3.189 3.639 0.0450 2.304 3.369 3.081e-10 0.0672 2.049e-6 3.468 5.730 
Mean Sq. Log Err. 0.275 0.241 0.0114 0.166 0.314 2.661e-10 0.009 1.386e-6 0.305 0.766 
Root Mean Sq. Err. 1.786 1.908 0.212 1.518 1.836 1.755e-5 0.259 0.002 1.862 2.393 
Mean Abs. Perc. Err. 264.84 150.53 52.49 2.219 157.58 0.1360 41.822 6.394 321.437 166.301 
Median Abs. Error 0.493 0.101 0.052 0.0165 0.564 5.551e-17 0.031 0.0003 0.688 1.072 
Max Error 16.335 17.959 1.273 17.995 16.379 0.0002 1.097 0.006 17.327 14.078 
Expl. Var. Score 0.081 0.0015 0.987 0.333 0.027 0.999 0.981 0.999 0.0 -0.309 

 

Table 7.5 Scores and errors of analyzed methods using normalized data 
         Method 

 
 
Metrics 

Lin. 
Reg. SVM Grad. 

Boost. KNN Ridge 
Reg. Dec. Tree Rand. 

Forest XGBoost ANN CNN 

R2 score 0.076 0.752 0.987 0.729 0.076 0.999 0.981 0.999 0.966 0.997 
Mean Abs. Err. 0.045 0.028 0.006 0.020 0.0451 3.1e-7 0.007 0.0001 0.009 0.003 
Mean Sq. Err. 0.009 0.003 0.0001 0.003 0.009 9.6e-13 0.0002 7.9e-8 0.0004 3.1e-5 
Mean Sq. Log Err. 0.006 0.002 0.0001 0.002 0.006 9.5e-13 0.0002 7.5e-8 0.0003 2.3e-5 
Root Mean Sq. Err. 0.0989 0.051 0.0118 0.054 0.0989 9.8e-7 0.0143 0.0003 0.0190 0.006 
Mean Abs. Perc. Err. 445.23 229.79 86.25 1.764 445.12 0.220 47.532 16.580 61.873 9.557 
Median Abs. Error 0.027 0.039 0.003 0.001 0.0273 7.8e-18 0.0017 9.9e-5 0.003 0.003 
Max Error 0.904 0.442 0.0705 0.665 0.905 1.1e-5 0.061 0.001 0.095 0.039 
Expl. Var. Score 0.081 0.773 0.987 0.729 0.0812 0.999 0.981 0.999 0.966 0.997 
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Table 7.6 Scores and errors of analyzed methods via 10-fold cross-validation and hyper-parameter optimization 

         Method 
 
 
Metrics 

Lin. 
Reg. SVM Grad. 

Boost. KNN Ridge 
Reg. Dec. Tree Rand. 

Forest XGBoost ANN CNN 

R2 score 0.084 0.772 0.999 0.882 0.084 0.999 0.999 0.999 0.990 0.998 
Mean Abs. Err. 0.049 0.047 1.3e-7 0.017 0.051 5.0e-7 0.0003 9.56e-5 0.006 0.003 
Mean Sq. Err. 0.013 0.003 1.3e-13 0.002 0.013 2.052e-6 6.37e-7 1.64e-8 0.0001 3e-5 
Mean Sq. Log Err. 0.006 0.0019 2.1e-15 0.001 0.006 1.950e-6 6.56e-7 1.01e-8 0.0005 2.1e-5 
Root Mean Sq. Err. 0.115 0.050 3.5e-7 0.040 0.116 1.416e-05 0.0007 0.0001 0.010 0.005 
Mean Abs. Perc. Err. 263.84 357.85 115.04 64.80 403.66 0.250 25.47 107.02 501.01 9.417 
Median Abs. Error 0.030 0.036 1.5e-8 0.001 0.030 1.582e-17 3.48e-6 7.19e-5 0.004 0.003 
Max Error 0.900 0.100 3.8e-6 0.275 0.900 0.007 0.0037 0.0004 0.052 0.036 
Expl. Var. Score 0.086 0.784 0.999 0.882 0.086 0.999 0.999 0.999 0.991 0.998 
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The first method we have implemented is Linear Regression (LR). When the 

performance of this method is evaluated with the given performance metrics, it is visible 

that the predictions generated by LR are quite erroneous. Both executions with raw data 

and normalized data return similar results for the algorithm. R2 score calculated for LR is 

0.076 both with row and normalized data, which is close to 0 and indicates that the 

generated model cannot define the regression function well. Oppositely, the values 

calculated for error metrics are thoroughly high indicating that the predictions of the 

method are not very accurate. 

 

Figure 7.4 Scatter plot for predictions of LR run with raw data 

Figure 7.4 depicts the scatter plot of the predicted points against the best fit line for 

Linear Regression algorithm run with raw data. The points represented as crosses on the 

plot are the predictions generated by LR. As it can be seen from the figure, prediction 

points are clearly distant from the regression line and the generated errors are very high 

except for a few instances. This plot also helps to explain the high errors and low scores 

calculated for the method. 



