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Numerous biological environments have been characterized with the advent of 
metagenomic sequencing using next generation sequencing which lays out the 
relative abundance values of microbial taxa. Modeling the human microbiome 
using machine learning models has the potential to identify microbial biomarkers 
and aid in the diagnosis of a variety of diseases such as inflammatory bowel 
disease, diabetes, colorectal cancer, and many others. The goal of this study is to 
develop an effective classification model for the analysis of metagenomic datasets 
associated with different diseases. In this way, we  aim to identify taxonomic 
biomarkers associated with these diseases and facilitate disease diagnosis. The 
microBiomeGSM tool presented in this work incorporates the pre-existing 
taxonomy information into a machine learning approach and challenges to solve 
the classification problem in metagenomics disease-associated datasets. Based 
on the G-S-M (Grouping-Scoring-Modeling) approach, species level information 
is used as features and classified by relating their taxonomic features at different 
levels, including genus, family, and order. Using four different disease associated 
metagenomics datasets, the performance of microBiomeGSM is comparatively 
evaluated with other feature selection methods such as Fast Correlation Based 
Filter (FCBF), Select K Best (SKB), Extreme Gradient Boosting (XGB), Conditional 
Mutual Information Maximization (CMIM), Maximum Likelihood and Minimum 
Redundancy (MRMR) and Information Gain (IG), also with other classifiers such 
as AdaBoost, Decision Tree, LogitBoost and Random Forest. microBiomeGSM 
achieved the highest results with an Area under the curve (AUC) value of 0.98% 
at the order taxonomic level for IBDMD dataset. Another significant output of 
microBiomeGSM is the list of taxonomic groups that are identified as important 
for the disease under study and the names of the species within these groups. The 
association between the detected species and the disease under investigation 
is confirmed by previous studies in the literature. The microBiomeGSM tool 
and other supplementary files are publicly available at: https://github.com/
malikyousef/microBiomeGSM.
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1 Introduction

A diverse community of trillions of microorganisms, including 
bacteria, archaea, viruses, as well as microbial eukaryotes like fungus, 
protozoa, and helminths, comprise the human microbiome. Human 
microbiome has an impact on overall human health and on 
homeostasis by influencing immunological function and by actively 
contributing to human metabolism (Marcos-Zambrano et al., 2021). 
Several disease-related conditions have been connected to a rupture 
in the stable interaction between gut epithelial cells and the gut 
microbiota (Petersen and Round, 2014). The number of microbiome-
related studies has significantly risen in the last 10 years, and large 
population studies such as the American Gut Project (McDonald 
et al., 2018), the metagenomics of the Human Intestinal Tract (Qin 
et  al., 2010), and the Human Microbiome Project (The Human 
Microbiome Project Consortium, 2012) have greatly expanded the 
amount of information currently accessible on the content and 
function of the human gut microbiome. The information from these 
studies is crucial for further research on host-microbiome linkages 
and how they relate to the commencement and evolution of many 
complicated diseases.

The community of microbes performs a variety of tasks for the 
host, including facilitating the uptake of nutrients (Martin et al., 2019), 
preserving homeostasis (Ohland and Jobin, 2015), fending off 
pathogens (Pickard et al., 2017), regulating immunological response 
(Mendes et al., 2019), among many others. Understanding these tasks 
and revealing the dialog between the bacterium and the host may help 
in developing plans for preserving the health status, treating diseases. 
In the last few decades, there has been an increased interest in 
researching microbial communities (and their associations) that live 
in various habitats, from the gut to the biosphere. Technological 
advancements lead to lower costs for 16S and metagenomic 
sequencing, greater sequencing resolution and depth (Levy and 
Myers, 2016). Synchronous development of brand-new techniques for 
high throughput characterization of different -omic data types, such 
as lipidomics, metabolomics, metagenomics, metatranscriptomics and 
metaproteomics (Muller, 2019) made this possible. However, it is a 
difficult task to experimentally detect the inter species microbe host 
associations due to several other difficulties relating to scale, scope, 
feasibility, and availability of samples for concurrent -omic readouts 
(Fritz et al., 2013). Computational approaches can circumvent some 
of these constraints, improving our knowledge of microbial 
associations (Dix et al., 2016).

