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ABSTRACT 

Computer Aided Detection of Cancer using Histopathology 

Images  

Sena Büşra YENGEÇ TAŞDEMİR 

Ph.D. in Electric and Computer Engineering Department 

Advisor: Prof. Dr. Bülent YILMAZ 

April 2023 

Detecting colon adenomatous polyps early is crucial for reducing colon cancer risk. This 

thesis investigated various deep learning approaches for computer-aided diagnosis of 

colon polyps on histopathology images using deep learning. The thesis addressed key 

challenges in polyp classification, including differentiating adenomatous polyps from 

non-adenomatous tissues and multi-class classification of polyp types. Initially, a 

histopathology image dataset is collected and refined from Kayseri City Hospital. The 

first study used stain normalization algorithms and an ensemble framework for binary 

classification, achieving 95% accuracy on the custom dataset and 91.1% and 90% on 

UnitoPatho and EBHI datasets, respectively. The second study implemented a tailored 

version of the supervised contrastive learning model for multi-class classification, 

outperforming state-of-the-art deep learning models with accuracies of 87.1% on custom 

dataset and 70.3% on UnitoPatho dataset. The third study proposed a self-supervised 

contrastive learning approach for utilizing all data in cases of limited labeled images. This 

approach achieved better performance than transfer learning with ImageNet pre-trained 

models. In conclusion, this PhD thesis investigated deep learning approaches for 

computer-aided diagnosis of colon polyps on histopathology images, demonstrating high 

accuracy in binary and multi-class classification, outperforming state-of-the-art models. 

These findings contribute to improving colon polyp classification accuracy and 

efficiency, ultimately facilitating the early detection and prevention of colon cancer. 

Keywords: Polyp Classification, Histopathology, Transfer Learning, Ensemble Learning, 

ConvNeXt, Supervised Contrastive Learning 



ii 

 

ÖZET 

Histopatoloji Görüntülerinden Bilgisayar Destekli Kanser Tespiti 

Sena Büşra YENGEÇ TAŞDEMİR 

Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 

Tez Yöneticisi: Prof. Dr. Bülent YILMAZ 

Nisan 2023 

Kolon adenomatoz poliplerinin erken tespiti kolon kanseri riskini azaltmak için önem arz 

etmektedir. Bu tez, histopatoloji görüntüleri üzerinde kolon poliplerinin bilgisayar 

destekli teşhisi için çeşitli derin öğrenme yaklaşımlarını araştırmıştır. Tez çalışmaları 

sırasında, polip sınıflandırmasındaki ana zorluklar ele alınarak, adenomatoz polipleri 

adenomatoz olmayan dokulardan ayrılması ve polip tiplerinin sınıflandırması gibi 

konulara odaklanılmıştır. Tezin ilk kısmında, Kayseri Şehir Hastanesi'nden histopatoloji 

görüntü veri seti toplanıp iyileştirilmiştir. İkinci kısım, birinci çalışma sırasında, boya 

normalizasyon algoritmaları ve topluluk çerçevesi kullanılarak ikili sınıflandırma görevi 

için toplanan veri setinde %95, UnitoPatho ve EBHI veri setlerinde sırasıyla %91.1 ve 

%90 doğruluk elde edilmiştir. İkinci çalışmada, çoklu sınıflandırma için özelleştirilmiş 

bir denetimli kontrastif öğrenme modeli uygulanmış, ve geliştirilen modelin performansı 

önceden eğitilmiş derin öğrenme modellerini geçmiştir. Toplanan veri setinde %87,1, 

UnitoPatho veri setinde %70,3 doğruluk elde edilmiştir. Üçüncü çalışma, sınırlı sayıda 

etiketli görüntü olduğu durumda tüm verilerin kullanılması için bir kendinden denetimli 

kontrastif öğrenme yaklaşımı önermiştir. Bu yaklaşım ImageNet ile önceden eğitilmiş 

modellerle karşılaştırıldığında daha iyi performans göstermiştir. Sonuç olarak, bu doktora 

tezi, histopatoloji görüntüleri üzerinde kolon poliplerinin bilgisayar destekli teşhisi için 

derin öğrenme yaklaşımlarını araştırmıştır ve ikili ve çoklu sınıflandırmada yüksek 

doğruluk göstererek, mevcut modelleri geride bırakmıştır. Bu bulgular, kolon polip 

sınıflandırma doğruluğunun ve etkinliğinin geliştirilmesine katkıda bulunmaktadır ve 

sonuç olarak kolon kanserinin erken teşhisini ve önlenmesini kolaylaştırmaktadır. 

Anahtar kelimeler: Polip Sınıflandırması, Histopatoloji, Transfer Öğrenme, Toplu 

Öğrenme, ConvNeXt, Denetimli Karşılaştırmalı Öğrenme 
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Chapter 1  

Introduction 

General 

The large intestine includes cecum, colon, rectum, and anal canal. Most of the colorectal 

cancer cases begin as a polyp in the rectum or colon and removal of the polyps may 

prevent colorectal cancer [1]. In 2020, 1.93 million new colorectal cancer (CRC) cases 

were diagnosed worldwide, and 940,000 people died because of colorectal cancer [2]. In 

addition, it is estimated that during 2040, new CRC cases will reach 3.2 million. Early 

detection, and removal of cancerous tissue on the colon is critical to lower the mortality 

rates [3].  

 

The gold standard for screening CRC cancer is colonoscopy followed by pathology 

examination since it allows the clinician to see the entire lining of the colon and the 

cellular structures in the tissue samples [4]. During a colonoscopy procedure, a specialist 

may examine the colon using a flexible tube with a camera and light source at the end. 

The found polyps are removed and tissue samples are sent for pathology examination for 

long-term follow-up and management of treatment. Then, an expert pathologist decides 

on the type of polyp after a microscopic examination [5].  

 

Not all types of polyps may grow into colorectal cancer [4]. There are two main types of 

polyps, adenomatous polyps, and non-adenomatous polyps. Types of adenomatous 

polyps are villous, tubular, tubulovillous, and non-adenomatous polyps are hyperplastic 

and inflammatory [5]. Adenomatous polyps gradually show dysplastic changes, and high-

grade dysplastic changes that occur over time become malignant. Therefore, early 

detection and removal of adenomatous polyps and planning of long-term treatment are 

important.  

 

There is a growing demand for cancer screening programs, over the past decade 

pathological colon biopsy slide volumes are doubled [6]. Since the number of biopsies 
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increases, the workload of the pathologist increases. Hence, detection of the early-stage 

disease becomes increasingly difficult. As a result, the computer-aided diagnosis systems 

can be used to ease this labor-intensive work and minimize the mistakes of the traditional 

approaches.  

The main challenge in the clinical workflow of pathological polyp classification is 

differentiating adenomatous polyps from non-adenomatous tissues. In addition, a 

preliminary classification of the polyp types can facilitate the work of the pathologist. 

Therefore, this thesis explores various methodologies to distinguish adenomatous polyps 

from non-adenomatous tissues. Moreover, in this thesis, systems for polyp-type 

classification of tubular, tubulovillous, villous and hyperplastic polyps are proposed. The 

proposed computer-assisted diagnostic system is hoped to facilitate this labor-intensive 

decision-making process. 

1.1 Objective and Scopes 

Using histopathology images of a polyp tissue is the common way to distinguish 

adenomatous polyps from non-adenomatous tissues including hyperplastic polyps, 

inflammation, and normal tissue. However, the success of the histology examination 

largely depends on the experience of the expert pathologist. This makes CAD systems 

assistance helpful and necessary in this task. 

In addition, the demand for cancer screening programs is considerably high and this causes 

an increase in the number of pathology images, which increases the workload of the 

pathologists. Therefore, it would be beneficial to use an automated system that 

distinguishes histopathology images to make it easier to make classification on pathology 

images. 

In the literature, there are numerous studies on polyp classification using pathology images 

for computer-aided diagnosis systems. However, there is no complete solution yet. Indeed, 

most researchers propose methods that create tailored frameworks and demonstrate their 

performance in their datasets. In this thesis, various deep learning methods are explored, 

and frameworks are developed for the automatic classification of adenomatous polyps and 

the classification of polyp types and the performance is demonstrated for various datasets. 
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Two publicly available datasets were used to evaluate the generalization ability of the 

frameworks. More importantly, a new curated dataset is created. 

This thesis covers four main parts. The first part of the thesis is composed of a collection 

of datasets and improvements on the datasets. The dataset is explored with baseline 

classifiers for different classification tasks of polyp classification on colon histopathology 

images. In the clinical workflow of polyp classification, a key diagnostic challenge is the 

differentiation of adenomatous polyps from non-adenomatous tissues. Therefore, in the 

second part of the thesis, we explored different approaches to solve the binary classification 

of adenomatous polyps and non-adenomatous tissues. Furthermore, adenomatous polyps 

have the potential to grow into cancer. In order to ease the classification of the 

adenomatous polyps and hyperplastic polyps, in the third study we proposed a method to 

make multi-class classification polyp types on histopathology images. Additionally, in 

supervised learning on medical image analysis, the need for a large number of medical 

images in a supervised training setting also brings the necessity of having labels. The 

problem here arises because medical image analysis and labelling are very time-consuming 

and laborious. Moreover, in most cases, the labelling should be done on-site due to the 

confidentiality of the patient information. In the fourth study, we tried to answer the 

research question of “How we can use all of the data when plenty of unlabeled images and 

a limited number of labelled images are obtained”. To solve this problem, we used self-

supervised contrastive learning for pre-training of the model on unlabeled data as a final 

work of the thesis. 

1.2 Literature Overview 

With the advancement of deep learning techniques, there has been a significant rise in 

research focused on classification in medical imaging. Specifically, for colon 

histopathology image classification, there exist several comprehensive studies addressing 

various problems such as polyp classification, gland classification, and colorectal cancer 

classification. 

In their work Korbar et al. employed ResNet architecture variants to classify colon polyp 

types using histopathology images, and an overall accuracy of 93% was attained [7]. 

Moreover, in Korbar et al. visualized attention map on whole slide images (WSI) by 

highlighting areas on the images to provide more information about the classification. 
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Song et al. studied the importance of different patch sizes for polyp classification by 

comparing their framework results with those of pathologists [8]. Wei et al. achieved an 

AUC score of 88.2% by employing curriculum learning to discriminate sessile serrated 

polyps from hyperplastic polyps [9]. Building on their previous work, Wei et al. proposed 

Confidence-Aware Label smoothing to distinguish hyperplastic polyps from sessile 

serrated adenomas [10]. Nasir Moin et al. designed an AI augmented tool to assist 

pathologists by providing diagnostic information. This tool utilized ResNet-18 

architecture to classify polyp types [11]. Zhou et al. designed a methodology to classify 

WSIs by localizing the region by employing the global labels of the WSIs [12]. Gupta et 

al. tailored Inception-ResNet-v2 model to classify and localize abnormal tissues in WSIs 

[13]. 

Even if the histopathology images are captured under the same conditions, variations in 

the images can occur due to the histological staining process of the tissue. To address this 

issue, researchers are exploring stain normalization and histogram equalization 

techniques. Perlo et al. proposed a framework for polyp classification and dysplasia 

grading, and compared its performance for Macenko Stain Normalized, RGB, and 

grayscale histopathology images [14]. Sarwinda et al. employed Contrast Limited 

Adaptive Histogram Equalization (CLAHE) to classify colorectal WSIs as malignant or 

benign using ResNet-50 architecture [15].  

Recently, Byeon employed DenseNet-161 and EfficientNet-B7 to classify cancerous and 

non-specific tissues of adenomatous and hyperplastic polyps [16]. In their work, Bilal et 

al. classified WSIs as neoplastic or normal by using weakly supervised deep learning [6]. 

The model achieved an overall area under the receiver operating characteristic curve 

(AUROC) score of 97.46% is achieved on The Cancer Genome Atlas (TCGA) database. 

Ho et al. proposed a method to classify histopathology images as high risk and low risk 

and achieved an AUC of 91.7% [17]. In their work Yildirim et al. designed a CNN based 

framework to classify colon cancer on WSIs [18].  
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Chapter 2 

2 Background 

 

2.1 Anatomy of the Colon 

The large intestine composed of cecum, colon, rectum, and anal canal. As it is illustrated 

in the Figure 2.1.1 colon can be anatomically divided into four sections: ascending, 

transverse, descending, and sigmoid [19]. The ascending colon is the beginning of the 

colon which extends from cecum. This is followed by transverse colon and descending 

colon. The last part of the large intestines is sigmoid colon which is followed by rectum 

and anus. 

 

Figure 2.1.1 Anatomy of the Large Intestine [19] 

 

2.2 Colon Polyp Types   

A colon polyp is formed by the growth of tissue in the lining of the colon (Figure 2.2.1) 

Colon polyps can be classified into two main classes according to their behavior, which 

are benign or pre-malignant. Pre-malignant polyps are villous, tubulovillous, and tubular 

adenoma, while benign polyps are hyperplastic or inflammatory polyps. If left untreated, 

pre-malignant polyps have the potential to progress into colon adenocarcinoma [20]. 
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Generally, most of the colon polyps do not have symptoms. Therefore, early diagnosis is 

challenging. The gold standard for the colon screening is colonoscopy procedure. When 

a polyp is found during the colonoscopy, it is removed. A specimen of the removed tissue 

is sent to the pathology department to diagnose the polyp type for long-term follow-up 

and management of treatment. Pathology examination is the only way to distinguish polyp 

type. 

 

Figure 2.2.1 Colon polyp types and their life stages  

2.3 Histopathology Images 

The specimens are examined under a microscope to diagnose the polyp type by a 

pathologist. Usually, a pathologist examines a tissue under different magnification levels. 

These magnification levels might change from one device to another, but generally the 

used levels are x2.5, x5, x10, 20 and x40. As it is illustrated in Figure, 2.3.1, as the 

magnification level increases the microscope zooms into the sample.  
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Figure 2.3.1 Different magnification levels of an adenomatous histopathology image 

 

2.3.1 H&E Staining 

To prepare a sample for microscopic examination a pathologist uses tissue staining 

techniques. The staining process enables the tissue sample to show more fine details such 

as distribution of cells clearly and provides an overview of the structure. The gold 

standard for staining is hematoxylin and eosin (H&E) staining [21].  

H&E staining is composed of hematoxylin and eosin stains. Eosin stain gives a pink color 

to the sample while hematoxylin stain gives a blue shade. The combination of 

hematoxylin and eosin gives different shades and hues to the overall cell structure (Figure 

2.3.2). These general coloration patterns, which are formed by staining, highlight the 
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general structure and arrangement of the cell, and provides fine information about the 

polyp type to the experts.  

 

Figure 2.3.2 H&E stain instance of a villous adenoma [21] 

2.3.2 Structure of Polyp Types for H&E Stained Images 

The cellular architecture of tissue changes under the microscope depending on the type 

of polyp. A normal tissue sample of custom collected dataset shows an orderly and 

general structure (Figure 2.3.3), while a villous polyp exhibits a finger-like epithelial 

outgrowth structure (Figure 2.3.4) [22]. For tubular adenoma, cells display a more 

concentrated appearance (Figure 2.3.5). A tubulovillous polyp, has both the features of 

tubular and villous adenoma (Figure 2.3.6). If the villous appearance density of the cell 

structure is above 80%, it is classified as tubulovillous polyp [23]. Moreover, for 

hyperplastic polyp cells are mostly filled with more mucus (Figure 2.3.7). Considering 

the differentiation of cellular structure, it can be inferred that pattern differentiation of 

cellular structure can be used in computer-aided diagnosis of histopathology images. 
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Figure 2.3.3 Normal Tissue Sample under microscopy 

 

Figure 2.3.4 Villous Adenoma under microscopy 

 

Figure 2.3.5 Tubular Adenoma under microscopy 
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Figure 2.3.6 Tubulovillous Adenoma under microscopy 

 

 

Figure 2.3.7 Hyperplastic Polyp under microscopy 

2.4 Datasets 

In this thesis to evaluate the generalization ability of the frameworks that are developed 

for the histopathology images provided by Kayseri City Hospital, two publicly available 

datasets are employed. The first dataset, UniToPatho contains 9536 H&E stained patches 

extracted [24]. The patches are from 292 whole-slide images which has a magnification 

level of 20. The patches are in size of 1812×1812 pixels. Moreover, the classes of the 
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patches are normal tissue, hyperplastic polyp, tubular adenoma, and tubulovillous 

adenoma.  