75 
 

 

Figure 7.5 Scatter plot for predictions of LR run with normalized data 

Figure 7.5 represents the scatter plot of the predicted points against the best fit line 

for Linear Regression algorithm run with normalized data. As the figure indicates, 

prediction points reside visibly far away from the regression line and the generated errors 

are very high except for a few instances like in the results generated with raw data. The 

results shown on the plot is parallel with the high errors and low scores computed for the 

method. When the evaluation metrics for models generated with raw data and normalized 

data are compared, it is visible that the errors get smaller if data is normalized. This 

situation shows the importance and the benefits of using normalized data in the machine 

learning operations. 
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Figure 7.6 Scatter plot for predictions of LR with 10-fold cv and hyper-parameter 
tuning 

Figure 7.6 represents the scatter plot of the predicted points against the best fit line 

for Linear Regression algorithm run with 10-fold cross-validation and hyper-parameter 

tuning. Even though hyper-parameter tuning is applied, predictions are visibly far from 

the regression line and the generated errors are still high. When the evaluation metrics are 

analyzed, it is visible that the errors decrease, and scores increase after hyper-parameter 

optimization, however linear regression still shows poor performance for the dataset.  

The next examined method was Support Vector Machine regression. When the 

results and evaluation metrics generated by this method are examined, the effects of 

normalizing the data for the success of a method can be understood even better. The 

algorithm gives inadequate results when run with raw data, especially the R2 score is 

calculated below zero which indicates that the method cannot interpret the relations 

between the variables. On the other hand, SVM works much better when it is run with 

normalized data. Nevertheless, the scores and errors of the method show that it is still not 

adequate to be used with the dataset in hand. 
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Figure 7.7 Scatter plot for predictions of SVM run with raw data 

Figure 7.7 shows the scatter plot of the predicted points against the best fit line for 

SVM regression algorithm run with raw data. As the figure presents, prediction points are 

clearly distant from the regression line and the generated errors are quite high. Moreover, 

the predicted values are highly scattered, they do not tend to follow the trend of the 

regression line and they look independent from the real values. This plot also helps to 

understand the high errors and low scores computed for the method. 
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Figure 7.8 Scatter plot for predictions of SVM run with normalized data 

Figure 7.8 illustrates the scatter plot for the predicted points against the best fit line 

for SVM regression algorithm run with normalized data. As the figure indicates, 

prediction points tend to reside much closer the regression line and the generated errors 

are lower except for a few samples, oppositely to the results generated with raw data. If 

the evaluation metrics for SVM models generated with raw data and normalized data are 

analyzed together, it is clear that the errors become smaller and more importantly the 

model starts to follow the trend of the regression line if data is normalized. This situation 

shows that even if the algorithm cannot interpret the dataset containing the raw data, it 

can be much successful when the data is normalized before the model generation. This 

also expresses the importance and the benefits of using normalized data in the machine 

learning algorithms. 
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Figure 7.9 Scatter plot for predictions of SVM with 10-fold cv and hyper-parameter 
tuning 

Figure 7.9 represents the scatter plot of the predicted points against the best fit line 

for SVM algorithm run with 10-fold cross-validation and hyper-parameter tuning. After 

hyper-parameter tuning is applied, evaluation metrics for the algorithm are improved, 

nevertheless performance of SVM is still not acceptable.  

Another method we implemented was Gradient Boosting. It is a very effective 

method, and it is used commonly by the data scientists. The results generated by this 

algorithm prove that it works quite well both with raw data and normalized data. It 

generates a successful model with quite high scores and low errors for evaluation metrics. 

As shown in Tables 7.4 and 7.5, R2 score is 0.987 for both raw and normalized data, 

meaning that the method defines the function very well. Still, error values calculated for 

normalized data are lower than the error values of raw data. 



80 
 

 

Figure 7.10 Scatter plot for predictions of Gradient Boosting run with raw data 

Figure 7.10 depicts the scatter plot of the predicted values against the regression 

line for Gradient Boosting regression algorithm that was run using original dataset. As 

the figure presents, prediction points are reasonably proximate to the regression line and 

the generated predicted errors are very small. Moreover, the predicted values are grouped 

together closely on the regression line, and they have a tendency to follow the slope of 

the regression line. This plot also helps to understand the low error values and high scores 

calculated for the method. 
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Figure 7.11 Scatter plot for predictions of Gradient Boosting run with normalized 
data 

Figure 7.11 illustrates the scatter plot for the predicted values versus the best fit line 

for Gradient Boosting regression algorithm that was run using the normalized dataset. As 

it can be seen from the figure, prediction values are placed very close the regression line 

and the generated errors are lower except for a few instances, like the predictions 

generated with raw data. If the evaluation metrics for Gradient Boosting models generated 

with raw data and normalized data are examined, it is obvious that the errors become 

smaller. Nevertheless, both of the models follow the trend of the regression line and the 

algorithm works well both with raw data and normalized data. Even though the algorithm 

shows success using raw data, it can be more successful when the data is normalized 

before the model generation. This again shows that using normalized data is beneficial in 

the machine learning algorithms. 
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Figure 7.12 Scatter plot for predictions of Gradient Boosting with 10-fold cv and 
hyper-parameter tuning 

Figure 7.12 represents the scatter plot of the predicted points against the best fit line 

for Gradient Boosting algorithm run with 10-fold cross-validation and hyper-parameter 

tuning. After hyper-parameter tuning is applied, evaluation metrics for the algorithm are 

evidently improved, and the prediction points reside visibly close to the regression line.  