The interactions between the host and the microbiome are critical 
factors affecting human health and disease. Therefore, recently there 
has been an exponential increase in microbiome studies. Many 
research efforts have been devoted to predicting disease based on 
taxonomic profiles derived from metagenomic sequencing data. In 
these studies, machine learning methods are used to predict the 
microbiome interactions associated with diseases. Beyond simply 
assessing their predictive capabilities using machine learning, these 
studies also highlight the importance of specific microbiomes as 
potential biomarkers for disease. In literature, there are numerous 
articles investigating microbiomes associated with three specific 
diseases: Colorectal Cancer (CRC), Type 2 Diabetes (T2D) and 
Inflammatory Bowel Disease (IBD). In particular, several studies 
aiming to uncover microbiomes related to T2D are summarized in 
Gao et al. (2018), Gurung et al. (2020), Cena et al. (2023), and Li 

R. et al. (2023). Microbiomes associated with CRC are reviewed in 
Huybrechts et al. (2020), Tabowei et al. (2022), Negrut et al. (2023), 
and Zwezerijnen-Jiwa et  al. (2023). The studies of Soueidan and 
Nikolski (2016), LaPierre et al. (2019), Marcos-Zambrano et al. (2021), 
Lim et al. (2022), Hsu et al. (2023), and Mah et al. (2023) reviews the 
microbiomes associated with IBD.

More specifically, Deschênes et  al. (2023) employed machine 
learning techniques to predict diseases by representing microbiomes 
using gene-based representations and taxonomic profiles. Through the 
creation of taxonomic profiles from shotgun metagenomic data, they 
identified significant taxa using their proposed methodology. They 
conducted experiments for five different diseases, namely type 2 
diabetes, obesity, liver cirrhosis, colorectal cancer, and inflammatory 
bowel disease. For both IBD and CRC disease, the datasets used in 
Deschênes et al. (2023) are the same datasets used by the proposed 
approach in this study. In their study, they assessed the performance 
of nine distinct classifiers, including random forest, decision tree, two 
support vector machines with a linear kernel, random set coverage 
machine (rSCM), two logistic regressions, SVM with a radial basis 
function kernel (SVMrbf), and an ensemble algorithm derived from 
SCM (set coverage machine). For each dataset, they applied embedded 
feature selection techniques, such as random forest and ranking 
features based on resulting models, followed by machine learning 
model application. They reported improved classification performance 
for certain diseases by employing taxonomic profiling. The most 
effective results in taxonomic profiling were achieved using the 
random forest algorithm for liver cirrhosis, yielding an AUC of 88%. 
Their study demonstrated the effective use of converting microbiome 
data into taxonomic representation data for disease prediction. They 
reported that Lachnospiraceae microbiome is found as associated with 
T2D and it can be considered as a biomarker for this disease.

Sharma et  al. (2020) predicted disease states using machine 
learning methods by examining related Operational Taxonomic Units 
(OTUs) at the same phylum taxonomic level, exploiting the 
connections among OTUs at this taxonomic rank. Their investigation 
focused on the relationship between disease and the microbiome, 
utilizing shotgun datasets for two distinct diseases, T2D and Cirrhosis. 
The dataset they chose for T2D analysis is the same as the dataset used 
by our proposed tool. They applied their proposed method, which 
they called “TaxoNN,” to a dataset with 174 cases and 170 controls for 
T2D (Qin et al., 2012) and a dataset with 118 cases and 114 controls 
for cirrhosis (Qin et al., 2014). TaxoNN is a Deep Learning based 
multi-layered approach to group OTU information based on phylum 
clusters. It trains clusters containing OTUs that share the same phylum 
separately using Convolutional Neural Networks (CNNs). It combines 
features from each cluster to enhance prediction accuracy via an 
ensemble learning technique. Their proposed method was evaluated 
using six different classifiers, including Random Forest, Gaussian 
Bayes Classifier, Naive Bayes, Ridge Regression, Lasso Regression, and 
Support Vector Machines. The TaxoNN method yielded the highest 
result, achieving an AUC of 92% for cirrhosis and 75% for 
T2D. Moreover, TaxoNN identified microbiomes at the level of three 
dominant phyla (Firmicutes, Proteobacteria, and Actinobacteria) for 
both diseases, highlighting their impact on the diseases.

Giliberti et al. (2022) investigated the influence of the relative 
abundance of microbial taxa on host phenotype classification using 
human metagenomes. They employed machine learning methods to 
construct species-level taxonomic profiles and accurately detected the 
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presence of microbial taxa. In their evaluation scheme, they 
encompassed a total of 4,128 samples from 25 shotgun metagenomic 
datasets. Among the datasets used in their study, T2D dataset is same 
with the dataset used in this study. They also explored the effect on 
disease prediction using relative abundance values at three different 
taxonomic levels: genus, family, and order. Employing the Random 
Forest classification algorithm on species level dataset, they achieved 
the best performance for IBD dataset, across other datasets containing 
seven distinct disease categories (atherosclerotic cardiovascular 
disease, Alzheimer’s disease, Behçet’s disease, colorectal cancer, 
irritable bowel disease, type 1 diabetes, and type 2 diabetes). They 
identified statistically significant microbiomes for the diseases they 
identified. Among these microbiomes for these cases, the most 
significant result was obtained for Clostridium and this microbiome 
was followed by Streptococcus and Ruthenibacterium.