The second dataset is EBHI dataset which contains 5532 WSIs [25]. Furthermore, this 

WSIs belongs to following magnification levels: ×40, ×100, ×200 and ×400. The images 

on this dataset have a size of 2048×1536 pixels. This dataset contains two major 

categories, benign and malignant with the following classes: Normal, polyp, low grade 

adenoma, high grade adenoma, and adenocarcinoma. 

2.5 Stain Normalization for WSIs 

Deep Convolutional Neural Network algorithms have a great capacity to fit a dataset with 

high precision. However, this precision challenges the model to generalize for the unseen 

data. Moreover, if there is a domain shift in training and testing data, the model must be 

robust and reliable for real-world scenarios. In addition, domain shift is a common 

challenge faced by deep CNN structures, particularly in medical image analysis, where 

staining protocols and slide preparation can vary across different medical centers, leading 

to domain shifts [26]. Figure 2.5.1 illustrates a color intensity difference in histopathology 

images provided by Kayseri City Hospital. In order to deal with this issue, various stain 

normalization techniques are proposed by the researchers. The most common stain 

normalization algorithms in the literature are as follows: Reinhard, Macenko, Vahadane, 

Stain-GAN, and Stain-Net.  

 

Figure 2.5.1 Color intensity difference in WSIs 
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2.5.1 Reinhard Color Normalization 

Reinhard color normalization is a color matching method, which originally proposed for 

the real-world images [27]. However, it is widely used by stain normalization researchers. 

This methodology first changes color space of RGB to Ruderman perception-based color 

space  lαβ. Transformation of a RBG to lαβ is composed of three stages. First, RGB image 

is transformed into LMS in two stages by using the Equations 1 and 2. Then LMS space 

is transformed to lαβ by employing Equations 3 and 4. After this color transition, mean 

and standard deviation of each channel are calculated to observe the distribution of data 

points. The mean value is subtracted from the data points of each channel as shown in the 

Equation 5 then each data point value is scaled with standard deviation Equation 6. 

Finally, lαβ image is transformed back to RGB image (Equation 7) [27]. 

         !
𝑋
𝑌
𝑍
% = 	 !
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2.5.2 Macenko Stain Normalization 

By emphasizing that stain vectors of the pathology images are not linear in RGB channel, 

Macenko normalization first converts RGB channel into Optical Density (OD) [28]. The 

OD values of each pixel is calculated by using RGB color vectors with Equation 8 in 

which “I” represent image. Before processing further, low OD values are thresholded to 

ensure the stability of the algorithm. After thresholding, singular value decomposition 

(SVD) is calculated on OD vectors to have stain vectors (V) and saturation of each stain 

(S) by using the Equation 9. Two vectors that are corresponding to two largest singular 

values of SVD decomposition of previous step will be used to form a plane. Moreover, 

OD values of all the pixels is projected to this plane and values are normalized to unit 

length. 

𝑂𝐷 = − log!- 𝐼    (8) 

𝑆 = 	𝑉.!𝑂𝐷         (9) 

2.5.3 Vahadane Stain Normalization 

Vahadane normalization is a structure-preserving color normalization technique which 

uses a source and a target image [29]. A source image is the input image which will be 

normalized, and a target image is the starting point which has the desired color intensity. 

In this framework color intensity of the source image is matched to the target image by 

following the steps: First the pixel values of an RGB image are converted into OD values 
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by employing Equation 10 in which 𝐼 represents image and 𝐼- represents illumination 

density. Thus, observation matrix of V is calculated. Then, stain density map matrix H 

and Stain color appearance matrix W is calculated with observation matrix and Equation 

11 and 12. All matrices of V, S, and H is calculated for both source and target images. 

Moreover, by using Equation 13 and 14 normalized stain density map matrix (𝐻*/012), 

normalized observation matrix of 𝑉*/012	of the source image is calculated. Finally, 

normalized source image is calculated with Equation 15.  

       𝑉 = 	 log 3$
3
             (10)      

 𝐼 = 𝐼- exp(−𝑊𝐻)        (11) 

						𝑉 = 𝑊𝐻                 (12) 

 𝐻*/012(𝑗, : ) = 	
4#(6,:)
4#%&(6,:)

𝐻*:;(𝑗, : ),				𝑗 = 1,… 𝑟.   (13) 

𝑉*/012 = 𝑊(𝐻*/012           (14) 

𝐼*/012 = 𝐼- exp(−𝑉*/012)  (15) 

2.5.4  Stain-GAN Stain Normalization 

The Stain-GAN stain normalization method normalizes an image without needing to have 

a target image [30]. This method learns whole distribution by employing a model which 

is based cycle-consistent generative adversarial networks. In order to learn the 

representation from the whole data distribution, this model employs two pairs of 

generators and discriminator for the source domain and target domain. Generator of 

source domain tries to match the images with target domain, while discriminator tries to 

distinguish whether the images are fake or not. Furthermore, generator and discriminator 

of the target domain repeat the same operation in their respective fields. The models are 

trained to match the objective function which sums the adversarial loss with cycle 

consistency loss as illustrated in Equation 16. The purpose of the adversarial loss is to 

match the distribution of the generated images with that of the target domain (Forward 

Cycle) and the distribution of the generated target domain matches back to the source 

domain (Backward Cycle). Cycle consistency loss controls that the generated images 

preserve their original structure. 
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ℒ = ℒ<=> +	λ	 ℒ?@A)B      (16) 

2.5.5 Stain-Net Stain Normalization 

The Stain-Net employs a distillation learning scheme by using Stain-GAN [31]. For this 

distillation scheme, Stain-Gan is used as teacher network and Stain-Net is used as student 

network. This scheme is composed of three stages; the images that is normalized by the 

generator of the Stain-Gan is used as ground truth for the Stain-Net. The Stain-Net learns 

the mapping relationship of Stain-Gan by training on the normalized images with an 

optimizer of stochastic gradient descent and L1 loss. Then, it can transfer the source 

images to target domain. This method is 40 times faster than Stain-Gan methodology. 

2.6 Machine Learning 

Learning is a natural human behavior, while learning, people tend to learn through 

examples rather than formulating abstract rules or principles. Artificial Intelligence 

attempts to learn patterns and relationships by making observations and using examples 

to mimic the human learning path [32]. Moreover, a subset of the AI, Machine Learning 

tries to learn the patterns by using sophisticated algorithms with machine-accessible data 

[33]. In such a learning scheme, an algorithm is iteratively trained on a problem-specific 

data. This learning scheme allows machine to explore the hidden patterns of the data 

without needing to explicitly be programmed. Moreover, according to available data and 

problem there are four types of learning: Supervised Learning, Semi-Supervised 

Learning, Unsupervised Learning and Reinforcement Learning. During this thesis work, 

we will explore supervised learning and contrastive learning in unsupervised setting.  

2.6.1 Classification Performance Assessment  

The performance of the machine learning algorithms is evaluated by the classification 

evaluation metrics which are computed from the confusion matrix, which is illustrated in 

Figures 2.6.1 and 2.6.2. The rows of the confusion matrix show the number of samples 

for each class, while columns show the prediction of the model for each class. In this 

thesis following classification metrics are used: Overall Accuracy, Precision, Recall, F1-

Measure. For binary classification task, precision and recall is calculated from the average 
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of each class. For multi-class classification task, the precision, recall and consequently 

F1-measure is calculated with a weighted average of the classes. 

The diagonal elements of the matrices in the Figure  2.6.1 and Figure  2.6.2 represents 

correct predictions, while other elements show the incorrect guesses. The false positive 

and false negative values for the binary classification is calculated with the number of 

samples that are classified as class A while the actual class is B or vice-verse, respectively. 

For the multi-class classification incorrect guesses are represented as Error BA, Error CA, 

Error AC and so on. Error BA represents the samples that belongs to class A, but 

incorrectly classified as class B [34]. 

 

Figure 2.6.1 Confusion Matrix for Binary Classification 

 

Figure 2.6.2 Confusion Matrix for Multi-class Classification 
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2.6.1.1 Overall Accuracy 

The accuracy is one of the most widely used performance metric. It is calculated by using 

the Equation 17 for binary classification problem, Equation 18 for multi-class 

classification problem. 

𝐵𝑖𝑛𝑎𝑟𝑦	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 !"#!$
%&&	()*+&,-

        (17) 

𝑀𝑢𝑙𝑡𝑖	𝐶𝑙𝑎𝑠𝑠	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !./,	"0-1213,	%#!./,	"0-1213,	4#!./,	"0-1213,	%
%&&	()*+&,-

    (18) 

2.6.1.2 Precision 

Precision value shows how well the classifier predicted samples of the class A with the 

Equation 19 for binary classification and Equation 20 for multiclass classification. 

Additionally, since the precision value is present for each class in the multiclass 

classification, weighted average of precision is calculated to have an overall value for the 

classifier by employing the equation 21, here Precision A is the precision value of class 

A and 𝐶% is the number of samples in class A, and so on.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 !"
!"#5"

        (19) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝐶𝑙𝑎𝑠𝑠	𝐴 = 	 !"!
!"!#6..0.	4%#6..0.	7%

    (20) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ".,81-109!7!	#".,81-109"7"#".,81-109#7#
7!#	7"#	7#

    (21) 

 

2.6.1.3 Recall 

Recall value calculates ratio of true positive cases to true positive and false negative cases. 

For binary classification the ratio is calculated by using the Equation 22. For multiclass 

problem Recall value for each class is calculate with the Equation 23. Additionally, since 

the recall value is present for each class in the multiclass classification, weighted average 

of precision is calculated to have an overall value for the classifier by employing the 

Equation 24.  
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𝑅𝑒𝑐𝑎𝑙𝑙 = 	 !"
!"#5$

        (22) 

𝑅𝑒𝑐𝑎𝑙𝑙	𝐶𝑙𝑎𝑠𝑠	𝐴 = 	 !"!
!"!#6..0.	%4#6..0.	%7

    (23) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑅𝑒𝑐𝑎𝑙𝑙 = :,8)&&!7!	#:,8)&&"7"#:,8)&&#7#
7!#	7"#	7#

    (24) 

 

2.6.1.4 F1-Score 

F1-Score is the harmonic mean of the precision and recall. By employing the Equation 

25 the F1 score for binary classification is calculated. For multiclass problem F1 score 

for each class is calculate with the Equation 26. Additionally, weighted average of F1 

score is calculated to have an overall value for the classifier by employing the Equation 

27.  

𝐹1 = 	2	 × ".,81-109	×	:,8)&&
".,81-109#	:,8)&&

        (25) 

𝐹1	𝐶𝑙𝑎𝑠𝑠	𝐴 = 2	 ×	".,81-109!×:,8)&&!
".,81-109!#:,8)&&!

    (26) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐹1 = 5<!7!	#5<"7"#5<#7#
7!#	7"#	7#

    (27) 

 

2.6.2 Supervised Learning  

Supervised Learning is a strategy in which the label of the whole dataset is present and 

used during the training. In this thesis, we will explore the Deep CNN algorithms in a 

supervised setting. 

2.6.2.1 Deep Convolutional Neural Networks 

With the developments in machine learning, firstly artificial neural networks (ANN) have 

been proposed, which was inspired by the human neural structure. Moreover, the ANNs 

were evolved into Deep Learning (DL) and improved the learning capabilities of the 

algorithms. Indeed, for some specific applications, DL surpasses human performance and 

shows a superhuman performance [35], [36]. 
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An ANN framework is composed of connected neurons which is illustrated in the Figure 

2.6.3. Each neuron is connected to other neurons in the consecutive layers with specific 

weights. The weights are updated during the learning process. The learning starts with 

input to the first layers’ neurons, the neurons calculate their own output by using the input 

and a non-linear activation function, then transmits the outputs to the next layers neurons. 

Similarly, Deep Convolutional Neural Network (Deep CNN) algorithms works in the 

same fashion with different types and number of hidden layers, activation functions and 

backpropagation. 

 

Figure 2.6.3 Artificial Neural Networks 

Yann LeCun. et al. proposed Lenet-5, the CNN architecture which contains convolutional 

and pooling layers, during 2015 for a vision classification task. Following this work, 

novel CNN architectures inspired by Lenet-5 architecture have been presented in the 

literature, such as ResNet, AlexNet and so on. Moreover, different optimization 

algorithms are proposed to improve the Deep CNN’s performance and speed of the 

algorithm. In this thesis, following optimization algorithms are explored: 

• ADAM,  

• SGD,  

• RMSprop,  

• AdaGrad. 
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2.6.2.2 Overfitting and Overconfidence 

The Deep Learning algorithms encounter the major issue of Overfitting which later results 

in overconfidence [37]. Overfitting happens when a model starts to learn training set well 

by learning regularities in the data but does not perform on the test set. Moreover, as the 

model overfits to data, its confidence for its predictions increases. In order to tackle these 

issues, in this thesis dropout layers and weight regularization (L2 regularizer) are used for 

overfitting and label smoothing is used for overconfidence.  

• Weight regulation (L2 regularizer): As the network is trained on training data, the 

weights specialize for the training data which results in bigger weights. These 

bigger weights have large variance and small bias, which is a sign of overfitting 

to the training data. To solve this problem, L2 regularizer is used which calculates 

the sum of the squared values of the weights [38]. 

• Dropout: The dropout method temporary removes a neuron from the network 

during the training which result in the network to learn sparse representations  

[39]. 

• Label smoothing regularizes the network from choosing a class with a high 

confidence [40]. 

2.6.3  Supervised Contrastive Learning 

Supervised contrastive learning (Sup-Con) is a technique that fills the gap between fully 

supervised learning and self-supervised learning. This method allows contrastive learning 

to be applied in the supervised setting. In order to learn the representations, a model which 

uses contrastive learning typically tries to minimize the distance between the positive, 

while tries to maximize the distance between negative samples. In an unsupervised 

setting, the positive samples are produced from augmented images and negative samples 

are chosen from the other samples in the training mini batch. Since this method learns the 

common attributes of the data by comparing the samples, it mimics the way humans 

perceive. Furthermore, the loss function of this model boosts the learning of hard 

negatives and hard positives [41]. Hard positives are pairs of data points that belong to 

the same class but are difficult for the model to recognize as such. These data points might 

have subtle differences or variations that make them challenging for the model to identify 

as belonging together. In the context of image classification, hard positives could be 
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images of the same object but with varying lighting, angles, or occlusions. Hard negatives, 

on the other hand, are pairs of data points that belong to different classes but are difficult 

for the model to recognize as different. These data points might have similar features or 

characteristics that make them appear similar to the model, even though they belong to 

distinct classes. In image classification, hard negatives could be images of different 

objects with similar shapes, textures, or colors. Incorporating hard negatives and hard 

positives into the loss function during training helps the model focus on these challenging 

pairs, ultimately improving its ability to distinguish between similar-looking data points 

from different classes and recognize subtle similarities within the same class. This 

approach can lead to better generalization and higher accuracy in classification tasks. 

According to Khosla et al., suggest that the quality of representation may deteriorate as a 

result of random sampling, leading to false negatives. On the other hand, the Sup-Con 

uses labeled data, which simplifies the process of positive and negative sample selection. 

The Sup-Con framework is composed of an encoder network and projector network. 

Furthermore, the learning process have two stages (Figure 2.6.4). During the first stage, 

data augmentation is applied twice to a batch of inputs and the copies are passed to the 

encoder network. The encoder network produces embeddings. The embeddings are then 

forwarded through the projection network. By employing the normalized outputs of the 

projection network, the contrastive loss (Equation 28) is computed. In Equation 28, the 

query is compared with samples within the same class, and then the result is divided by 

the temperature parameter τ, which is also denoted in the equation. Additionally, at the 

second stage, a linear classifier is trained on the frozen representations of the first stage. 

The second stage is composed of a fully-connected layer on top of the encoder, and it is 

followed by a SoftMax layer with the target classes. 
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Figure 2.6.4 Supervised Contrastive Learning 

Besides, contrastive learning approaches are widely used on histopathology images. 