The next investigated method was KNN regression. The scores and errors generated 

by the model show that it can make acceptable predictions. Though, it is not the best 

method to use for the generated dataset. The calculated evaluation metrics depict that 

normalizing the data before training the algorithm generates a better regression model. 

KNN produces a moderate fit of the predictions against the actual values. 
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Figure 7.13 Scatter plot for predictions of KNN regression run with raw data 

Figure 7.13 shows the scatter plot of the predicted values against the regression line 

for KNN regression algorithm that was run using non-normalized dataset. As the figure 

indicates, prediction points are somewhat close to the regression line except for small 

energy consumption values and the calculated predicted errors are relatively small. 

Furthermore, the predicted values are generally grouped together around the regression 

line, and they tend to follow the slope of the regression line. Nevertheless, the calculated 

R2 score is 0.33 which is close to zero and error metrics are high for KNN with raw data 

meaning that it is not adequate to be used with non-normalized dataset. 
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Figure 7.14 Scatter plot for predictions of KNN regression run with normalized data 

Figure 7.14 illustrates the scatter plot for the predicted values along with the 

regression line for KNN regression algorithm that was run with the normalized dataset. 

As it can be seen from the figure, prediction values reside proximate to the regression line 

and the generated errors are lower except for some points, as in the predictions generated 

with raw data. If the evaluation metrics for KNN models generated with raw data and 

normalized data are examined, it is obvious that the errors become smaller. Although both 

of the models strive to follow the slope of the regression line, the algorithm definitely 

works much better if normalized data is employed. When the evaluation metrics 

calculated for KNN regression with normalized data are examined, R2 score is equal to 

0.72 which is quite high compared to model generated with raw data. Also, the calculated 

errors become smaller, and the success of the model improves visibly with normalized 

data. This situation shows that using normalized data is important in the machine learning 

algorithms. 
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Figure 7.15 Scatter plot for predictions of KNN with 10-fold cv and hyper-parameter 
tuning 

Figure 7.15 represents the scatter plot of the predicted points against the best fit line 

for KNN algorithm run with 10-fold cross-validation and hyper-parameter tuning. After 

hyper-parameter tuning is applied, evaluation metrics for the algorithm are evidently 

improved, and the prediction points reside closer to the regression line. Nevertheless 

performance of KNN is still not acceptable. 

Another method that examined during the studies was Ridge Regression. The scores 

and errors generated by the model indicate that it cannot make very good predictions both 

with raw data and normalized data. However, the predictions of the model trained with 

normalized data yield lesser errors and higher scores. Nevertheless, it is clear that ridge 

regression is not suitable to be used for the current dataset. 
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Figure 7.16 Scatter plot for predictions of Ridge Regression run with raw data 

Figure 7.16 shows the scatter plot of the predicted values with the regression line 

for Ridge Regression algorithm that was run with the non-normalized dataset. It can be 

observed from the figure that, prediction points are scattered, and they are mostly far from 

the regression line except for some high energy consumption values, and the calculated 

prediction errors are high compared to other regression methods. Furthermore, the 

predicted values have generally high errors especially for small energy consumption 

values, and they have no tendency about following the trend of the regression line. If the 

evaluation metrics are examined, the calculated R2 score is 0.024 which is very close to 

zero and error metrics are high for ridge regression with raw data, indicating that it is not 

very suitable to be used with raw data. 
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Figure 7.17 Scatter plot for predictions of Ridge Regression run with normalized 
data 

Figure 7.17 presents the scatter plot for the predicted values together with the 

regression line for ridge regression algorithm that was trained using the normalized 

dataset. As it can be seen from the figure, prediction values generally reside away from 

the regression line and the produced errors are visibly large except for some points, like 

in the predictions generated with raw data. If the evaluation metrics for ridge regression 

models generated with raw data and normalized data given in Table 7.2 and 7.3 are 

examined, it is obvious that the errors become smaller if normalized data is used. 

Although both of the models make erroneous predictions, the algorithm definitely works 

better if normalized data is employed. When the evaluation metrics calculated for ridge 

regression with normalized data are examined, R2 score is equal to 0.076 which is higher 

than the model generated with raw data but still it is unacceptably small. From the 

evaluation metrics and the figures generated for ridge regression algorithm, it can be 

inferred that it is not a good candidate to be used with the current dataset. 
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Figure 7.18 Scatter plot for predictions of Ridge Regression with 10-fold cv and 
hyper-parameter tuning 

Figure 7.18 represents the scatter plot of the predicted points against the best fit line 

for Ridge Regression algorithm run with 10-fold cross-validation and hyper-parameter 

tuning. Even though hyper-parameter tuning is applied, predictions are still far from the 

regression line and the generated errors are also high. When the evaluation metrics are 

analyzed, it is visible that the errors decrease, and scores increase after hyper-parameter 

optimization, however ridge regression still shows a poor performance for the dataset.  