Pasolli et  al. (2016) investigated the utility of microbiomes in 
disease prediction using metagenomic datasets for five different 
diseases: liver cirrhosis, CRC, IBD, obesity, and T2D. Among the 
datasets used in this study, T2D dataset is also utilized within this 
study. They conducted species-level prediction using microbiome 
profiles at the species level derived from metagenomic data. Their 
analysis encompassed a total of 2,424 shotgun metagenomic data 
samples from eight distinct studies. Employing cross-validation 
techniques, they compared classification outcomes using two widely 
employed classifiers in metagenomic data analysis, Random Forest 
and Support Vector Machine. In addition to these classifiers, they also 
evaluated the effectiveness of elastic network, neural network, and 
multiple regression methods. In addition to predicting diseases using 
microbiome data, they highlighted prominent microbiomes related to 
these diseases. Notably, they identified the Peptostreptococcus 
microbiome for colorectal cancer, the Streptococcus microbiome for 
T2D, and the Lachnospiraceae microbiome for IBD as influential 
microbiomes in disease prediction. Collectively, these papers advance 
our understanding for the potential role of the microbiome in these 
diseases using a variety of approaches and analyzes.

Identifying microbial taxa that may cause disease development 
and identifying microbial taxa whose impact varies depending on 
their abundance is one of the major goals of human microbiome 
studies. Uncovering the influence of taxons can help to the 
investigation of disease development processes and hence can 
contribute to the emergence of new approaches for prevention of these 
diseases (Zhang W. et al., 2022). Computational methods dealing with 
microbial relative abundances face several challenges in drawing 
meaningful conclusions due to their complex data structures and 
properties. Traditional computational methods are inadequate to 
assess microbiome population effects in isolation and to produce 
effective results without considering the diversity of the human 
microbiome. Recent research has used machine learning (ML) 
approaches to evaluate data from the human microbiome, more 
specifically to identify and understand the diversity of taxonomy and 
function within microbial communities, and to assess the impact of 
these factors on human health (Topçuoğlu et al., 2020). The use of ML 
in microbiome studies can be summarized as follows:

 • ML models have been created to promote taxonomic 
representation and differentiation in microbiology.

 • ML has been used for disease prediction by inferring 
host phenotypes.

 • ML facilitates the characterization of disease-specific microbial 
signatures to classify patients based on microbial communities 
(Marcos-Zambrano et al., 2021).

In this paper, we present a novel approach, microBiomeGSM, to 
detect disease-associated taxonomic biomarkers by developing an 
efficient machine learning model based on the Grouping, Scoring and 
Modeling (G-S-M) approach. We  have analyzed taxonomically 
transformed microbiome sequencing datasets with our proposed 
machine learning method. In this way, we aim to reveal the impact of 
the identified taxonomic biomarkers on specific diseases. To this end, 
our study contributes to the diagnosis and treatment of the disease 
under investigation. The proposed approach is applied on 
metagenomic datasets associated with 4 different datasets; and the 
taxonomic groups that have an impact on disease under study are 
identified. In the data preprocessing step, the MetaPhlAn tool 
developed by Ditzler et al. (2015) is used to extract taxonomic data 
from microbiome sequencing data. In the first component (grouping 
component) of microBiomeGSM, the species identified in a sample 
are grouped according to the level of taxa known to be associated with 
them. In the second component (scoring component) of 
microBiomeGSM, importance scores are assigned to taxon groups 
using inherent machine learning techniques. The score is a predictor 
of how well a sample can be classified based on the abundance values 
of the species included in that taxon group. In the final (modeling) 
component of microBiomeGSM, three different outputs are generated. 
The first output is the performance metrics of the developed machine 
learning model. The second output is the list of important taxa groups 
associated with the disease under study, and these taxonomic features 
can be  considered as biomarkers. The third output is the species 
associated with the taxa groups. Performance evaluation of 
microBiomeGSM is assessed separately for each disease, and for 3 
different taxonomic levels (genus, family, order). Feature selection 
algorithms are applied to the same dataset in order to comparatively 
evaluate the performance of microBiomeGSM. The biological 
relevance of the identified taxon groups at genus, family, order levels 
for different diseases is discussed with reference to existing knowledge 
in the literature.