There are extensive studies conducted with contrastive learning methods focusing on the 

histopathology image analysis, such as classification [26], [42]–[44], segmentation [45], 

[46] and stain normalization for the histopathology images [47]. 

𝓛(𝒒𝒖𝒆𝒓𝒚) = ∑ −𝒍𝒐𝒈 𝐞𝐱𝐩	(𝒒𝒖𝒆𝒓𝒚∙𝒙𝒊 𝝉)⁄ 	
∑ 𝐞𝐱𝐩	(𝒒𝒖𝒆𝒓𝒚∙𝒙𝒋 𝝉)⁄𝑴
𝒋*𝟏

	
𝟏R𝒊R𝑴

𝒚(𝒒𝒖𝒆𝒓𝒚)U𝒚(𝒙𝒊)
        (28) 

2.6.4 Self Supervised Contrastive Learning 

Labeled data is essential for the success of supervised learning, especially for Deep CNN 

structures that require large amounts of data. However, in medical image analysis, 

obtaining a sufficient number of labeled medical images can be challenging and time-

consuming, presenting a significant obstacle to achieving accurate performance. 

Moreover, for most of the cases, the labeling should be done on site due to confidentiality 

of the patient information. On the other hand, self-supervised learning methods use 

unlabeled data. In general, a self-supervised contrastive learning model uses augmented 

version of the same image to learn the latent features of the image. The reason why hidden 

features can be learned from self-supervised learning is because two different 

augmentations of the same image are expected to have similar representations. 
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In this thesis, self-supervised contrastive learning is used for pre-training of the Deep 

CNN models (Figure 2.6.5) After pre-training, the models are fine-tuned with the labeled 

data to explore the performance of self-supervised contrastive learning for colon 

histopathology images.  

 

Figure 2.6.5 Self-supervised training 

The self-supervised training framework is summarized in Figure 2.6.6. Two different 

augmentations of the same image are  passed to a model. Then by employing a contrastive 

loss, a contrastive model tries to maximize the similarity of the representations for both 

images [48]. Moreover, the setup of the contrastive model varies for contrastive learning 

algorithms (i.e., SimCLR, SimSiam and Barlow Twins). 

  

Figure 2.6.6 Self-supervised learning 

A contrastive model is typically comprised of three components: Backbone, Projector and 

Predictor. The Figure 2.6.7 shows the contrastive model’s architecture for SimCLR, 

SimSiam and Barlow Twins. The backbone is the base model which learns the 
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representations. The projector project the representations as embeddings using a 

contrastive loss. The predictor, which is only used in SimSiam, increases the quality of 

the representations. In contrastive learning, different views of the same image are 

processed to the backbone model, the backbone model gives the representations to the 

projector, in which the similarity or dissimilarity of the representations are calculated with 

contrastive loss. Additionally, the contrastive loss differs for different contrastive learning 

algorithms. SimCLR, employs a contrastive cross entropy loss, SimSiam calculates the 

distance between views by using the cosine distance and Barlow Twins uses Barlow 

Twins Cross Correlation loss. 

 

Figure 2.6.7 Self-supervised contrastive learning algorithms 

2.6.5 Ensemble Learning 

Ensemble learning is a technique which combines various classifiers to enhance 

classification performance. Different classifiers can capture different information and 

therefore, ensemble classifiers may result in better accuracy as compared to base learners. 

Furthermore, ensemble learning methods are widely used in different medical image 
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classification tasks [49]. In [50], Kumar et al. suggested that different CNN classifiers 

can learn various levels of semantic image representation. In that work, AlexNet and 

LeNet architectures are fine-tuned on medical images. The proposed method achieved a 

greater accuracy than the AlexNet and LeNet architectures alone. 

2.6.6 ConvNeXt 

ConvNeXt architecture has recently been proposed by Liu et al. [51]. This architecture 

takes the advantages of both the attention-based classifiers and traditional ResNet 

architectures to compete with the performance of Vision Transformers (ViTs). ConvNeXt 

architecture is motivated to capture global dependencies by large receptive field and 

utilizes convolutions with large kernels as the main building block [52]. Moreover, 

ConvNeXt is a pure CNN architecture, that can outperform the Swin Transformer for 

ImageNet-1K classification. The architecture of this a ConvNeXt block is presented in 

Figure 2.6.8 and the ConvNeXt architecture is shown in Figure 2.6.9. 

The following stages of the network are composed of ConvNeXt blocks. In each stage, 

the number of blocks has a ratio of 3:3:9:3. A ConvNeXt block contains a depth-wise 

convolution which is followed by 1×1 convolutions. The depth-wise convolution 

implements a special type of group-wise convolution by grouping the channels. The 

combination of depth-wise convolution and 1 × 1 convolutions performs a similar effect 

to a property that is shared between vision transformers. Additionally, ConvNeXt 

architecture implements a Gaussian Error Linear Unit (GELU) as an activation function 

between the two 1×1 convolution layers and uses layer normalization instead of batch 

normalization.   

Furthermore, various ConvNeXt variants are suggested, namely, ConvNext-Tiny (T), -

Small (S), -Base (B), -Large (L) and -X-Large (XL). The diversity of the variants differs 

as the number of channels and the number of blocks changes for each stage. Table 2.6.1 

shows the different configurations of the variants. 
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Figure 2.6.8 Structure of a ConvNext Block 

 

Figure 2.6.9 ConvNeXt Architecture 

 

Table 2.6.1 Different configurations of the ConvNeXt variants 

Model / Configurations Number of Channels (C) of each stage Number of Blocks (B) of each stage 

ConvNeXt-T (96, 192, 384, 768) (3, 3, 9, 3) 

ConvNeXt-S (96, 192, 384, 768), (3, 3, 27, 3) 

ConvNeXt-B (128, 256, 512, 1024) (3, 3, 27, 3) 

ConvNeXt-L (192, 384, 768, 1536) (3, 3, 27, 3) 

ConvNeXt-XL (256, 512, 1024, 2048) (3, 3, 27, 3) 
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2.6.7 Big Transfer 

Big Transfer (BiT) revisits the transfer learning paradigm by introducing some 

architectural modifications in which it reviews upstream and downstream components. 

Upstream components are used in pre-training, while downstream components are used 

during fine-tuning of a new task. The components of upstream tasks are scale, group 

normalization and weight standardization. Infrastructure of the BiT models are ResNet-

v2 architectures of different sizes, pre-trained by supervised learning on natural datasets 

of different scales. The architectural basis is the same, except that Group Normalization 

is implemented instead of Batch Normalization and Weight Standardization is applied. 

Furthermore, BiT performs well on low data regime which contains limited number of 

samples per class. Additionally, BiT is extensively used in medical image classification 

tasks. 
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Chapter 3 

 

3 Collection and Improvement of 

Dataset 

 

3.1 Collection of Dataset 

The histopathology image dataset used in this study was gathered and approved by both 

the Kayseri City Hospital Ethics Committee and the Erciyes University Clinical Research 

Ethics Committee, as well as being a part of the TUBITAK project. The images were 

obtained from 182 patients who underwent colorectal cancer screening at Kayseri City 

Hospital in Turkey starting from May 2018. Out of these patients, 80 were female and 

102 were male, with an age range between 19 and 89 years, and an average age of 62 for 

both genders. During the colonoscopy procedure, a specimen of the polyp tissue and a 

neighboring normal tissue were extracted from most of the patients for long-term follow-

up. Thus, the dataset contained samples from both adenomatous polyps and non-

adenomatous tissues. The extracted tissues are examined with Hematoxylin and eosin 

staining method. The stained samples were evaluated with a light microscopy of Nikon 

Eclipse NI during the pathology examination, and images of each sample were taken for 

different magnification levels using Nikon DS-Fi2, including x2.5, x5, x10, x20, and x40. 

Each image has a size of 2560x1920. A higher magnification level corresponds to a more 

zoomed-in image, as shown in Figure 2.3.1. Additionally, some patients had more than 

one polyp, even with different types such as hyperplastic and tubulovillous. Each patient 

was assigned a unique patient number, and each sample from the same patient was named 

accordingly. 
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3.2 Initial Labeling of Dataset and Initial Experiments 

In the initial phase of this thesis, patient reports were utilized to label each sample at 

different magnification levels. For example, if a patient report indicated that a particular 

specimen was from a hyperplastic polyp, all magnification levels of that specimen (x2.5, 

x5, x10, x20, and x40) were labeled as hyperplastic polyp. The initial focus was on binary 

classification of polyp tissue (including hyperplastic polyp, tubular polyp, tubulovillous, 

and villous polyp) and normal tissue. Therefore in order to build a baseline for this 

classification task, several models, such as ResNet18, ResNet50, SqueezeNet, AlexNet, 

VGG16, DenseNet-161, Vision Transformers with a backbone of Multi-Layer 

Perceptron, and EfficientNet, were employed in an initial experiment. The results are 

presented in Table 3.2.1.  

Table 3.2.1 Performance for the classification of polyp and normal tissue 

Classifiers Accuracy 

ResNet18 82% 

ResNet50 86% 

SqueezeNet 76% 

Alexnet 73% 

VGG16 70% 

DenseNet-161 75% 

Vision Transformers 70.67% 

EfficinetNet 78% 

 

Figure 3.2.1 Sample Confusion Matrix of EfficientNet 
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During this thesis work, regular meetings were held with M.D. Ebru Akay, who is also a 

researcher in the TUBITAK project, to gain a better understanding of the pathology 

images. In our first meeting, the pathologist emphasized the importance of distinguishing 

hyperplastic polyps and normal tissues from adenomatous polyps, as well as the subtypes 

of adenomatous polyps (tubular, tubulovillous,villous) as a secondary task. In response 

to this, two distinct datasets using labels from the pathology reports were created.  

In the first dataset, binary classes of adenomatous and non-adenomatous were labeled for 

each sample and magnification level using global labels extracted from the pathology 

report. The non-adenomatous class included normal, hyperplastic, and inflamed tissue 

samples, while the adenomatous class consisted of villous adenomas, tubular adenomas, 

and tubulovillous adenoma samples. 

Similarly, the second dataset was composed of samples with global labels indicating 

hyperplastic, tubular, and tubulovillous/villous adenomas. Overall, these datasets were 

designed to address the pathologist's concerns and reflect the clinical importance of 

distinguishing between different types of polyps. 

By using the first dataset, baseline models were initially explored for binary classification 

of the samples. The performance measures are presented in Table 3.2.2. Furthermore, the 

performance of the baseline models for different magnification levels was also explored 

using this dataset, and the results are presented in Table 3.2.1. The average accuracy 

achieved was between 65-70%. Additionally, the performance of the baseline models for 

different magnification levels was explored for binary classification. The results are 

presented in Table 3.2.3. The average accuracy for different magnification levels was 

found to be in the range of 65-70%. However, the performance of the models for different 

magnification levels separately was not very satisfactory. To better understand the dataset 

and customize the models accordingly, another meeting with the pathologist was held. 

Table 3.2.2 Accuracy Results of Baseline Models for Binary Classification 

Model   Accuracy  
Inception Resnet   63.80%   
Inceptionv3   54.60%   
Efficientnet-b0   60.74%   
EfficientNet-V2 Small   61.35%   
ResNet50   61.35%   
ResNet34   54.60%   
SquuezeNet   65.03%   
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Vision Transformer   54.60%   
CCT Transformer   65.54%   
SWIN Transformer   57.06%   

 

Table 3.2.3 Accuracy Results of Baseline Models on Different Magnification Levels 

Model/Magnification  X2.5   X5   X10   X20   X40   
Inception Resnet    62.50%   60.42%   68.75%   64.58%   68.75%   
Inceptionv3   64.58%   67.27%   60.42%   67.35%   75.00%   
Efficientnet-b0   64.15%   70.83%   72.92%   75.51%   60.75%   
NasNet   66.04%   66.67%   63.64%   70.83%   65.62%   
ResNet18   64.00%   65.45%   72.00%   71.00%   62.5%   
SquuezeNet   71.00%   70.00%   52.00%   81.00%   53.12%   
Vision Transformer   56.25%   58.18%   58.18%   60.42%   25.00%   
CCT Transformer   54.26%   54.55%   63.24%   69.39%   74.29%   
SWIN Transformer   39.62%   58.18%   56.36%   42.5%   59.38%   

3.3 Detailed Labeling of the Dataset  

During the second meeting with the pathologist, we realized that there was room for 

improvement in the dataset. This need arose from the use of global labels, which did not 

capture the fact that a histopathology image may contain samples from more than one 

class. For example, an adenomatous histopathology image may contain normal cell 

structures or even a different subtype of an adenomatous cell structure. Figure 3.1.1(a) 

illustrates a x5 magnification of an adenomatous sample, while Figure 3.1.1(b) shows a 

x10 magnification of the same image, which zooms in on the normal cell structure of the 

same sample. This realization led to the development of an improved dataset, where 

individual patches from different magnification levels were cropped and labeled 

separately, providing more detailed and accurate information about the samples. 

 
Figure 3.3.1 On the left, 5x magnification of an adenomatous sample, on the right 10x magnification 

of the same image is zoom into the normal cell structure of the same sample. 
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Therefore, to improve the dataset, an executable labeling program was developed for the 

expert pathologist to label each sample independently. Figure 3.3.2 shows a screenshot 

of the program.  

 
Figure 3.3.2. A screenshot of the executable labeling program 

For every slide and magnification level, the samples in the dataset were meticulously 

labeled by two expert pathologists, namely Dr. Ebru Akay and Dr. Serdal Sadet Özcan. 

However, since the normal tissue samples only contain normal cell structures, detailed 

labeling was unnecessary for them. In total, 359 slides belonging to adenomatous polyps 

(i.e., tubular, tubulovillous/villous) and 181 slides belonging to hyperplastic polyps were 

used. Additionally, for larger magnifications (i.e., x2.5 and x5), the region of interest was 

manually annotated as rectangular bounding boxes around the polyps. The final 

distribution of the extracted samples is as follows: 346 samples belong to tubulovillous 

polyp type (TVA), 340 samples belong to tubular polyps (TBA), and 370 samples belong 

to hyperplastic polyps (HP), totaling 1056 samples. Table 3.3.1 provides the distribution 

of the train, test, and validation sets for each class. 

Table 3.3.1 Number of Samples for Each of the Classes and Training/Validation/Test sets 

 Hyperplastic Tubular Tubulovillous Total 

Train 254 222 242 718 

Validation 56 51 50 157 

Test 60 67 54 181 
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3.4 Experiments on Improved Dataset 

After improving the dataset by detailed labeling, baseline models were utilized to evaluate 

the performance of the dataset for binary classification and multi-class classification 

tasks. The performance metrics for binary classification on the improved dataset are 

presented in Table 3.4.1. The table shows that Inception-v3 achieved an accuracy of 

82.50%, compared to the same model's accuracy of 54.60% on the previous dataset. This 

indicates that the detailed labeling process has improved the overall accuracy by an 

average of 15%. 

Table 3.4.1 Binary Classification Results for Baseline Models on Improved Dataset 

   
  Model 

Acc (%)   F1  (%)   

Inception-v3   82.50  68.60  

ResNet-v2-50   76.25  60.92  

ResNet-v2-101   79.81  65.52  

InceptionResNet-v2   86.25  76.19  

ViT   78.13  51.34  

EfficientNet 86.25  85.00  

Furthermore, the performance of the baseline models was also assessed for the multi-class 

classification task, specifically for distinguishing between hyperplastic polyps, tubular 

adenomas, and tubulovillous/villous adenomas. The corresponding results are presented 

in Table 3.4.2. 
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Table 3.4.2 Multi-class Classification Results for Baseline Models on Improved Dataset 

MODEL Overall 
Accuracy 

Precision Recall  F1 

DenseNet-
201 

73.02% 72.98% 73.04% 73.00% 

Inception-
ResNet 

67.01% 67.51% 67.79% 67.19% 

Inception-
v3 

68.33% 68.36% 68.54% 68.28% 

ResNet-50 70.24% 70.52% 70.41% 70.24% 
Xception 73.45% 73.57% 73.43% 73.42% 
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Chapter 4 

4 Study 1 

4.1 Improved Classification of Colorectal Polyps on 

Histopathological Images with Ensemble Learning 

and Stain Normalization 

In the clinical workflow of polyp classification, a key diagnostic challenge is the 

differentiation of adenomatous polyps from non-adenomatous tissues. The adenomatous 

polyp types are tubular, villous, and tubulovillous adenomas. Moreover, adenomatous 

polyps have the potential to develop into cancer, while hyperplastic (i.e. non-

adenomatous or normal) polyps are usually not likely to show malignancy potential. 