The next method we have implemented was Decision Tree. The performance 

metrics calculated according to the predictions of the model shows that the algorithm 

produces quite high scores against tiny errors. From the results, it is obvious that the 

method also works really well without normalizing the data. Decision Tree seems to be 

one of the candidate methods to be employed for the existing dataset. 



89 
 

 

Figure 7.19 Scatter plot for predictions of Decision Tree Regression run with raw 
data 

Figure 7.19 illustrates the scatter plot of the predicted values along with the 

regression line for Decision Tree regression algorithm that was run using the raw dataset. 

As it is obvious from the figure, prediction points are mostly adjacent to the regression 

line and the generated predicted errors are very tiny. Furthermore, the prediction values 

are grouped together, and they studiously follow the slope of the regression line. This plot 

goes parallel with the low error values and high scores calculated for the method that are 

presented in Table 7.4. 
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Figure 7.20 Scatter plot for predictions of Decision Tree Regression run with 
normalized data 

Figure 7.20 presents the scatter plot for the predicted values together with the best 

fit line for Decision Tree regression algorithm that was run using the normalized data. As 

it can be seen clearly from the figure, prediction points reside approximately on the 

regression line and the generated errors are even lower as in the predictions generated 

with raw data. If the evaluation metrics presented in Tables 7.4 and 7.5 for Decision Tree 

models generated with raw data and normalized data are considered, it is visible that the 

errors become smaller. Nevertheless, both of the models make predictions that reside 

highly on the regression line, and the algorithm works undeniably well both with raw data 

and normalized data. Both evaluation results for Decision Tree regression show that it is 

one of the most successful algorithms among the implemented ones and can be employed 

in UANS studies. 
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Figure 7.21 Scatter plot for predictions of Decision Tree with 10-fold cv and hyper-
parameter tuning 

Figure 7.21 represents the scatter plot of the predicted points against the best fit line 

for Decision Tree algorithm run with 10-fold cross-validation and hyper-parameter 

tuning. The algorithm already showed a high performance before hyper-parameter tuning 

is applied; thus, the effect of tuning is not essential for Decision Tree.  

The next analyzed method was Random Forest regression. The calculated 

evaluation metric values for the algorithm depict that it produces quite good scores with 

very minor errors. The metrics also show that the method still works well without 

normalizing the data, although running with normalized data improves the model. 

Random Forest is another adequate algorithm that can be used with the dataset in hand. 
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Figure 7.22 Scatter plot for predictions of Random Forest Regression run with raw 
data 

Figure 7.22 depicts the scatter plot of the predicted values against the regression 

line for Random Forest regression algorithm that was run using the raw dataset. As 

depicted in the figure, prediction values are agreeably proximate to the regression line 

and the generated prediction errors are relatively small. On the other hand, the prediction 

points congregate jointly alongside the regression line, and they have an affinity to follow 

the trend of the regression line. This plot also goes parallel with the low error values and 

high scores calculated for the method. 
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Figure 7.23 Scatter plot for predictions of Random Forest Regression run with 
normalized data 

Figure 7.23 illustrates the scatter plot for the predicted values versus the best fit line 

for Random Forest regression algorithm that was exercised using the normalized dataset. 

As it is shown on the figure, prediction points are placed rather closely to the regression 

line and the generated errors are generally lower, similar to the predictions generated with 

raw data. If the calculated evaluation metrics are examined for Random Forest models 

that were generated with raw data and normalized data, it is apparent that the errors 

become smaller after normalization. Notwithstanding, both of the models adhere the slope 

of the regression line, and the algorithm works considerably well both with raw data and 

normalized data. Although the algorithm performs well if it is executed using raw data, it 

can achieve even further if normalized data is used before building the model. 
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Figure 7.24 Scatter plot for predictions of Random Forest with 10-fold cv and hyper-
parameter tuning 

Figure 7.24 represents the scatter plot of the predicted points against the best fit line 

for Random Forest algorithm run with 10-fold cross-validation and hyper-parameter 

tuning. After hyper-parameter tuning is applied, evaluation metrics for the algorithm are 

apparently improved, and the prediction points reside evidently close to the regression 

line.  

The last regression method implemented in the study is XGBoost regression. The 

computed evaluation metric values for the algorithm demonstrate that it produces visibly 

high scores and very tiny errors. The metrics also indicate that the algorithm still performs 

well without normalizing the data, however executing with normalized data improves the 

accuracy of the model. XGBoost is another proper algorithm that can be utilized for 

parameter prediction in UASNs. 
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Figure 7.25 Scatter plot for predictions of XGBoost Regression run with raw data 

Figure 7.25 depicts the scatter plot of the predicted points along with the best fit 

line for XGBoost regression algorithm that was executed using the raw dataset. As 

illustrated in the figure, prediction values are grouped around the regression line and the 

calculated prediction errors are immensely small. Furthermore, the prediction points 

group altogether alongside the regression line, and they intimately trail the trend of the 

regression line. The points on the plot also behave parallel with the tiny error values and 

great scores calculated for the method which are rendered in Tables 7.4 and 7.5. 
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Figure 7.26 Scatter plot for predictions of XGBoost Regression run with normalized 
data 

Figure 7.26 depicts the scatter plot for the predicted values against the regression 

line for XGBoost regression algorithm that was run using the normalized dataset. As it 

can be observed on the figure, prediction values reside quite proximate to the regression 

line and the generated errors are extremely lower, similar to the predictions generated 

with raw data. If the calculated evaluation metrics are examined for XGBoost models that 

were generated both with raw data and normalized data, it is evident that the errors 

become much smaller after normalization. Nevertheless, errors calculated for the model 

trained with raw data are still very tiny and acceptable. Both of the models generate 

predictions that follow the slope of the regression line, and the algorithm works 

appreciably well both with raw data and normalized data. Although the algorithm 

performs great if it is trained using raw data, it can effectuate the model even better if 

normalized data is used while building the model. 
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Figure 7.27 Scatter plot for predictions of XGBoost Regression with 10-fold cv and 
hyper-parameter tuning 

Figure 7.27 represents the scatter plot of the predicted points against the best fit line 

for XGBoost algorithm run with 10-fold cross-validation and hyper-parameter tuning. 

The algorithm already showed a significant performance before hyper-parameter tuning 

is applied; hence, the effect of tuning is not crucial for XGBoost regression.  

After implementing eight regression algorithms, we continued with training ANN 

and CNN models to analyze their performance about the dataset we prepared with UASN 

parameters. 

First, we have trained ANN using raw data and normalized data separately. ANN is 

the most common type of neural networks, and it performs very well for most of the 

problems. When the results and evaluation metrics generated by this algorithm are 

scrutinized, the importance of normalization for the success of a method can be 

appreciated better. The algorithm gives inadequate results when it is trained with raw 

data, particularly the R2 score is found below zero indicating that the algorithm cannot 

construe the relations between the dependent variable and the independent variables. 
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However, ANN performs expectedly when it is trained with normalized data. The 

evaluation metrics calculated for the algorithm show that it is adequate to be used with 

the normalized dataset. 

 

Figure 7.28 Scatter plot for predictions of ANN run with raw data 

Figure 7.28 depicts the scatter plot of the predicted points against the best fit line 

for ANN algorithm that is trained using the raw dataset. It can be seen from the figure 

that, prediction points are scattered, and they are generally far from the regression line 

except for a few energy consumption values, and the calculated prediction errors are 

relatively high when compared to previous regression methods. Moreover, the predicted 

values have generally high errors especially for small prediction values, and they do not 

tend to pursue the trend of the regression line. If the evaluation metrics are examined, the 

calculated R2 score is -0.004 which is below zero and values of error metrics are high for 

ANN with raw data, indicating that it cannot interpret the data before normalization. 
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Figure 7.29 Scatter plot for predictions of ANN run with normalized data 

Figure 7.29 shows the scatter plot for the predicted values against the regression 

line for ANN algorithm that was trained with the normalized dataset. As it is visible on 

the figure, prediction values group altogether around the regression line except for some 

outliers and predictions for large energy values, and the generated errors are reasonably 

small, opposite to the predictions generated with raw data. If the calculated evaluation 

metrics are examined for ANN model generated with normalized data, it is clear that the 

errors become much smaller and R2 score is 0.96 which is close to 1, indicating that the 

algorithm interprets the data successfully after normalization. Moreover, the model 

follows the slope of the regression line if data is normalized. This situation again indicates 

that the algorithm can be very successful when the data is normalized before the model 

generation. 
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Figure 7.30 Scatter plot for predictions of ANN with 10-fold cv and hyper-parameter 
tuning 

Figure 7.30 represents the scatter plot of the predicted points against the best fit line 

for ANN regression run with 10-fold cross-validation and hyper-parameter tuning. After 

hyper-parameter tuning is applied, evaluation scores of the algorithm are apparently 

improved, errors become smaller, and the prediction points reside closer to the regression 

line.  

After ANN, we have trained CNN with raw data and normalized data. Similar to 

the ANN method, CNN also produces inappropriate predictions when it is trained with 

raw data, and the R2 score is computed below zero meaning that CNN cannot interpret 

the relations between the dependent variable and the independent variables. Nevertheless, 

CNN performs excellently when it is trained with normalized data. The evaluation metrics 

calculated for the algorithm show that it is successful, and it can be used for UASNs after 

the data is normalized. 
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Figure 7.31 Scatter plot for predictions of CNN run with raw data 

Figure 7.31 depicts the scatter plot of the predictions along with the regression line 

of CNN algorithm that is trained using the raw data. The figure demonstrates that, like 

the predictions generated with ANN using raw data, prediction values are diffused, and 

most of them reside away from the regression line except for a few random values. The 

error metric values given in Table 7.4 for CNN are generally higher when compared to 

other ML methods including ANN. If these metrics are explored, the calculated R2 score 

is -0.66 which is below zero and values of error metrics are high for CNN with raw data, 

indicating that it cannot understand the dataset. Additionally, almost all the predicted 

values have high errors which are worse for small prediction values, and they do not 

follow the trend of the regression line in anyway. 