Therefore, distinguishing adenomatous/neoplastic polyp tissue from non-

adenomatous/hyperplastic/normal tissue is a significant step in cancer screening.   

Since early diagnosis is vital, there is a growing demand for cancer screening programs. 

As the demand for screening increases, the workload of pathologists increases, and 

consequently it gets harder and harder to detect disease at an early stage. Indeed, over the 

past decade, according to [6], pathologic colon biopsy slide volumes are doubled. 

Furthermore, adenomatous lesions are distinguished from non-adenomatous lesions in 

96% of cases by the experts, which shows that the problem is not completely solved yet 

[53]. In order to carry out this process faster and more accurately, Clinical Decision 

Support System (CDSS) can be employed, which can ease this labour-intensive work and 

minimize the mistakes of the traditional approaches. In this work, a CDSS is proposed to 

assist experts by providing the classes of each histopathology image and highlighting the 

most suspected areas with Grad-Cam method. 
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Ensemble learning methods are widely used in medical image classification tasks. In  their 

work Kumar et al. proposed a model that ensembles AlexNet and LeNet architectures, 

which achieves a greater accuracy than the AlexNet and LeNet architectures alone [50]. 

Kallipolitis et al. ensemble EfficientNet variants to detect cancer from pathology images 

of breast and colon [54]. In another work, Kassani et al. employ a model which ensembled 

pre-trained VGG19, MobileNet, and DenseNet to detect cancerous regions from breast 

histology images [55]. Das et al. feed the wavelet transformed breast histology images to 

a model which ensembled three different CNN structures [49]. Kundu et al. design a 

network, which is composed of LeNet, ResNet-18 and DenseNet 121, to detect 

pneumonia from chest X-Ray images [56]. Nguyen et al. ensemble a model to detect 

polyps during the colonoscopy procedure. In their work, as input, they fed the model with 

endoscopy and pathology images [57].  

Ensemble methods are widely employed in breast cancer classification tasks on 

histopathology images. They can make more robust decisions since they employ various 

classifiers as base learners, which can capture different levels of information contained in 

the latent features. However, they have not been used in colonic adenomatous polyp 

detection on histology images. To the best of our knowledge, this study is the first to use 

ensemble methods to classify colonic histological images as adenomatous and non-

adenomatous. The main contributions of this study are as follows:  

• In this study, we explore state-of-the-art pre-trained Deep CNN algorithms’ 

performances on our custom dataset. To the best of our knowledge, this study is 

the first to comprehensively evaluate widely used stain normalization techniques 

namely, Stain-GAN, Stain-Net, Vahandane, Macenko and Reinhard by combining 

with state-of-the art Deep CNN models for classification of adenomatous and non-

adenomatous colonic polyp tissues.   

• This study is one of the first studies which employs ConvNeXt architecture on 

colon histopathology images for polyp classification task. 

• We propose a model which ensembles the pre-trained ConvNeXt-Tiny and 

ConvNeXt-Base variants to classify adenomatous and non-adenomatous tissues 

on colonic histopathology images. Moreover, the variants are further tailored to 

the problem by network modifications at the image representation levels. In order 

to comprehensively evaluate and assess the generalizability of the proposed 
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model, we also employ publicly available UniToPatho and EBHI databases The 

proposed ensemble model achieves an accuracy of 95% on our custom dataset. 

• Additionally, in order to ensure the explainability of the proposed model, the 

Grad-Cam method is used. The attention map of the model is explored for 

adenomatous and non-adenomatous images. We believe that these Grad-Cam 

visual outputs can help pathologists to see and judge the decision making process 

of the model.  

4.1.1 Material and Methods 

4.1.1.1 Dataset 

The histological slides used in this study were collected from 84 patients who underwent 

colorectal cancer screening since May 2018 at Kayseri City Hospital, Kayseri, Turkey. 

This study was approved by Kayseri City Hospital Ethics Committee and Erciyes 

University Clinical Research Ethics Committee. Forty-six of the 84 patients are male, 

while the other 38 are female.  

Most of the patients have samples from both adenomatous polyp and non-adenomatous 

tissues. Each tissue sample was examined under the microscopy with 5 different 

magnification levels. Samples from different magnification settings can be seen in Figure 

4.1.1. The magnification levels are: x2.5, x5, x10, x20 and x40.  

A total of 671 slides were collected, with 359 classified as adenomatous polyps, and 312 

classified as non-adenomatous tissues, including hyperplastic polyps, normal tissue, and 

chronic inflammation. The detailed labeling of the collected samples was done by two 

expert pathologists for each slide and magnification level. 
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Figure 4.1.1 Different magnification levels of a tissue
 

Four hundred seventy (470) slides were randomly selected for training set, 101 for 

validation set and 100 as test set. The train, test and validation sets were separated on a 

patient-based approach. That is, there were no whole-slide images that belong to the same 

patient in two different sets. A detailed description of the collected slides can be found in 

Table 4.1.1.  

To evaluate the models' generalizability and stain normalization techniques, a total of 304 

slides were randomly selected, with 152 slides acquired from each of the publicly 

available UniToPatho and EBHI databases. UniToPatho database contains 9536 

hematoxylin and eosin stained patches extracted from 292 whole-slide images, where 

each of the slides have a magnification of ×20 [24]. The WSIs belong to the following 

classes: normal tissue, hyperplastic polyp, tubular adenoma and tubulo-villous adenoma. 

EBHI is composed of 5532 WSIs which has the categories of normal, low-grade and high-
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grade intra-epithelial neoplasm, and adenocarcinoma and divided into four 

magnifications of ×40, ×100, ×200 and ×400 [25]. 

Table 4.1.1 Number of Samples and Patients of Custom Collected Dataset 

Class Number of 
Samples 

Number of 
Patients 

Adenoma 359 52 
Hyperplasia 181 29 

Normal/Chronic 
Inflammation 

130 30 

In most cases, an adenomatous slide contains one or more different tissue structures, 

including both adenomatous and normal tissue. Additionally, expert pathologists 

typically determine whether a whole slide image (WSI) contains adenomatous tissue by 

examining the entire image. Thus, in this study, we classified each WSI individually 

rather than using manually cropped patches from the WSIs. 

4.1.1.2 Stain Normalization 

Deep CNN algorithms have a great capacity to fit a dataset with high precision. However, 

this precision challenges the model to generalize for the unseen data. Moreover, if there 

is a domain shift in training and testing data, the model must be robust and reliable for 

real-world scenarios. To address the issue of domain shift, we applied commonly used 

Stain Normalization techniques to our dataset in this study. 

To ensure good generalization ability, a deep CNN algorithm must be resilient to domain 

shifts. Researchers have proposed various stain normalization techniques to address this 

issue. The literature commonly employs the following techniques: Vahandane, Macenko, 

Reinhard, Stain-GAN, and Stain-Net. Vahandane, Macenko, and Reinhard are more 

conventional methods, whereas Stain-GAN and Stain-Net utilize Generative Adversarial 

Network (GAN) architectures. Figure 4.1.2 is an adenomatous image from our dataset in 

which different stain normalization methods are applied. 
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Figure 4.1.2 Results of the stain normalization techniques on a sample image on our dataset 

4.1.2 Proposed Ensemble of ConvNeXt Framework 

Figure 4.1.4 shows the proposed framework to classify colonic histological images as 

either adenomatous or non-adenomatous. Previous studies on colonic polyp classification 

problem predominantly employ a single deep CNN algorithm. According to previous 

studies, CNN architectures play an important role for the classifier performance, [58]–

[61]. As stated in the [57], deep residual CNN architectures are used for more complex 

problems, while shallower CNNs are used for simple problems. Additionally, ensemble 

methods perform better than a single deep CNN algorithm, because its base classifiers 

can interpret various properties of an input image. Consequently, we designed the 

proposed framework by employing an ensemble of ConvNeXt variants. 
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Figure 4.1.3 Proposed ensemble of ConvNeXts framework 

We selected the ConvNeXt architecture since it is more suitable to classify adenomatous 

colonic WSIs than the attention-based networks or regular CNNs because of the following 

reasons: Unlike ViT [62] it does not require large amount of data in training. Since there 

are limited number of samples in our custom dataset, this makes ConvNeXt more 

convenient than data-hungry attention-based methods such as ViT. Moreover, in contrast 

to CNNs, it can capture longer dependencies because of its large receptive field. Similar 

to what experts do, it can recognize an adenomatous polyp structure in a histopathological 

image by visually inspecting spatially distant cell structures. This makes ConvNeXt more 

suitable for this task, while it is challenging for CNNs to capture those distant correlations.  

The base classifiers of the ensemble model are ConvNeXt-Tiny and ConvNeXt-Base 

models, which are pre-trained on ImageNet-21k dataset. In order to make those networks 

more suitable to our task, we implemented a fine-tuning approach, which consists of 

unfreezing the entire model and re-training it on our data for each of the models 

separately. Subsequently, drop-out and a dense layer are added to the top layer. Adam 

optimizer with a learning rate of 0.001 is employed, and adaptive momentum 

optimization algorithm optimized the learning rate during the training. As the loss 

function, binary cross entropy is used with label smoothing with a smoothing coefficient 

having a value of 0.1. By this way, label smoothing regularizes the network to choose the 

class with high confidence. The training batch size is set to 64 and both of the networks 

are fine-tuned in 50 epochs individually. In the final decision step, the probabilistic 
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outputs of each network for each of the classes are then averaged at the average layer to 

make a final decision.  

Furthermore, in order to verify the proposed model's generalizability, the model is tested 

on three different sets of instances, which come from UnitoPatho, EBHI datasets and the 

testing set of the custom collected dataset.  

Additionally, in order to show the explainability of the proposed model, the Grad-CAM 

method is used. The attention map of the model is explored for adenomatous and non-

adenomatous images. Outputs of the Grad-CAM results of the proposed model can help 

the pathologist to see and judge the inner decision step of the model. 

4.1.3 Experimental Setup 

Figure 4.1.3 shows experimental setup of the proposed framework. As it is mentioned in 

the Section 4.1.2; each of the base classifiers of the ensemble model is fine-tuned on our 

dataset by adding a drop-out and a dense layer to the top layer. 

The performance of the proposed ensemble method is compared against the extensively 

used pre-trained deep CNN methods and attention-based method. We further compared 

frequently used stain normalization techniques for each of the deep CNN-based, 

attention-based methods and the proposed ensemble method. For these ablation tests the 

following standard performance measures are used: F-1 score, accuracy, precision, and 

recall. 

Initially, we first normalized the WSIs using the following stain normalization techniques 

separately and obtained different sets of normalized histological images: Stain-Net, Stain-

GAN, Reinhard, Macenko and Vahadane. In order to apply Reinhard, Macenko and 

Vahadane techniques, we employed StainTools library [63]. The Stain-Net and Stain-

GAN methods are implemented by using the source codes of [31], and [30]. 

The models that are used for the ablation study are employed from TensorFlow-Hub and 

the models are: Inception-V3 (InceptionV3 trained on ImageNet), ResNetV2-50 

(ResNetV2-50 trained on ImageNet), ResNetV2-101, (ResNetV2-101 trained on 

ImageNet) , InceptionResNet-V2 (InceptionResNet-V2 trained on ImageNet) , ViT (fine-

tuned on ImageNet 1k), EfficientNet-S (EfficientNet V2 pre-trained on ImageNet), 
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EfficientNet-S-21k (EfficientNet V2 pretrained on ImageNet 21k), EfficientNet-S-21k-

ft-1k  (EfficientNet V2 pretrained on ImageNet-21k and fine-tuned on ImageNet-1k), 

ConvNeXt-Tiny (model pre-trained on the ImageNet-1k dataset), ConvNeXt-Small 

(model pre-trained on the ImageNet-1k dataset), ConvNeXt-Base-1k (model pre-trained 

on the ImageNet-1k dataset), ConvNeXt-Base-21k (model pre-trained on the ImageNet-

21k dataset), ConvNeXt-Base 21k-ft-1k (model pre-trained on ImageNet-21k and 

finetuned on ImageNet 1k), ConvNeXt-Large (model pre-trained on the ImageNet-21k 

dataset).  

We employed all the models as pre-trained; this is due to the fact that building those 

models from scratch needs huge amount of data. After adding custom layers at the end of 

the base models, we implemented a fine-tuning approach because the state-of-the-art 

CNN models are pre-trained on natural images, while our images belong to a different 

domain. Thus, in order to comprehensively compare the above-mentioned methods, we 

first fine-tuned them on our histological dataset. All the experiments were performed on 

Google Colab Platform with 52 GB of RAM and NVIDIA Tesla K80, NVIDIA Tesla T4 

and NVIDIA Tesla P100 GPU accelerators. The application of the proposed experiments 

was implemented with Python v3.7.13 with the TensorFlow v2.8.0 framework. The 

details about the network parameters, optimizers, number of epochs, learning rates, and 

number of parameters are given Table 4.1.2 and Table 4.1.3. 

Table 4.1.2 Network Parameters of The Proposed Method 

Parameters Values 

Optimizer   ADAM 

Learning Rate 0.001 

Number of Epochs 50 

Batch Size 64 

Regularizer L2 Norm 
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Table 4.1.3 Number of Parameters of The Models That are Used in This Work 

Network Number of Parameters 

ConvNeXt-Large 229,843,637 

ConvNeXt-Base 87,568,514 

ConvNeXt-Small 49,456,226 

ConvNeXt-Tiny 27,821,666 

Inception-v3 21,806,882 

ResNet-v2-50 23,568,898 

ResNet-v2-101 42,630,658 

InceptionResNet-v2 54,339,810 

ViT 36,047,682 

EfficientNet-v2-s 20,333,922 

Proposed Method 115,390,180 

4.1.4 Results and Discussions 

For the curated sets of WSIs with different stain normalization techniques, we primarily 

experiment with the aforementioned baseline classifiers. The ResNet-50 is implemented 

as it is proposed by Korbar et al. [7]. oreover, other popular deep learning approaches are 

also implemented and the test performance of each model and stain normalization 

techniques are shown in Table 4.1.4 and Tables 4.1.5 to 4.1.10. The performance results 

of the top-performed model on the custom dataset are given in Table 4.1.5. This table 

shows the accuracy metrics of the proposed model on the custom-collected dataset with 

various normalization techniques. 
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Table 4.1.4 Accuracy results of the baseline models and the proposed model on the curated sets 

Normalization 
Without 
Normalization Stain-Net Stain-GAN Reinhard Macenko Vahande 

Performance Acc (%) 

F1  

(%) Acc(%) 

F1  

(%) Acc(%) 

F1  

(%) 

Acc  

(%) 

F1  

(%) 

Acc  

(%) 

F1  

(%) 

Acc  

(%) 

F1  

(%) 

ConvNeXt-Large 84.38 65.54 83.13 74.25 88.75 74.42 86.88 80.00 84.38 65.54 81.25 69.41 

ConvNeXt-  

Base-21k 80.63 73.94 86.25 85.00 80.00 58.89 86.67 75.71 74.38 49.73 57.50 37.36 

ConvNeXt-  

Base-21k-ft-1k 81.25 63.64 66.25 43.48 80.63 58.56 88.13 79.04 88.13 83.44 54.38 40.00 

ConvNeXt-  

Small 78.13 63.58 81.25 63.64 83.75 65.91 86.88 77.84 83.75 67.82 71.88 67.59 

ConvNeXt-Tiny 87.50 77.38 85.00 72.94 83.75 73.81 91.36 89.02 88.75 78.57 82.50 72.62 

Inception-v3 82.50 68.60 80.00 68.24 85.53 69.77 86.25 74.12 82.50 66.67 75.74 63.44 

ResNet-v2-50 76.25 60.92 78.13 63.58 82.50 64.77 82.50 64.77 75.63 54.14 77.50 62.07 

ResNet-v2-101 79.81 65.52 77.36 56.98 83.13 72.19 80.00 58.89 74.21 53.93 71.25 49.45 

InceptionResNet-

v2 86.25 76.19 81.88 71.01 82.50 74.70 83.02 71.43 79.38 57.46 80.00 70.24 

ViT 78.13 51.34 75.63 54.14 48.13 47.20 55.33 56.74 59.12 53.66 58.13 68.46 

EfficientNet-v2-s 86.25 85.00 88.68 88.05 87.50 79.52 89.38 84.66 85.00 72.94 83.13 76.36 

EfficientNet-v2-

s-21k-ft-1k 85.00 83.75 86.88 82.21 90.00 86.42 89.87 82.93 89.31 87.50 83.75 81.08 

EfficientNet-v2-

s-21k 85.63 87.90 89.38 78.11 89.44 86.42 89.38 78.11 88.75 87.50 84.13 71.62 

Proposed 

Method 93.75 93.58 95.00 93.90 92.50 91.25 91.88 90.57 91.93 90.48 88.82 87.12 
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Table 4.1.5 Performance results of the proposed model for different normalization methods 

Normalization  Accuracy Precision Recall F1 

Original  93.75% 93.58% 93.58% 93.58% 

Stain-Net  95.00% 92.77% 95.06% 93.90% 

Stain-GAN  92.50% 92.41% 90.12% 91.25% 

Reinhard 91.88% 92.31% 88.89% 90.57% 

Vahandane 88.82% 87.65% 86.59% 87.12%   

Macenko  91.93% 88.37% 92.68% 90.48% 

From Table 4.1.4 and Figure 4.1.5 it can be seen that Stain-GAN and Reinhard 

normalization techniques perform better than the non-normalized dataset and other 

methods. Furthermore, accuracy and F1 scores of the Stain-GAN and Reinhard 

normalized datasets are approximately improved by 3-5% for the baseline models. The 

performance of the proposed model is evaluated for each stain normalization technique 

and is given in Tables 4.1.5 to 4.1.10. 