102 
 

 

Figure 7.32 Scatter plot for predictions of CNN run with normalized data 

Figure 7.32 shows the scatter plot for the predicted values along with the regression 

line for CNN algorithm trained with the normalized data. As it is evident on the figure, 

prediction values reside together over the regression line except for some predictions for 

large energy values, and the generated errors are remarkably small, contrary to the 

predictions that are generated with the previous model. If the computed evaluation metrics 

are examined for CNN model trained with normalized data, it is seen that the errors 

become much smaller and R2 score is 0.997 which is very close to 1, meaning that the 

algorithm performs successfully after normalization. Furthermore, the model follows the 

trend of the regression line if data is normalized. These indicators show that CNN 

algorithm can be very fruitful when the data is normalized before training the model. 
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Figure 7.33 Scatter plot for predictions of CNN with 10-fold cv and hyper-parameter 
tuning 

Figure 7.33 represents the scatter plot of the predicted points against the best fit line 

for CNN algorithm run with 10-fold cross-validation and hyper-parameter tuning. The 

algorithm already showed a powerful performance before hyper-parameter tuning is 

applied; thus, the effect of tuning is not critical for CNN regression.  

To sum up, we have investigated ten ML algorithms and their performances when 

they are trained with raw data and normalized data separately. Most successful regression 

algorithms are Gradient Boosting, Decision Tree, Random Forest and XGBoost which 

perform well with both datasets. SVM and KNN show poor performances if they are 

trained with raw data, but their prediction results are much better if normalized data is 

used. Nevertheless, their overall success is not sufficient. When we explore the scores and 

error metric values for ANN and CNN methods, it is clear that they need to be trained 

with normalized data and they perform very well in that case. Otherwise, neural network 

algorithms cannot generate successful models. Moreover, optimizing the hyper-

parameters of an algorithm definitely increases performance of the generated model. For 

some of the algorithms, hyper-parameter tuning takes a considerable amount of time, but 
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this time is still very short when compared with the runtime of MIP optimizations and it 

is important to tune the parameters to be able to make more accurate predictions about 

network parameters. 

The motivation behind making the ML study can be explained in two ways. First 

the problem of designing a UASN with optimal parameters can be solved using 

optimization algorithms, however optimizations are computationally complex, they need 

a long time execute and sometimes they cannot provide feasible solutions. But if we have 

a dataset, we can train ML algorithms to generate regression models to make predictions 

about the network parameters to avoid the complexity of optimizations and we can also 

forecast parameters even if optimization fail to complete. Second, ML algorithms have 

been used for long years, they are robust, and they help the researchers save time and 

resources. The contribution of the ML study is that it shows ML can be used efficiently 

for parameter prediction in network design and gives performance results to select 

adequate methods to be used in further studies. 
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Chapter 8  

Conclusions and Future Prospects 
First, the general idea and a summary of the conducted studies included in the thesis 

is presented in this chapter. Then the societal impact and contributions to the global 

sustainability of the study are declared. Finally, the thesis is concluded with future 

prospects and possible studies in the field. 

 

8.1 Conclusions 
In this thesis, an optimal multi-path routing strategy has been developed and a 

mixed-integer programming (MIP) framework has been constructed to analyze the effects 

of multi-path routing, packet duplication, encryption, and data fragmentation on network 

lifetime. The constructed MIP model focuses on maximizing the network lifetime by 

maximizing the operation duration of the most energy depleting sensor node while the 

network guarantees a pre-determined reliability requirement.  

In addition, to obtain security for the sensitive data generated by the sensor nodes 

during the operation, the idea of utilizing encryption before broadcasting the data is 

proposed. To balance the trade-off between security supplied by encryption and network 

lifetime in UASNs, a method for selecting appropriate encryption algorithms for the 

nodes in the UASN is presented. To benefit from the advantages of symmetric key 

encryption schemes, the AES and Twofish encryption algorithms have been selected and 

their effects on the network lifetime has been investigated with the MIP framework. 

To further improve the security of the generated data, using packet fragmentation 

method is suggested in the study. Against a silent listening attack, dividing a data into 

pieces and transmitting each data piece over different paths to the sink comes out as a 

smart method. Because the adversary cannot obtain the integrated data without collecting 

all data pieces and collecting all the pieces is a gravely difficult task. On the other hand, 

if the data is divided and transmitted in pieces, it is obvious that some of the pieces must 
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be sent using non-optimal paths. And using non-optimal paths for transmission might 

have a negative effect on network lifetime. In this study, these possible effects of packet 

fragmentation on the network lifetime is also examined with the MIP optimization. 

Performance results of the proposed methods in this study are generated with the MIP 

optimizations and they are listed as follows: 

• In order to maintain a desired network success rate (NSR), the network 

needs to sacrifice more energy; thus, more strict reliability rate requires 

more energy consumption for the nodes. When the NSR is increased, energy 

consumption of the nodes tends to increase. For NSR rates of 0.7, 0.8 and 

0.9, the increase in the energy consumption compared to base state 

(NSR=0.6) is 33%, 77% and 150% respectively. 

• Encryption is greedy about energy consumption but to provide security for 

the network traffic, encryption is a must against eavesdropping attacks. 

Between the two encryption algorithms employed, using AES for all nodes 

consumes about 100% more energy compared to using Twofish for all 

nodes. It is clear that Twofish is better for energy consumption, and it is 

considered a secure encryption algorithm. Hence, for adequate security we 

employ Twofish for close nodes and AES for far nodes to the sink. In this 

case, the decrease in the energy consumption against using AES for all 

nodes is about 20%. By the proposed idea, we can limit the decrease in the 

network lifetime while maintaining the security. 

• Data fragmentation is another promising method against eavesdropping 

attacks. Nevertheless, it also needs more transmission and reception energy 

since some of these operations cannot be carried out using optimal paths. 

The optimization results show that increasing number of data fragments 

increases the energy consumption in a linear fashion. Forcing the system to 

divide the transmitted data into 2, 3 and 4 fragments increases energy 

consumption linearly about 0.002 Joules on average. When we consider the 

high energy overhead introduced by encryption operation, it is very logical 

to use data fragmentation jointly to improve the level of the security of the 

system. 
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Although the proposed optimal multi-path routing strategy is modeled by an MIP 

framework, the computational complexity arises from the nature of MIP encouraged us 

to investigate meta-heuristic solutions and ML algorithms. In order to overcome the 

computational complexity of the optimal multi-path routing strategy developed via MIP 

formulation, we implemented different meta-heuristic approaches. For each meta-

heuristic algorithm, we investigated the near-optimal solution performance for the 

problem of selecting encryption scheme for the nodes. Furthermore, we have 

implemented eight regression and two neural network algorithms to be used for predicting 

energy consumption values to help avoid running complex optimizations for different 

network parameters. 

When implementing the heuristic methods to decide which encryption algorithm to 

use for each node, we expected them to find solutions similar to the case where all nodes 

use Twofish without giving any constraints. For 30 and 40 node networks, Golden Section 

Search (GSS) finds the approximate results compared to optimization results, which is 

nearly 3% higher than optimal results. For 20 nodes, GSS still gives the best result that 

approximates the optimum with 17%. For 10 nodes, Simulated Annealing (SA) finds the 

best result that is nearly 21% higher than optimum value. From these results, we can infer 

that it is better to use SA for small networks and GSS for larger networks. In the tests, 

Genetic Algorithm (GA) was not able to provide good results, generating only about 1.5% 

deviated results compared to initially given solution. 

After analyzing the MIP framework and heuristic algorithms, in this study we have 

built several regression models and two neural network models using Scikit-learn and 

Keras tools and we have analyzed the success of these models using some scores and 

error metrics. To collect the data to be used by the models, we have run the optimization 

model with various combinations of the network parameters. The reason of proposing 

usage of machine learning algorithms is that once we the model is implemented, it can be 

executed very fast on any computer since the regression model simply consists of 

mathematical formulas. Another advantage of ML is that instead of running 

computationally heavy optimizations, basically the network parameters can be changed, 

and the pre-generated model can be run with different parameters to make new 

predictions. Moreover, optimizations sometimes cannot come up with feasible solutions 

for the problem or finish in an acceptable timeframe. By using machine learning models, 

we can avoid the high computation burden of optimizations. Besides, regression models 
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might not produce exact results, but they can predict new values with high accuracy and 

low errors. Another point to express is that we can always make a prediction with different 

parameters even though the optimization returns unfeasible solutions with those 

parameters. Second point is, every regression method can generate different models for 

different kind of datasets, thus we have investigated several algorithms to discover the 

best method for generating the regression model for our dataset. 

When we consider the regression methods and neural networks, we can see that 

Gradient Boosting, XGBoost, Decision Tree and Random Forest are successful methods 

for our dataset, and we can see that ANN and CNN also produce successful models. An 

important point to stress is that the success of the neural networks increases if we 

normalize the data before building the model. Normalization of the data is important for 

our case because our data has a wide range of values and mapping these values to a range 

helps the algorithms process the data better. Performance results of the examined 

algorithms show that: 

• Linear Regression, KNN, and Ridge Regression are not successful with the 

given dataset as they produce R2 scores around 0.075 showing that the 

model cannot define the relations between the variables well. 

• Gradient Boosting, XGBoost, Decision Tree and Random Forest are the best 

regression methods in terms of different performance metrics. They are 

quite successful both with raw and normalized data, producing R2 scores 

close to 1. 