 

Figure 4.1.4 Comparison of different stain normalization techniques for the proposed method and 

baseline models 
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The proposed method on our custom dataset performs the best on Stain-Net normalized 

dataset and achieves the highest accuracy, precision, recall, and F-score with values of 

95%, 92.8%, 95.1% and 93.9%, respectively. On the other hand, the performance of the 

ensemble model is relatively poor for the Vahandane normalized dataset with an 

accuracy, precision, recall, and F-score with values of 88.8%, 87.7%, 86.6% and 87.1%, 

respectively.   

The performance of the proposed method and all the base-line classifiers are poor for the 

Vahandane normalized data. For the Vahandane normalized dataset, the same proportion 

of adenomatous and non-adenomatous images are confused by all the base classifiers and 

the proposed ensemble model. This may originate from the fact that the Vahandane 

normalized images have poorer contrast than the other normalized images. In order to 

address this problem, we implemented different data augmentation techniques that 

include random contrast, random brightness, and random hue, however, we observe that 

it is more suitable to employ image pre-processing techniques, such as adaptive histogram 

equalization, before the normalization of an image with Vahandane normalization 

algorithm.  

A comprehensive comparison of the top performed state-of-the-art Deep CNN classifiers' 

performance on the non-normalized, Stain-GAN normalized, Stain-Net normalized and 

Reinhard normalized data are presented in Figure 4.1.5. As it can be seen from the figure 

and the table, for the Reinhard normalized dataset, the maximum accuracies of 91.4%, 

88.1%, 89.9%, 86.2%, 83.5% and 83.0% are produced by ConvNeXt-Tiny, ConvNeXt-

Base, Efficient-Net-v2-S, Inception-v3, ResNet-v2-50 and InceptionResNet models, 

respectively. Moreover, we can see that the performance of the single deep CNN 

classifiers' accuracy results varies in terms of different normalization techniques. 

However, the variation of performance for the proposed method for different 

normalization techniques is relatively small. Thus, this minor variation shows that the 

proposed model is more robust to input variations in the given datasets and generalizes 

better than the single model classifiers. 

As it can be seen in Tables Tables 4.1.5 to 4.1.11, the most significant performance gap 

for the proposed method and the base classifiers is obtained for the non-normalized and 

Stain-Net normalized data. The proposed method increased the overall accuracy for the 

non-normalized and Stain-Net normalized data by 6%, for Vahandane normalized data 
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by 4%, for the Stain-GAN and Macenko normalized data by 2%. The best accuracy of the 

ensemble method is achieved for the Stain-Net normalized data with an accuracy of 95% 

which is followed by Efficient-Net-v2-S with 89%. The ROC curves of the proposed 

method for the non-normalized dataset and Stain-Net normalized dataset are presented on 

Figure 4.1.6 and Figure 4.1.7, respectively. The results of the experiments show that the 

performance of the proposed ensemble model is satisfactory on all the normalized 

datasets and non-normalized dataset. Especially, the results on the non-normalized dataset 

show that the proposed ensemble model has a sufficient generalization ability since the 

images on the dataset differ in terms of color intensity. 

Table 4.1.6 Accuracy results of the baseline models and the proposed model on our dataset without 

normalization 

Non-normalized 
Data 

Accuracy Precision Recall F-1 
Score 

ConvNeXt-Large 84.38% 73.42% 59.18% 65.54% 
ConvNeXt-Base-
21k 

80.63% 77.22% 70.93% 73.94% 

ConvNeXt-Base-
21k-ft-1k 

81.25% 70.89% 57.73% 63.64% 

ConvNeXt-Small 78.13% 69.62% 58.51% 63.58% 
ConvNeXt-Tiny 87.50% 82.28% 73.03% 77.38% 
Inception-v3 82.50% 74.68% 63.44% 68.60% 
ResNet-v2-50 76.25% 67.09% 55.79% 60.92% 
ResNet-v2-101 79.81% 69.72% 61.79% 65.52% 
InceptionResNet-v2 86.25% 81.01% 71.91% 76.19% 
ViT 78.13% 60.76% 44.44% 51.34% 
EfficientNet-v2-s 86.25% 86.08% 83.95% 85.00% 
EfficientNet-v2-s-
21k-ft-1k 

85.00% 84.81% 82.72% 83.75% 

EfficientNet-v2-s-
21k 

85.63% 87.34% 88.46% 87.90% 

Proposed Method 93.75% 93.58% 93.58% 93.58% 
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Table 4.1.7 Accuracy results of the baseline models and the proposed model on our dataset with Stain-

Net normalization 

Stain-Net Accuracy Precision Recall F-1 
Score 

ConvNeXt-Large 83.13% 78.48% 70.45% 74.25% 
ConvNeXt-Base-21k 86.25% 86.08% 83.95% 85.00% 
ConvNeXt-Base-
21k-ft-1k 

66.25% 50.63% 38.10% 43.48% 

ConvNeXt-Small 81.25% 70.89% 57.73% 63.64% 
ConvNeXt-Tiny 85.00% 78.48% 68.13% 72.94% 
Inception-v3 80.00% 73.42% 63.74% 68.24% 
ResNet-v2-50 78.13% 69.62% 58.51% 63.58% 
ResNet-v2-101 77.36% 64.56% 51.00% 56.98% 
InceptionResNet-v2 81.88% 75.95% 66.67% 71.01% 
ViT 75.63% 62.03% 48.04% 54.14% 
EfficientNet-v2-s 88.68% 88.61% 87.50% 88.05% 
EfficientNet-v2-s-
21k-ft-1k 

86.88% 84.81% 79.76% 82.21% 

EfficientNet-v2-s-
21k 

89.38% 83.54% 73.33% 78.11% 

Proposed Method 95.00% 92.77% 95.06% 93.90% 

Table 4.1.8 Accuracy results of the baseline models and the proposed model on our dataset with Stain-

GAN normalization 

Stain-GAN Accuracy Precision Recall F-1 
Score 

ConvNeXt-Large 88.75% 81.01% 68.82% 74.42% 
ConvNeXt-Base-21k 80.00% 67.09% 52.48% 58.89% 
ConvNeXt-Base-
21k-ft-1k 

80.63% 67.09% 51.96% 58.56% 

ConvNeXt-Small 83.75% 73.42% 59.79% 65.91% 
ConvNeXt-Tiny 83.75% 78.48% 69.66% 73.81% 
Inception-v3 85.53% 76.92% 63.83% 69.77% 
ResNet-v2-50 82.50% 72.15% 58.76% 64.77% 
ResNet-v2-101 83.13% 77.22% 67.78% 72.19% 
InceptionResNet-v2 82.50% 78.48% 71.26% 74.70% 
ViT 48.13% 47.50% 46.91% 47.20% 
EfficientNet-v2-s 87.50% 83.54% 75.86% 79.52% 
EfficientNet-v2-s-
21k-ft-1k 

90.00% 88.61% 84.34% 86.42% 

EfficientNet-v2-s-
21k 

89.44% 88.61% 84.34% 86.42% 

Proposed Method 92.50% 92.41% 90.12% 91.25% 
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Table 4.1.9 Accuracy results of the baseline models and the proposed model on our dataset with 

Reinhard normalization 

Reinhard Accuracy Precision Recall F-1 
Score 

ConvNeXt-Large 86.88% 83.54% 76.74% 80.00% 
ConvNeXt-Base-
21k 

86.67% 79.76% 72.04% 75.71% 

ConvNeXt-Base-
21k-ft-1k 

88.13% 83.54% 75.00% 79.04% 

ConvNeXt-Small 86.88% 82.28% 73.86% 77.84% 
ConvNeXt-Tiny 91.36% 90.12% 87.95% 89.02% 
Inception-v3 86.25% 79.75% 69.23% 74.12% 
ResNet-v2-50 82.50% 72.15% 58.76% 64.77% 
ResNet-v2-101 80.00% 67.09% 52.48% 58.89% 
InceptionResNet-v2 83.02% 76.92% 66.67% 71.43% 
ViT 55.33% 57.97% 55.56% 56.74% 
EfficientNet-v2-s 89.38% 87.34% 82.14% 84.66% 
EfficientNet-v2-s-
21k-ft-1k 

89.87% 86.08% 80.00% 82.93% 

EfficientNet-v2-s-
21k 

89.38% 83.54% 73.33% 78.11% 

Proposed Method 91.88% 92.31% 88.89% 90.57% 
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Table 4.1.10 Accuracy results of the baseline models and the proposed model on our dataset with 

Vahandane normalization 

Vahandane Accuracy Precision Recall F-1 
Score 

ConvNeXt-Large 81.25% 74.68% 64.84% 69.41% 
ConvNeXt-Base-
21k 

57.50% 43.04% 33.01% 37.36% 

ConvNeXt-Base-
21k-ft-1k 

54.38% 44.30% 36.46% 40.00% 

ConvNeXt-Small 71.88% 76.56% 60.49% 67.59% 
ConvNeXt-Tiny 82.50% 77.22% 68.54% 72.62% 
Inception-v3 75.74% 67.05% 60.20% 63.44% 
ResNet-v2-50 77.50% 68.35% 56.84% 62.07% 
ResNet-v2-101 71.25% 56.96% 43.69% 49.45% 
InceptionResNet-v2 80.00% 74.68% 66.29% 70.24% 
ViT 58.13% 64.56% 72.86% 68.46% 
EfficientNet-v2-s 83.13% 79.75% 73.26% 76.36% 
EfficientNet-v2-s-
21k-ft-1k 

83.75% 89.55% 74.07% 81.08% 

EfficientNet-v2-s-
21k 

84.13% 75.23% 68.33% 71.62% 

Proposed Method 88.82% 87.65% 86.59% 87.12% 
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Table 4.1.11 Accuracy results of the baseline models and the proposed model on our dataset with 

Macenko normalization 

Macenko Accuracy Precision Recall F-1 
Score 

ConvNeXt-Large 84.38% 73.42% 59.18% 65.54% 
ConvNeXt-Base-
21k 

74.38% 58.23% 43.40% 49.73% 

ConvNeXt-Base-
21k-ft-1k 

88.13% 86.08% 80.95% 83.44% 

ConvNeXt-Small 83.75% 74.68% 62.11% 67.82% 
ConvNeXt-Tiny 88.75% 83.54% 74.16% 78.57% 
Inception-v3 82.50% 73.42% 61.05% 66.67% 
ResNet-v2-50 75.63% 62.03% 48.04% 54.14% 
ResNet-v2-101 74.21% 61.54% 48.00% 53.93% 
InceptionResNet-v2 79.38% 65.82% 50.98% 57.46% 
ViT 59.12% 55.70% 51.76% 53.66% 
EfficientNet-v2-s 85.00% 78.48% 68.13% 72.94% 
EfficientNet-v2-s-
21k-ft-1k 

89.31% 88.61% 86.42% 87.50% 

EfficientNet-v2-s-
21k 

88.75% 88.61% 86.42% 87.50% 

Proposed Method 91.93% 88.37% 92.68% 90.48% 

 

Figure 4.1.5 ROC of the proposed method on our dataset without normalization 
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Figure 4.1.6 ROC of the proposed method on our dataset with Stain-Net normalization 

4.1.5 Generalization Test 

To evaluate the model's generalization ability, colonic adenomatous and non-

adenomatous images from both the UniToPatho and EBHI datasets were used. The 

images obtained were fed into the model trained on our non-normalized dataset with fine-

tuning. The achieved overall accuracies were 91.1% and 90% for the EBHI and 

UniToPatho datasets, respectively. The performance metrics of the proposed model on 

the UniToPatho and EBHI datasets can be found in the Table 4.1.12. 

 

Figure 4.1.7 ROC of the proposed method on EBHI dataset 
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Figure 4.1.8 ROC of the proposed method on UniToPatho dataset 

Table 4.1.12 Performance results of the proposed model on different datasets 

 Proposed Method 

Dataset Accuracy Precision Recall F1 

Custom 95.00% 92.77% 95.06% 93.90% 

UnitoPatho 90.00%  91.83% 89.10% 90.45% 

EBHI 91.1% 88.74% 94.36 % 91.46% 

 

4.1.6 Grad-CAM Results of the Proposed Method 

To see the proposed models' class activations maps, gradient-weighted class activation 

mapping (Grad-CAM) method is employed [64]. Grad-CAM method explains the 

operation of a deep model by using the activation maps of a model in which the more 

focused regions are highlighted with a red color while the less attention grasping regions 

highlighted with yellow to blue colors. The Figure 4.1.10 and Figure 4.1.11 shows the 

Grad-CAM results of the proposed models for adenomatous and non-adenomatous 

tissues, respectively. As it can be seen from the figures, the proposed model focuses on 

the spatially distant cell structures to classify an image. Furthermore, Grad-CAM outputs 

of the proposed model for the pathological image can provide insight to a pathologist by 

explaining why an image is classified as adenomatous or non-adenomatous by the model. 
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Figure 4.1.9 Grad-CAM results of adenomatous images 

 

Figure 4.1.10 Grad-CAM results of non-adenomatous images 

4.1.7 Conclusion of the Study 

In this section, we propose an ensemble method which employs the recently proposed 

ConvNeXt variants for polyp classification on Stain-Net normalized histopathology 

images. The proposed method combines two separately fine-tuned ConvNeXt variants, 
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namely ConvNeXt-Tiny and ConvNeXt-Base. The base models are tailored to the 

classification problem by network modifications at the image representation levels. The 

performance of the ensemble method is compared with the state-of-the-art deep CNN 

models and attention-based models on a custom colonic histological dataset. As a result, 

comprehensive experiments indicate that the ensemble of baseline models performs better 

than baseline models alone. 

Ensemble methods are used in cancer classification tasks on breast, and colon histology 

images [50], [54], [65]–[68]. However, ensemble methods were not used in the colonic 

adenomatous polyp detection from the histology images. In the literature, researchers 

generally employ Deep CNN models alone. For example, in their work, Korbar et al. 

employed various ResNet-50 variants and selected the best-performed variant, which 

achieved 91.3% accuracy on their dataset [7]. Byeon et al. implemented EfficientNet for 

colon polyp subtype classification and achieved an overall F1 score of 98.8 on their 

dataset [16]. Iizuka et al. employed Inception-V3 to differentiate adenomatous, non-

adenomatous and cancerous tissues on histopathology images and achieved an accuracy 

of 96% [69]. During the experimental setup, we implemented ResNet50, EfficientNet, 

Inception-v3 and compared the performance with our proposed method on the custom 

collected dataset. The proposed method achieves an accuracy of 93.75%, while ResNet50, 

EfficientNet and Inception-v3 achieve accuracies of 76.25%, 86.25% and 82.5% on the 

custom collected dataset, respectively. The gap in the model's performance on our 

custom-collected dataset and their dataset may be caused by the different domain 

distributions of the datasets. 

In the literature, the models are generally tested against specific custom datasets. Since 

the models are developed for a specific dataset, they may not work well on the other 

datasets. Thus, this might be a drawback for real-world applications. To overcome this 

issue, researchers use publicly available datasets for benchmarking the models that are 

built for a custom dataset [6], [54], [55], [70], [71]. Therefore, in this work, additional 

experiments are conducted to explore the performance of the proposed model on two 

publicly available datasets, UniToPatho and EBHI. The proposed method outperforms 

the other methods by attaining 90% and 91.1% on UniToPatho and EBHI, while other 

methods in the literature achieve an accuracy of 64.29% and 66.55% on UniToPatho 

dataset [70], [71]. These accuracy results demonstrate that the proposed model has 
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promising generalization ability for different datasets and has the potential to work in 

real-life scenarios. 

To increase the models' generalization ability, stain normalization techniques are widely 

employed by researchers on HI. In contrast to the previous studies which make polyp 

classification on HI, in this study, stain normalization techniques are combined with an 

ensemble model. To the best of our knowledge, there is a limited number of studies which 

incorporates stain normalization methods for colon polyp classification on histopathology 

images [14]. In the literature, Perlo et al. use only Macenko normalization technique for 

polyp classification on histopathology images [14]. However, during the experiments, we 

observed that the performance of normalization techniques significantly differs for 

different classifiers. Therefore, combining various classifiers with different stain 

normalization techniques produced more beneficial outputs. 

When it comes to medical image analysis, the black-box nature of the AI methods might 

restrict their usage in real applications. In recent years, this has sparked debates about the 

usage and necessity of explainability of opaque algorithms [72].There have been efforts 

to overcome this problem by introducing several tools for contemporary deep learning 

models [73]. The main approach to solve the problem is to provide the underlying reason 

for the decision as an auxiliary output to the clinician. This output could be either verbal 

or visual cues. This would be useful, especially when there is a mismatch between the 

clinician’s and the system’s decisions. In this case, the visual output might help to resolve 

the conflict. The clinician can check why the system diagnosed differently by evaluating 

the cues about the decision process of the system. As an interpretability method, the 

proposed system highlights the image regions which affected the decision most. As it was 

used in other medical image computing applications an attribution-based explainability 

method, Grad-CAM, is employed [74]. Various studies use Grad-CAM to assists during 

the decision-making process of pathologists [6]–[8], [14], [16], [69], [75], [76]. In their 

work, Wei et al. passed the Grad-CAM outputs to the expert pathologists to evaluate the 

models' performance to find a model that approximates most to the human interpreters 

[10]. Bilal et al. provided Grad-CAM outputs to experts for evaluation of their model [6]. 

Further, Perlo et al. used Grad-CAM method to provide the explainability of the model 

[14]. In their work, Iizuka et al. used Grad-CAM outputs to compare their models' 

performance with pathologists and medical school students [69]. Byeon et al. evaluated 

their model by using the Grad-CAM outputs for different polyp types [16]. Korbar et al. 
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annotated the region of interest using Grad-CAM [7]. Song et al. provided Grad-CAM 

results to pathologists for decision support [8]. In conclusion, while the black-box nature 

of AI methods in medical image analysis can limit their practical application, there have 

been various efforts to overcome this problem by introducing explainability tools such as 

Grad-CAM, which has been used in several studies to provide clinicians with visual and 

verbal cues about the decision process of the system, ultimately helping to resolve 

conflicts between the clinician's and the AI's diagnoses. 
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Chapter 5 

5 Study 2 

5.1 An Effective Colorectal Polyp Classification for 

Histopathological Images Based on Supervised 

Contrastive Learning 

Clinical Decision Support System (CDSS) systems have been used to assist experts in 

decision-making to ease this labor-intensive work [77]. A benefit of this type of CDSS 

system is to help pathologists in these specific tasks. The number of histopathological 

analysis and cancer screening requests is rapidly increasing. According to Bilal et al. over 

the past decade, the number of pathological colon biopsy slide volumes has doubled [6]. 

With this rapidly expanding workload of experts, a computer-aided diagnosis system to 

automatize the differentiation of the polyp types is becoming the utmost important tool 

for the pathologist.  

The development of the machine learning and deep learning algorithms brought a great 

interest in the research on the computer aided diagnosis systems for the medical image 

analysis. In addition, comprehensive studies such as colon adenocarcinoma classification 

[6], [12], [13], [15], [17], [18], [54], [69], [75], [78]–[80], colon polyp classification [7]–

[11], [14], [76], [81], [82] and colon gland classification [78], [83], [84] are carried out 

on the individual diagnosis of colorectal cancer from histopathological images. 

Contrastive learning (CLR) methods are commonly used in medical image classification 

tasks. For instance, Xu et al. used self-supervised contrastive pre-training to classify 

pleural effusion in chest X-ray images [85]. Similarly, Chen et al. employed an encoder 

trained with contrastive learning on public datasets to classify Covid-19 using chest X-

rays  [86]. Zhang et al. pre-trained medical image encoders with paired text data using 
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contrastive loss[87]. In another work, Tian et al. proposed a Constrained Contrastive 

Distribution Learning approach to detect anomalies in medical images [88]. Azizi et al. 

used SimCLR with multiple instances of the same image for medical image classification 

[89] and compared it with baseline models such as Big Transfer (BiT) on various medical 

image datasets. Additionally, Stacke et al. evaluated the performance of contrastive 

learning methods on histology images, utilizing in-domain pre-training and ImageNet 

pre-training [26].  

Azizi et al. utilized Big Transfer (BiT) as a baseline, along with traditional ResNet 

architectures, for medical image classification in mammography, chest X-rays, and 

dermatology images [90]. In another study, Galdran et al. proposed a methodology to 

enhance the classification performance in unbalanced medical image classification tasks 

by utilizing BiT [91]. Recently, Lu et al. aligned BiT with SimSiam and improved the 

classification performance in a skin cancer classification task [42]. Similarly, Shi et al. 

improved the classification performance in WSI classification of Eosinophilic esophagitis 

by using BiT [92]. Azizi et al. also presented a representation learning strategy for medical 

image classification, employing the weights of BiT as a backbone encoder [93].  

Most of the colonic polyp classification methods employ a conventional supervised 

learning strategy. The downside of supervised learning is it requires an abundant amount 

of labelled data, which is exceptionally costly to obtain in the medical analysis field. The 

proposed method reduces the number of required labelled samples by applying 

Supervised Contrastive Learning (Sup-Con) approach on a different but same domain 

dataset prior to training the model for the downstream task. In this way, the 

representations are shifted into an in-domain space, which in turn gives quick learning 

and more accurate inference. To the best of the authors' knowledge, this study is the first 

to use Sup-Con Learning methodology with different state-of-the art CNN backbone 

architectures to classify colonic polyps on histopathology images The main contributions 

of this study can be summarized as follows: 

• We develop an improved Sup-Con model and apply it for polyp classification on 

colon histopathology images for the first time in the literature. Unlike classical 

Sup-Con models, to increase the visual task adaptation, it uses a pre-trained BiT 

model as the encoder backbone rather than a conventional ResNet. 
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• To the best of our knowledge, this study is the first to comprehensively evaluate 

the performance of the Sup-Con method with various encoder structures for polyp 

classification problems on colon histopathology images. 

• To support the experimental results empirically, a large custom data set is curated 

by experts and used in the experiments. Moreover, baseline tests on the data set 

using state-of-the-art pre-trained Deep CNN algorithms are provided for a fair 

comparison. 

• Furthermore, this study is one of the first to investigate in-domain pre-training 

performance for the classification of colonic polyps during pre-training on a 

publicly available UnitoPatho database. 

• In order to comprehensively evaluate and assess the generalizability of the 

proposed model, we also employ the publicly available UniToPatho database. The 

proposed Sup-Con model achieves an accuracy of 87% and 70.12% on our custom 

dataset and UnitoPatho, respectively. The accuracies on UnitoPatho are higher 

than other state-of-the-art methods. 

• In the experiments, we also compare the performance of the proposed method and 

traditional Sup-Con on UnitoPatho and our custom data sets. 

5.1.1 Material and Methods 

5.1.1.1 Data Collection 

Following the previous study, the number of patients in this study was increased, and the 

histological slides used were gathered from 184 patients who underwent colorectal cancer 

screening at Kayseri City Hospital in Turkey since May 2018.. For some cases, the 

patients had more than one polyp, even with different types such as hyperplastic and 

tubulovillous. Each tissue sample was examined under the microscopy with 5 different 

magnification levels. Samples of different magnification settings can be seen in Figure 

5.1.1. The magnification levels are: x2.5, x5, x10, x20, and x40. 
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Figure 5.1.1 Different magnification levels of an adenomatous tissue 

Out of the total 1056 samples used in this work, 359 slides belong to adenomatous polyps, 

including tubular, tubulovillous or villous types, while 181 slides belong to hyperplastic 

polyps. The detailed labeling of the samples was performed by two expert pathologists 

for each slide and magnification level. Additionally, at larger magnifications (i.e., x2.5 

and x5), rectangular bounding boxes were manually annotated around the polyps as 

regions of interest. The final sample distribution is as follows: 346 samples belong to 

tubulovillous polyp type (TVA), 340 samples belong to tubular polyps (TBA), and 370 

samples belong to hyperplastic polyps (HP). 

Seven hundred and eighteen (718) samples were randomly selected for training, 157 for 

the validation set, and 181 as the test sample, detailed information is present in Table 

5.1.1. Also, there is no overlap between samples from the same patient for training, 

validation, and test sets. 

Table 5.1.1 Number of Samples for Each of the Classes and Training/Validation/Test sets used in this 

study 

 Hyperplastic Tubular Tubulovillous Total 

Train 254 222 242 718 

Validation 56 51 50 157 

Test 60 67 54 181 
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5.1.2 Proposed Framework 

Previous studies on polyp classification using histology images have predominantly 

utilized transfer learning methods. However, Raghu et al. conducted experiments 

demonstrating that the domain mismatch between medical and natural images can impede 

transfer learning [94]. In contrast, recent works have shown that the BiT method improves 

the performance of transfer learning approaches on medical image classification tasks due 

to its exceptional performance in domain adaptation. Additionally, the Sup-Con loss 

function accelerates the learning of hard negatives and hard positives, and the custom-

collected histology database used in this study contains challenging samples. 

The proposed framework was designed by combining the BiT and Supervised Contrastive 

(Sup-Con) Learning frameworks, as illustrated in Figure 5.1.2. Since our database 

contains a limited number of samples and BiT performs well on a low data regime, BiT 

was used as the encoder for Sup-Con. Additionally, the downstream components of BiT 

were designed to facilitate visual task adaptation. In the first stage, the encoder was 

trained in 100 epochs using the Sup-Con loss (Equation 28) with a batch size of 16. As 

demonstrated in Equation 28, the query is compared against the set of samples that are in 

the same class. After this training, the frozen representations were forwarded to the 

second stage. The second stage was designed as follows: the encoder was followed by a 

dropout layer, a fully connected layer using L2 kernel regularizers, another dropout layer, 

and a final Softmax layer with the target classes. During the second stage, stochastic 

gradient descent (SGD) optimizer with a learning rate of 0.001 and momentum of 0.9 was 

employed, and the adaptive momentum optimization algorithm optimized the learning 

rate during training. Categorical cross-entropy was used as the loss function with label 

smoothing having a value of 0.1. Label smoothing regularizes the network from choosing 

a class with high confidence. 

In addition, we compared the proposed method against extensively used pre-trained Deep 

CNN methods. We employed these pre-trained methods as the encoder of the proposed 

Sup-Con framework and compared the performance of Supervised Learning and 

Supervised Contrastive Learning. We also compared the performance of the proposed 

method and traditional Sup-Con. Additionally, we conducted hyperparameter 

optimization to explore the model's performance for different settings of the 

hyperparameters. 
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Figure 5.1.2 Proposed framework of this study 

5.1.3 Experimental Setup 

Figure 5.1.2 illustrates the setup of the proposed framework. The BiT-M model is used 

as the encoder of the Sup-Con method. In the first stage, we trained the encoder for 100 

epochs using the Sup-Con loss with a batch size of 16. The output representations of the 

first stage were then forwarded to a fully connected layer that uses L2 kernel regularizer, 

and the classification was performed by a SoftMax layer with the target classes. In the 

second stage, stochastic gradient descent (SGD) optimizer with a learning rate of 0.001 

and momentum of 0.9 was employed, and the adaptive momentum optimization algorithm 

optimized the learning rate during training. Categorical cross-entropy with label 

smoothing of 0.1 was used as the loss function. Additionally, we compared the proposed 

method against extensively used pre-trained Deep CNN methods. Furthermore, we 

employed these pre-trained methods as the encoder of the proposed Sup-Con framework 

and compared the performance of Supervised Learning and Supervised Contrastive 

Learning. As explained in section 5.1.3, the proposed Sup-Con framework is a modified 

version of the traditional Sup-Con. During the experiments, we also compared the 
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performance of the proposed method, and the traditional Sup-Con. Hyperparameter 

optimization was implemented to explore the model's performance for different settings 

of the following hyperparameters: 

• Learning rate: 0.0001, 0.0005, 0.001, 0.005, 0.01  

• Optimizer: ADAM, SGD, RMSprop, AdaGrad  

• Temperature Value: 0.03, 0.05, 0.08, 0.1 

Additionally, to observe the effect of in-domain pre-training, we changed the pre-training 

set. For these ablation tests, we used standard performance measures such as weighted 

average and class-based F1-score, precision, recall, and overall accuracy. Finally, to 

verify the proposed model's generalizability, we tested it on a publicly available 

UnitoPatho database. The models used for the ablation study were employed from 

TensorFlow, including BiT-M (trained on ImageNet-21k), DenseNet-201 (trained on 

Imagenet), Inception-V3 (trained on ImageNet), ResNetV2-50 (trained on ImageNet), 

InceptionResNet-v2 (trained on ImageNet), and Xception (trained on ImageNet). All the 

employed models were pre-trained because building them from scratch requires a 

significant amount of data. Furthermore, we used a fine-tuning approach for the 

comparison of supervised learning because state-of-the-art CNN models are pre-trained 

on natural images, whereas our images belong to a different domain. Thus, to 

comprehensively compare the methods, we first fine-tuned them on our histological 

dataset. Additionally, all the above-mentioned pre-trained models were used as encoders 

during the first stage of the Sup-Con framework. To use them as encoders, the models 

were pre-trained on histology images using a Supervised Contrastive loss. All 

experiments were performed on the Google Colab platform with 52 GB of RAM and 

NVIDIA Tesla K80, NVIDIA Tesla T4, and NVIDIA Tesla P100 GPU accelerators. The 

experiments were implemented with Python v3.7.13 using the TensorFlow v2.8.0 

framework. 

5.1.4 Results and Discussions of the Chapter 

The aim of this study was to train a customized BiT model using a modified version of 

the Sup-Con Learning framework to classify colorectal polyps using histopathological 

images. To achieve this, we first used the above-mentioned classifiers to build a baseline. 
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We implemented ResNet-50 as proposed by Korbar et al. [7], and other deep learning 

approaches were also utilized. The test performance of each model is presented in Table 

5.1.2 and Figure 5.1.4. 