• ANN and CNN cannot define the model if they are run with raw data. On 

the other hand, they produce quite successful models if they are run with 

normalized data. With normalized data, R2 scores for ANN and CNN are 

0.96 and 0.99 respectively. 

• Normalization improves the prediction performance for all the examined 

algorithms and reduces errors. 

• Hyper-parameter optimization might take more time than training the 

models with default parameters, but it helps improve the model a lot and it 

is an important process that should be considered. 

 An important point to stress is that the success of the neural networks increases if 

the data is normalized before building the model. Normalization is important for our case 
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since our data has a wide range of values and mapping these values to a range helps the 

algorithms process the data better. Moreover, even if optimizations cannot come up with 

feasible results or cannot finish in an acceptable time frame, once a regression model is 

built, predictions can be still made using the previously generated data which proves that 

machine learning is an ancillary technique for optimizations. 

8.2 Societal Impact and Contribution to Global 

Sustainability 

To assess the contributions of this work on global sustainability, first we would like 

to introduce the Sustainable Development Goals presented by United Nations 

Development Programme (UNDP). The Sustainable Development Goals (SDGs), also 

known as the Global Goals, were endorsed by United Nations (UN) as a global call to 

action to end poverty and protect Earth [106]. There are seventeen SDGs declared by 

UNDP and each of these goals is related to different topics devoted for sustainability. 

Among the seventeen SDGs, two of them are highly related to the subject of this 

thesis. First SDG that this study targets is Goal 9 – Industry, Innovation and Infrastructure. 

In the definition of the goal, it is stated that technological development -such as providing 

new jobs and promoting energy efficiency- is essential about finding robust solutions to 

global economic and environmental changes. Moreover, scientific research and 

innovation are stated as important ways to support sustainable development. Parallel to 

the declarations under Goal 9, in this study we have conducted innovative research for 

improving UASN technology which contains energy efficiency in it. Here, the energy 

efficiency subject is not limited to the energy efficiency discussed in the proposed routing 

strategy, because prolonging the lifetime of a UASN means increasing its operation 

duration too. If we consider the situation from a different perspective, deploying a 

network and restarting a network study can be a costly operation involving both 

economical and energy issues. Hence, this study contributes to sustainability by 

decreasing the cost of network deployment and underwater operations. 

The other SDG that our study targets is Goal 14 – Life Below Water. In the 

definition of the goal, it is mentioned that oceans of the world, and its features like 

temperature, currents, chemistry or salinity are essential that make the world habitable for 



110 
 

humans. More importantly, how this vital source is managed is grave for humankind. As 

mentioned in the first chapter of the thesis, one of the application areas of UASNs is the 

underwater ecological researches. With the help of UASNs, scientists can understand the 

ecosystem residing underwater better, and can develop new ways to manage and sustain 

this important resource. With this study, we help improving underwater studies by 

contributing to the important field of underwater sensor networks.  

8.3 Future Prospects 

We have one journal and one conference paper published during the study of this 

thesis. We have also submitted a second manuscript to the Ad-Hoc Networks Journal 

containing the ML part of the study for publication. Nevertheless, there are still many 

challenges awaiting in the design process of UASNs. For instance, studies should be 

carried out about networks with multiple sinks and mobile sensor nodes or Autonomous 

Underwater Vehicles (AUV). 

As mentioned in the motivation of the thesis, one of the most important problems 

about designing a UASN is managing the energy consumption of the network efficiently. 

Because of this fact, for further studies, energy efficiency subject still needs to be in the 

focus of network design. 

When existing technologies and future ideas are examined, it can be seen that there 

are some promising methods that can be used to increase the lifetime of the network. One 

of these technologies is energy harvesting. There are various studies about harvesting 

energy under the water some of which are Turbines and Piezoelectric beams that exploit 

water current and Hydrophones that exploit acoustic noise of the ships. If any of these 

technologies can be developed and efficiently used for harvesting energy, batteries of the 

sensor nodes in the UASNs can be charged and the lifetime of the network can be 

improved. Thus, conducting new studies about energy harvesting technologies can be a 

good topic for future studies. 

Another possible subject for future studies can be compressive sensing. 

Compressive sensing is method used for reconstructing data from lower number of 

samples and it is very efficient if there are sparse data to be integrated. In the UASNs, 

most of the energy is spent for sensing, transmission and reception operations. In a sample 
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application scenario, let a node make sensing operation in every minute and transmit the 

sensed data to the sink node. This way, the node needs to make 60 transmissions per hour. 

However, the change in the environment might not be high during an hour. Since 

compressive sensing is used for integrating sparse data, it can be used to reduce the 

number of redundant operations. To make the integration of the data, a computation needs 

to be done which requires an additional energy consumption. At this point, if the 

compressive sensing method can be applied successfully, it is clear that it will contribute 

to the energy efficiency of the network. Hence, making research about the applicability 

of compressive sensing for the underwater nodes can be another topic for future studies.  
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