 

Figure 5.1.3 Accuracy Comparison of the Supervised and Supervised Contrastive Learning with 

Different Classifiers 

In Table 5.1.2, Overall Accuracy is present for each model and precision, recall and F1 

scores are given for each class. Additionally, a weighted average of the precision, recall 

and F1 scores are present for each model on the row that mentions the model’s name.   
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Table 5.1.2 Accuracy results for Supervised Learning and modified Supervised Contrastive Learning 

with various Deep CNN models 

Supervised vs 
Supervised 
Contrastive 
Learning Supervised Contrastive Supervised 

MODEL 
Overall 
Accuracy Precision Recall  F-1 

Overall 
Accuracy Precision Recall  F1 

BiT 86.19% 86.34% 86.19% 86.09% 78.91% 78.89% 79.16% 78.95% 

HP  83.58% 93.33% 88.19%  78.18% 80.37% 79.26% 

TBA  87.88% 86.57% 87.22%  81.03% 75.20% 78.01% 

TVA  87.50% 77.78% 82.35%  77.01% 82.72% 79.76% 

DenseNet-201 80.69% 80.17% 81.59% 80.44% 73.02% 72.98% 73.04% 73.00% 

HP  87.85% 80.34% 83.93%  72.73% 74.07% 73.39% 

TBA  80.77% 75.68% 78.14%  73.77% 72.00% 72.87% 

TVA  70.89% 90.32% 79.43%  72.29% 73.17% 72.73% 

Inception-ResNet 77.93% 78.10% 77.99% 77.94% 67.01% 67.51% 67.79% 67.19% 

HP  74.77% 81.63% 78.05%  58.33% 70.79% 63.96% 

TBA  80.77% 74.34% 77.42%  74.04% 60.63% 66.67% 

TVA  78.48% 78.48% 78.48%  69.62% 73.33% 71.43% 

Inception-v3 76.21% 76.32% 76.26% 76.20% 68.33% 68.36% 68.54% 68.28% 

HP  73.83% 79.80% 76.70%  66.04% 70.71% 68.29% 

TBA  78.85% 72.57% 75.58%  65.09% 69.70% 67.32% 

TVA  75.95% 76.92% 76.43%  75.00% 64.71% 69.47% 

ResNet-50 73.10% 73.26% 73.06% 73.07% 70.24% 70.52% 70.41% 70.24% 

HP  70.09% 77.32% 73.53%  66.04% 75.27% 70.35% 

TBA  75.96% 71.82% 73.83%  71.43% 71.43% 71.43% 

TVA  73.42% 69.88% 71.60%  74.36% 63.74% 68.64% 

Xception 75.86% 75.92% 75.82% 75.81% 73.45% 73.57% 73.43% 73.42% 

HP  74.77% 80.00% 77.29%  71.70% 76.77% 74.15% 

TBA  76.92% 72.73% 74.77%  73.33% 74.04% 73.68% 

TVA  75.95% 75.00% 75.47%  75.95% 68.97% 72.29% 

As it is illustrated in the Table 5.1.2, and Figure 5.1.4 the proposed method increases the 

overall accuracy for the BiT by 8%, for Inception-ResNet by 10%, for DenseNet201 by 

5%, for Inception-v3 by 8%, for ResNet-50 by 3%, and for Xception by 2%. The proposed 

method on our custom dataset performs the best when BiT-M is used as the encoder and 

achieves the highest accuracy, weighted average precision, weighted average recall, and 
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weighted average F1 score with values of 86.2%, 86.34%, 86.19% and 86.09%, 

respectively. On the other hand, performance of the model is relatively poor when 

ResNet-50 is used as the encoder with an accuracy, weighted average precision, weighted 

average recall, and weighted average F1 score with values of 73.10%, 73.26%, 73.06% 

and 73.07%, respectively. The structure of BiT-M is almost identical to ResNet-50, but 

the difference lies in the fact that BiT-M is an improved version of ResNet-50, specifically 

designed to facilitate domain adaptation. 

Furthermore, to compare different pre-training sets performance, we employed three 

different settings. During the first experimental setting, we employed publicly available 

UniToPatho dataset as the pre-training dataset, for the second experimental setting we 

utilized ImageNet trained models and fine-tuned them on our custom dataset. Finally, we 

employed ImageNet pre-trained models to fine-tune the models with UniToPatho 

database. As classifiers, three top performed models of the Sup-Con methodology from 

the Table 5.1.2 are employed. The experimental result for this comparison can be seen in 

the Table 5.1.3 The results show that the accuracies of the ImageNet pre-trained 

DenseNet, Inception-ResNet-v2 is improved by 2% when ImageNet trained models are 

pre-trained with UniToPatho database. However, for the same experiment, performance 

of the BiT-M is decreased by 4%. The reason for this decrease might be the samples of 

UniToPatho are cropped from only one magnification of a WSI, while our custom dataset 

contains WSI of four different magnification levels. Moreover, the number of samples for 

tubulovillous polyp type, tubular polyps, and hyperplastic polyp types are unbalanced for 

the UniToPatho, this might severely affect the performance of the BiT. On the other hand, 

ImageNet pre-trained BiT-M achieves the best accuracy of 86.2%.  
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Table 5.1.3 Accuracy results for modified Supervised Contrastive Learning with various encoders 

that are pre-trained on different pre-train dataset 

 UniToPatho ImageNet UniToPatho + ImageNet 

Model 

Ov. 
Acc. 
(%) 

Pre. 
(%) 

Rec 
(%) F1 

Ov. 
Acc. 
(%) 

Pre. 
(%) 

Rec 
(%) F1 

Ov. 
Acc. 
(%) 

Pre. 
(%) 

Rec 
(%) F1 

DenseNet-201 63.10 62.45 64.44 62.81 80.69 80.17 81.59 80.44 82.07 82.06 82.71 82.31 

HP  73.83 58.09 65.02  87.85 80.34 83.93  83.18 80.18 81.65 

TBA  57.69 66.67 61.86  80.77 75.68 78.14  78.85 76.64 77.73 

TVA  55.70 68.75 61.54  70.89 90.32 79.43  84.81 93.06 88.74 
InceptionResNet-
v2 72.41 71.97 72.97 72.03 77.63 77.76 78.12 77.78 80.69 80.30 81.11 80.47 

HP  82.24 69.29 75.21  75.89 80.95 78.34  88.79 77.87 82.97 

TBA  60.58 74.12 66.67  78.85 70.09 74.21  72.12 81.52 76.53 

TVA  74.68 75.64 75.16  78.48 84.93 81.58  81.01 84.21 82.58 

BiT-M 79.58 78.85 82.26 79.11 86.19 86.34 86.19 86.09 82.41 82.17 82.30 60.00 

HP  88.68 74.02 80.69  83.58 93.33 88.19  85.98 85.98 93.12 

TBA  84.62 78.57 81.48  87.88 86.57 87.22  81.73 78.70 94.60 

TVA  60.76 96.00 74.42  87.50 77.78 82.35  78.48 82.67 99.13 

Additionally, the hyperparameter optimization is implemented on the proposed method. 

Therefore, various learning rates, optimization methods and temperature values of the 

Sup-Con is implemented. In Figure 5.1.6, a standard box plot shows the Top-1 accuracy 

change for hyperparameters, learning rate, optimization method and temperature value. It 

can be observed that, the variance of the accuracy is low for the proposed method. 

Moreover, the best accuracy of 87.1% for the proposed method is achieved for the 

following parameters: Learning rate of 0.0005, Adam Optimizer, and temperature value 

of 0.05. 
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Figure 5.1.4 Hyperparamater stability analysis of the proposed method 

5.1.5 Generalization Test 

In order to assess the generalization ability of the proposed model, both the UniToPatho 

and custom collected datasets were employed. The performance of the proposed method 

was compared to that of the traditional Sup-Con method, as proposed by Khosla et al. 

[41], using both datasets. The models were fine-tuned separately on the two datasets. The 

results are presented in Table 5.1.4, and the ROC curves of the proposed method on the 

custom database and UniToPatho are shown in Figures 5.1.7 and 5.1.8, respectively. 

Additionally, the classification confusion matrices of the models for each dataset are 

displayed in Figure 5.1.9. The proposed method achieves an improvement of 6% and 9% 

in accuracy for the UniToPatho and custom databases, respectively, compared to the 

traditional Sup-Con method. Moreover, the proposed method outperforms other methods 

in the literature on the UniToPatho dataset, as those methods achieved accuracies of 

64.29% and 66.55% [70], [71]. 
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Table 5.1.4 Accuracy results for proposed model and traditional Sup-Con on custom collected dataset 

and UnitoPatho for generalization test 
 

Collected Dataset UniToPatho 
Model / 
Per Class 

Overall 
Accuracy 

Precision Recall  F1-
Score 

Overall 
Accuracy 

Precision Recall  F1-
Score 

Traditional 
Supervised 
Contrastive 
Learning 

75.17% 75.12% 76.04% 75.16% 63.95% 69.89% 63.98% 65.24% 

HP 
 

73.83% 77.45% 75.60% 
 

88.24% 90.91% 89.55% 
TBA 

 
81.73% 69.11% 74.89% 

 
74.04% 50.33% 59.92% 

TVA 
 

68.35% 83.08% 75.00% 
 

32.74% 55.22% 41.11% 
Proposed 
Method 

86.19% 86.34% 86.19% 86.09% 70.13% 71.77% 70.13% 70.28% 

HP 
 

83.58% 93.33% 88.19% 
 

70.59% 72.73% 71.64% 
TBA 

 
87.88% 86.57% 87.22% 

 
78.57% 64.71% 70.97% 

TVA 
 

87.50% 77.78% 82.35% 
 

57.78% 78.79% 66.67% 

 

 

Figure 5.1.5 ROC curve of the proposed method on our dataset 
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Figure 5.1.6 ROC curve of the proposed method on UnitoPatho 

 

Figure 5.1.7 Confusion matrix of the proposed method on our custom collected database (left) and 

UnitoPatho (right) 

 

5.1.6 Conclusion of the Study 

In this study, we proposed a novel approach for polyp classification in histopathology 

images by combining the improved Supervised Contrastive (Sup-Con) Learning and Big 

Transfer (BiT) methodologies. Our tailored version of Sup-Con employed BiT-M 

architecture as an encoder and achieved superior performance in all metrics when 

compared to state-of-the-art Deep CNN models in a supervised setting. Furthermore, we 

compared the performance of Sup-Con and traditional supervised learning and found that 

Sup-Con improved the overall accuracy by 5%.  
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The generalization ability of the proposed method is tested on the publicly available 

UniToPatho database. The proposed model achieves the accuracies of 87.1% and 70.3% 

for the custom collected dataset and UniToPatho dataset, respectively, outperforming 

other methods in the literature on UniToPatho dataset.  

Additionally, we explore the performance of various pre-training settings, which includes 

ImageNet pre-trained models as well as in-domain pre-trained models. To the best of our 

knowledge, this work is one of the first to explore in-domain pre-training with a publicly 

available dataset for polyp classification problem on histopathology images. The 

comprehensive experiments demonstrate that the performance of Deep CNN models 

increased when the ImageNet pre-trained models are fine-tuned on UniToPatho dataset. 

However, ImageNet pre-trained BiT model still achieves even higher accuracy. This 

shows the visual task adaptation performance of the BiT model on the proposed method.  

The performance of the Deep CNN models decreased when they are pre-trained from 

scratch by only using UniToPatho dataset. This is due to the fact that samples of the 

UniToPatho database are extracted from a fixed magnification level, while our custom 

dataset contains samples of different magnification levels.  

As a future work, other publicly available datasets which contains different magnification 

levels can be used as pre-training datasets. The grade of the polyps can be provided as 

diagnostic information for treatment in addition to the polyp classification. 
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Chapter 6 

6 Study 3 

6.1 Self-Supervised Contrastive Learning for 

Classification of Colon Polyps on Histopathology 

Images 

The field of medical image analysis faces challenges in obtaining a large number of 

labeled medical images, as labeling is a time-consuming and laborious task. Additionally, 

on-site labeling is often necessary due to patient confidentiality concerns. Self-supervised 

learning methods offer a potential solution, as they can make use of unlabeled data. 

Previous research has demonstrated the effectiveness of self-supervised pre-training 

approaches for medical image classification [44]. Self-supervised contrastive learning is 

one such approach, where an augmented version of an image is used to learn the latent 

features of the image. The model is trained so that two different augmentations of the 

same image should have similar representations. 

In previous studies of this thesis, supervised learning was performed on the labeled 

datasets. However, in this study, we aimed to address a significant challenge in the field 

of medical image analysis - namely, how to effectively use unlabeled data when only a 

limited number of labeled images are available for colon histopathology image 

classification. We believe that this is a crucial issue that needs to be addressed, and our 

study seeks to explore the use of self-supervised contrastive learning as a potential 

solution. By employing Task-specific Self-supervised Contrastive Learning (SSL) and 

pre-training Deep CNN models on the publicly available UniToPatho dataset without 

labels, we were able to fine-tune the models with our custom-collected data with labels 

and investigate the effectiveness of self-supervised contrastive learning for polyp 
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classification. Furthermore, we varied the contrastive learning algorithms by employing 

different setups of the contrastive model, including SimCLR, SimSiam, and Barlow 

Twins, with multiple backbone models such as ResNet-18, ResNet-50, and EfficientNet,  

to gain insights into which method worked best for our application.  

Self-supervised contrastive learning models have been widely used in medical image 

analysis tasks. For instance, Tellez et al. extracted patches from whole slide images and 

applied augmentations to learn the representations [95]. Azizi et al. used a SimCLR 

approach with multiple instances of the same image and compared it to baseline models 

such as BiT on various medical image datasets [89]. Stacke et al. examined the 

performance of contrastive learning approaches on histology images using in-domain pre-

training and ImageNet pre-training [26]. Ciga et al. used histopathology images from 

different organs for self-supervised contrastive learning [44].  

6.2 Methodology 

For the methodology applied in this study, it is worth highlighting the use of three distinct 

algorithms, namely SimSiam, SimCLR, and Barlow Twins, in creating the contrastive 

model, as well as the adoption of multiple backbone models such as ResNet-18, ResNet-

50, and EfficientNet. Additionally, to compare the efficacy of self-supervised learning 

versus supervised learning, the backbone models were pre-trained on the publicly 
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available UniToPatho dataset in an unsupervised setting and subsequently fine-tuned on 

our dataset.  An overview of the methodology is shown in Figure 6.2.1. 

 

 

Figure 6.2.1 Self-supervised learning framework 

6.3 Results and Discussions 

The rationale behind this study is investigation of how to effectively utilize unlabeled 

data when there are limited labeled images available, as the labeling process is time-

consuming and labor-intensive. Moreover, due to the confidentiality of patient data, 

labeling is often done on-site. Therefore, this study aims to explore the performance of 

SLL algorithms, which leverage both labeled and unlabeled data. The performance results 

of this study are presented in Tables 6.3.1, 6.3.2, and 6.3.3. Table 6.3.1 shows the results 

of various contrastive learning algorithms for different backbone classifiers, namely 

ResNet-18, ResNet-50, and EfficientNet. The overall accuracy, Precision, Recall, and F-

1 scores for each class are presented for each model, and a weighted average is given for 

each model's performance. The results show that ResNet-18 performs the best with an 

overall accuracy of 66.21% for the SimCLR algorithm. ResNet-50 achieves an overall 

accuracy of 56.21% for the SimSiam and Barlow-Twins algorithms. However, the 

performance of EfficientNet is below average, which might be due to the unbalanced 

nature of the UniToPatho dataset. EfficientNet has a Precision, Recall, and F-1 score of 

0% for the hyperplastic class, which is the minority class. This suggests that the classifier 

may be adversely affected if the unlabeled data used for self-supervised pretraining is 
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unbalanced. Therefore, it may be necessary to use simpler backbone models when 

employing self-supervised learning, as the nature of the unlabeled data is often unknown. 

Table 6.3.1 Accuracy results of the backbone models for different contrastive learning algorithms 
 

SimCLR SimSiam Barlow Twins 
Model Ov. 

Acc. 
Pre. Rec. F1 Ov. 

Acc. 
Pre. Rec. F1 Ov. 

Acc. 
Pre. Rec. F1 

ResNet-
18 

66.21
% 

67.30
% 

66.25
% 

65.89
% 

51.03
% 

54.13
% 

52.63
% 

47.20
% 

54.14
% 

56.02
% 

54.50
% 

52.87
% 

HP 
 

73.33
% 

61.68
% 

67.01
% 

 
63.33

% 
17.76

% 
27.74

% 

 
52.38

% 
41.12

% 
46.07

% 
TBA 

 
59.85

% 
78.85

% 
68.05

% 

 
49.73

% 
87.50

% 
63.41

% 

 
51.88

% 
79.81

% 
62.88

% 
TVA 

 
69.84

% 
55.70

% 
61.97

% 

 
49.35

% 
48.10

% 
48.72

% 

 
65.22

% 
37.97

% 
48.00

% 
ResNet-
50 

55.56
% 

57.44
% 

55.78
% 

54.88
% 

56.21
% 

58.89
% 

56.27
% 

55.53
% 

56.21
% 

58.24
% 

56.40
% 

55.63
% 

HP 
 

54.74
% 

48.60
% 

51.49
% 

 
55.21

% 
49.53

% 
52.22

% 

 
56.04

% 
47.66

% 
51.52

% 
TBA 

 
52.41

% 
74.51

% 
61.54

% 

 
52.35

% 
75.00

% 
61.66

% 

 
52.35

% 
75.00

% 
61.66

% 
TVA 

 
66.67

% 
40.51

% 
50.39

% 

 
71.11

% 
40.51

% 
51.61

% 

 
68.00

% 
43.04

% 
52.71

% 
Efficient
Net 

39.20
% 

27.25
% 

39.43
% 

32.19
% 

41.38
% 

29.06
% 

43.73
% 

34.60
% 

41.38
% 

29.35
% 

43.78
% 

34.70
% 

HP 
 

0.00% 0.00% 0.00% 
 

0.00% 0.00% 0.00% 
 

0.00% 0.00% 0.00% 

TBA 
 

49.65
% 

68.27
% 

57.49
% 

 
54.07

% 
70.19

% 
61.09

% 

 
54.62

% 
68.27

% 
60.68

% 
TVA 

 
29.75

% 
47.47

% 
36.58

% 

 
30.32

% 
59.49

% 
40.17

% 

 
30.63

% 
62.03

% 
41.00

% 

In addition, we conducted experiments to compare the performance of self-supervised 

pre-training with training the backbone models from scratch on our custom collected data. 

The results are presented in Table 6.3.2. It is observed that self-supervised pre-training 

improved the accuracy of ResNet-18 by 16.9%, while the performance of ResNet-50 and 

EfficientNet are comparable with supervised learning. These results suggest that utilizing 

the unlabeled data with self-supervised pre-training can improve the performance, 

especially for ResNet-18, compared to training the models from scratch on a limited 

number of samples. 

Furthermore, the performance of self-supervised learning was compared with supervised 

learning using transfer learning and fine-tuning on the ImageNet pre-trained classifiers. 

The results are presented in Table 6.3.3. Fine-tuning the ImageNet pre-trained models 

produced promising results, with the best accuracy of 75.17% achieved when EfficientNet 

was fine-tuned on the custom collected dataset. Transfer learning, on the other hand, did 

not perform well due to domain mismatch. However, fine-tuning handled domain 

adaptation well. It can be concluded that SSL outperforms transfer learning since there is 
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no domain mismatch between the pre-training dataset and the downstream task of interest, 

as opposed to transfer learning where there may be domain mismatch.  

Table 6.3.2 Accuracy results of the backbone models that are trained from scratch on labeled data 

Model Overall 
Accuracy 

Precision Recall  F1 

ResNet-18 49.31% 53.48% 50.09% 48.85% 

HP 
 

69.39% 31.78% 43.59% 

TBA 
 

56.92% 71.15% 63.25% 

TVA 
 

31.53% 44.30% 36.84% 

ResNet-50 56.55% 58.26% 56.69% 55.79% 

HP 
 

57.14% 48.60% 52.53% 

TBA 
 

53.02% 75.96% 62.45% 

TVA 
 

66.00% 41.77% 51.16% 

EfficientNet 42.07% 29.92% 44.53% 35.28% 

HP 
 

0.00% 0.00% 0.00% 

TBA 
 

55.47% 68.27% 61.21% 

TVA 
 

31.48% 64.56% 42.32% 

 

Table 6.3.3 Accuracy results of transfer learning and fine tuning for the pre-trained backbone models 
 

Transfer Learning Fine Tuning 
Model Overall 

Accuracy 
Precision Recall  F1 Overall 

Accuracy 
Precision Recall  F1 

ResNet-18 50.69% 59.49% 48.87% 47.30% 71.38% 72.13% 71.44% 70.97% 

HP 
 

45.88% 83.18% 59.14% 
 

70.80% 74.77% 72.73% 

TBA 
 

80.00% 26.92% 40.29% 
 

76.92% 57.69% 65.93% 

TVA 
 

49.18% 37.97% 42.86% 
 

67.68% 84.81% 75.28% 

ResNet-50 27.15% 8.10% 29.83% 12.74% 74.48% 74.99% 74.30% 74.01% 

HP 
 

0.00% 0.00% 0.00% 
 

73.73% 81.31% 77.33% 

TBA 
 

0.00% 0.00% 0.00% 
 

78.75% 60.58% 68.48% 

TVA 
 

27.15% 100.00% 42.70% 
 

71.74% 83.54% 77.19% 

EfficientNet 45.17% 48.90% 45.21% 45.48% 75.17% 75.60% 75.50% 75.24% 

HP 
 

48.54% 46.73% 47.62% 
 

77.55% 71.03% 74.15% 

TBA 
 

61.54% 38.46% 47.34% 
 

80.21% 74.04% 77.00% 

TVA 
 

33.61% 51.90% 40.80% 
 

67.71% 82.28% 74.29% 
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6.4 Conclusions of the Study 

 In this study, we investigated the effectiveness of task-specific Self-Supervised Learning 

(SSL) in leveraging unlabeled data. To comprehensively evaluate the performance of 

contrastive learning algorithms, experiments were conducted on different backbone 

classifiers, including ResNet-18, ResNet-50, and EfficientNet. The results showed that 

ResNet-18 achieved the best overall accuracy of 66.21% using the SimCLR algorithm, 

while ResNet-50 achieved an overall accuracy of 56.21% with the SimSiam and Barlow-

Twins algorithms. However, Efficient Net’s performance was below average, possibly 

due to the imbalanced nature of the UniToPatho dataset. Therefore, simpler backbone 

models may be necessary when using self-supervised learning since the unlabeled data's 

nature is usually unknown. 

To compare self-supervised pre-training with training backbone models from scratch on 

custom collected data, experiments were conducted. The results showed that self-

supervised pre-training improved ResNet-18's accuracy by 16.9%, while ResNet-50 and 

EfficientNet's performance were comparable with supervised learning. Hence, utilizing 

unlabeled data with self-supervised pre-training can improve performance, particularly 

for ResNet-18. 

Moreover, the performance of self-supervised learning was compared with supervised 

learning using transfer learning and fine-tuning on ImageNet pre-trained classifiers. Fine-

tuning the ImageNet pre-trained models produced promising results, with EfficientNet 

achieving the best accuracy of 75.17% on the custom collected dataset. On the other hand, 

transfer learning did not perform well due to domain mismatch. It can be concluded that 

SSL outperforms transfer learning since there is no domain mismatch between the pre-

training dataset and the downstream task of interest. However, the SSL's performance 

was challenged when compared to fine-tuning with ImageNet pre-trained models. As 

mentioned in the literature, the limited number of labels available for generating accurate 

pseudo-labels reduces the effectiveness of SSL and can lead to misleading training of the 

backbone network [96], [97] 
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Chapter 7 

7 Conclusions and Future Prospects  

 

7.1 Conclusions 

Histopathology images are crucial for distinguishing adenomatous polyps from non-

adenomatous tissues, such as hyperplastic polyps, inflammation, and normal tissue. 

However, this classification heavily relies on the expertise level of pathologists and is a 

time-consuming process. An automated system that can accurately distinguish between 

histopathology images would therefore be advantageous. Although there have been 

numerous studies on polyp classification using pathology images in computer-aided 

diagnosis systems, there is no complete solution available yet. Most researchers propose 

methods that are specific to their particular datasets. In this thesis, different deep learning 

methods and frameworks are developed for the automatic classification of adenomatous 

polyps and polyp types. The histological slides used in this study were collected from 

Kayseri City Hospital, Kayseri, Turkey, and included samples from 182 patients who 

underwent colorectal cancer screening since May 2018, resulting in a total of 359 slides 

belonging to adenomatous polyps (tubular, tubulovillous/villous) and 181 slides 

belonging to hyperplastic polyps. It is important to note that new data was collected 

during this thesis work, with the first study involving 82 patients and the last two studies 

involving 182 patients. To ensure accurate labeling, two expert pathologists labeled each 

slide at different magnification levels. Additionally, rectangular bounding boxes were 

manually annotated around the polyps at larger magnifications (i.e., x2.5 and x5) to 

indicate the region of interest. The dataset is composed of 346 samples belonging to 

tubulovillous polyp type (TVA), 340 samples belonging to tubular polyps (TBA), and 

370 samples belonging to hyperplastic polyps (HP), resulting in a total of 1056 samples 

used in this study. Additionally, in order to evaluate the generalization ability of the 
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developed frameworks, two publicly available datasets were utilized. These datasets were 

used to test the performance of the models on histopathology images beyond the custom-

collected dataset from Kayseri City Hospital. 

The differentiation of adenomatous polyps from non-adenomatous tissues on 

histopathology images is a key diagnostic challenge in the clinical workflow of polyp 

classification. To address this, firstly, we developed a computer-aided diagnosis system 

for automatic detection of adenomatous polyps on colon histopathology images. Our 

proposed method integrated stain normalization techniques with ensemble variants of 

ConvNeXt, a recent and prominent convolutional deep learning architecture, and 

achieved improved generalization by using various stain normalization techniques. The 

proposed method also included network modifications at the image representation levels 

to tailor it to the problem. We evaluated the classification performance of the proposed 

method on three datasets and found that it outperformed state-of-the-art deep 

convolutional neural network models on our dataset. The model achieved an accuracy of 

95% on our dataset and 91.1% and 90% on EBHI and UniToPatho datasets, respectively. 

Additionally, we investigated the Grad-Cam results of the proposed model, which 

revealed regions where cancer indicators potentially reside, demonstrating the model's 

high generalization ability across different datasets.  

After the work on automatic detection of adenomatous polyps, a computer-aided 

diagnosis system was developed for multi-class classification of hyperplastic, tubular, and 

tubulovillous/villous polyps using colon histopathology images. The proposed 

framework combined Supervised Contrastive Learning with Big Transfer to improve 

learning of hard positives and negatives by leveraging the visual task adaptation of Big 

Transfer. The model outperformed state-of-the-art Deep Convolutional Neural Network 

models, achieving accuracies of 87.1% and 70.3% on our dataset and UniToPatho dataset, 

respectively, demonstrating its generalization ability. A comparison of the proposed 

method with traditional supervised contrastive learning algorithm on our dataset and 

UniToPatho dataset showed that the proposed model performed better by utilizing visual 

domain adaptation. 

In the final study, the aim was to address the challenge of utilizing unlabeled images along 

with limited labeled data. To overcome this issue, a self-supervised contrastive learning 

approach was employed for pre-training of the model on the unlabeled data. Furthermore, 
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the performance of the backbone models of SSL was compared with fine-tuning/transfer 

learning of the ImageNet pre-trained backbone models. The results showed that SSL 

outperformed transfer learning with ImageNet pre-trained models due to the absence of 

domain mismatch, and the downstream task of interest being the same for SSL. 

Despite the promising results achieved in this thesis, there are still several challenges in 

the area of automatic classification of histopathology images of colorectal polyps. One 

major challenge is the lack of standardized datasets and benchmarks for evaluating 

different methods, which can hinder the comparison and reproducibility of results across 

studies. Another challenge is the interpretability of deep learning models, which can be 

critical in medical applications where decision-making must be transparent and 

explainable. Additionally, the high variability in histopathology images due to factors 

such as staining techniques and tissue preparation can pose a challenge for developing 

robust and generalizable models. Addressing these challenges will require collaboration 

between the medical and computer science communities, as well as the development of 

standardized datasets and tools for model interpretation and evaluation. 

In conclusion, this study presents a deep learning-based approach for the automated 

classification of colorectal polyps using histopathology images. The results demonstrate 

the potential of the proposed method in accurately differentiating between adenomatous 

and non- adenomatous polyps and multi-class classification of polyp types. The use of 

transfer learning with pre-trained models and data augmentation techniques played a 

crucial role in achieving these results. Despite the promising results, the study has some 

limitations, such as the small dataset size and the absence of grading information for 

adenomatous polyps. It is important to note that while the proposed methods have been 

validated on the UnitoPatho dataset, further validation on larger and more diverse datasets 

could potentially improve the generalizability and robustness of the models. Nonetheless, 

this study serves as a foundation for future research towards developing an automated 

tool that can aid in the early detection and diagnosis of colon polyps, ultimately leading 

to improved patient outcomes. 
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7.2 Societal Impact and Contribution to Global 

Sustainability  

In 2020, 1.93 million new cases of colorectal cancer (CRC) were diagnosed worldwide, 

resulting in 940,000 deaths. According to global cancer statistics published in 2021, CRC 

is the one of the most common cause of cancer death, and it is projected that by 2040, 

new cases will increase to 3.2 million. The increase in the number of pathological colon 

biopsy slides over the past decade has led to a growing demand for cancer screening 

programs. Early detection and removal of cancerous tissue for colon cancer can lower the 

mortality rate, but the increased workload of pathologists due to the rise in biopsy 

volumes makes it increasingly difficult to detect the disease at an early stage. Given the 

increasing workload of pathologists and the difficulty of detecting early-stage colon 

cancer, a system can be developed to alleviate the labor-intensive work and minimize the 

errors associated with traditional approaches. This study aimed to explore deep learning 

algorithms on histopathology images to assist pathologists in the decision-making 

process. Additionally, the use of the Grad-Cam method in this study not only improved 

the explainability of the classification model but also has the potential to guide 

pathologists during their diagnosis. The Grad-Cam method provides an attention map on 

histopathology images by coloring the important sections of the image. By highlighting 

the areas of interest in the histopathology images, the Grad-Cam printouts can provide 

additional diagnostic information and assist pathologists in making more informed 

decisions. As such, this study aligns with the third goal of the United Nations Sustainable 

Development Goals, which aims to promote good health and well-being. 

7.3 Future Prospects 

A future research could involve exploring the grading of polyps by obtaining information 

on the grades of the adenomatous polyps. This additional diagnostic information could 

prove valuable for the classification of polyps. Furthermore, in this study, only the x2.5 

and x5 magnifications of the histopathology images were used for region of interest 

cropping. To increase the dataset size and variety, manual cropping of patches can be 

performed for all magnification levels using overlapping windows and labeling of 

individual patches by an expert. This can potentially lead to the development of more 
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robust and accurate classification models. To learn more fine details about the cancerous 

cells, various Deep CNN algorithms can be trained on these patches. As a future work, 

Self-Supervised Learning algorithms can be trained on the unlabeled data obtained from 

the same source as the labeled data (i.e., Kayseri City Hospital) to improve the 

performance of the model. Additionally, the fusion of colonoscopy images and 

histopathology images can be explored to provide more comprehensive diagnostic 

information. The network outputs of both modalities can be combined to make a more 

informed decision.  

Another potential future research direction involves following up with patients over a 

longer period of time, such as one year, to obtain ground truth data on the true nature of 

the polyps. This would involve obtaining information on whether the polyps were benign 

or malignant and comparing it with the model's predicted classification. This would not 

only provide valuable information on the accuracy of the classification model but also 

help identify potential areas for improvement. Additionally, the long-term follow-up of 

patients would provide insight into the progression of colorectal cancer, leading to the 

development of more effective screening and diagnostic methods. 
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