2 Materials and methods

2.1 Dataset

The data used in this study are obtained from the NCBI Sequence 
Read Archive (SRA045646, SRA050230) provided by Qin et al. (2012) 
for T2D; accession number PRJNA398089  in the SRA for the 
Integrative Human Microbiome Project for IBDMDB (Beghini et al., 
2021). IBD dataset is obtained from the MetaHit project (Marco-
Ramell et al., 2018) (ERA000116). The CRC metagenomic dataset 
containing 1,262 samples was created by Beghini et  al. (2021). 
Microbiome sequencing data is classified into disease states based on 
the metadata associated with them. To ensure data quality, we applied 
quality filtering to meet the standards outlined in the Human 
Microbiome Project Consortium SOP (2012), as referenced in Thomas 
et  al. (2019). This procedure allowed us to categorize the raw 
sequencing data according to relevant disease states, enabling our 
subsequent analyzes. The microbiome samples were associated with 
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TABLE 2 Statistical information about the numbers of features within a 
group, shown separately for each taxonomic level.

# Dataset
Genus 
(avg/

max/min)

Family 
(avg/

max/min)

Order 
(avg/max/

min)

1 CRC 3.51 /52/1 9.16 /76/1 18.71/202/ 1

2 IBDMDB 3.09 /34/1 7.50 /64/1 13.44/163/ 1

3 IBD 3.24 /61/1 8.22 /65/1 17.32/195/1

4 Type 2 diabetes 3.24 /61/1 8.22 /65/1 17.32/195/ 1

Sen is the sensitivity, Spe is the specificity, AUC is the Area Under the Curve.

the microbial species of origin (taxa) using the MetaPhlAn tool, and 
the relative abundance composition for each taxon was generated 
accordingly. These taxa and their relative abundances serve as features 
or variables in our machine learning approaches. MetaPhlAn first 
assigns reads to microbial clusters using clade-specific genes for 
assignment. It then presents the relative abundance of microbial taxa 
based on these readings. In this study, the assignment to microbial 
species of origin (taxa) was determined for each DNA sequence using 
the MetaPhlAn tool. The relative abundance value is normalized by 
dividing the number of reads for each taxonomic level by the total 
number of reads for only one sample. In this way, the taxonomic 
abundance values are expressed as real numbers in the range [0,1] 
with a sum of 1 for each sample. Samples with less than 1 million total 
reads were not included in our study. For each sample, we determined 
the diversity of disease-relevant microbiomes, where diversity 
represents the presence and relative abundance of microorganisms 
(Alatawi et al., 2022).

The four microbiome datasets used to evaluate the 
microBiomeGSM tool are listed in Table 1. The table presents the 
number of samples in each dataset and the number of samples that are 
labeled as positive. Positive samples refer to patients, while negative 
samples refer to controls. Each dataset contains the abundance values 
of the species, which we consider as features. We have considered 3 
taxonomic levels for creating the groups, i.e., genus, family, and order. 
For each dataset, the number of extracted groups is listed in the 
corresponding column, while ‘-’ denotes missing information.

Statistical information regarding the numbers of features in each 
group is given in Table 2. For each data set and for each taxonomic 
level (genus, family, and order), the average, maximum, and minimum 
numbers of features within a group are given.

Supplementary Table S1 shows the distribution of the groups 
based on their sizes for the IBDMDB dataset. The numbers in the table 
indicate the number of groups that have the specified number of 
species for that specific taxonomic level. There are 187, 77, and 43 

groups for genus, family and order levels, respectively. About 90% of 
the groups at the order level, about 90% of the groups at the family 
level, and about 97% of the groups at the genus level contain 20 or 
fewer species for the IBDMDB dataset.

2.2 microBiomeGSM

Our proposed method, microBiomeGSM, consists of three main 
components: Grouping, Scoring, and Modeling (G-S-M). The G-S-M 
approach has been used in other studies that consider the pre-existing 
biological knowledge (Yousef et al., 2019, 2021a,c, 2022a; Qumsiyeh 
et al., 2022; Yousef and Voskergian, 2022; Ersoz et al., 2023; Jabeer 
et  al., 2023). Additionally it was modified to integrate two-omics 
datasets such as the miRcorrNet and miRModuleNet tools (Yousef 
et al., 2021a, 2022b); and even to integrate 3 omics datasets such as 
3Mint tool (Unlu Yazici et  al., 2023). Interested readers can find 
further details about those approaches in our recent reviews (Yousef 
et al., 2021b; Kuzudisli et al., 2023).

Utilizing the G-S-M approach, microBiomeGSM performs a 
search to identify the most important taxonomic groups in disease-
associated metagenomic datasets. The relative abundance values of the 
species within the group can be checked for each sample; and the 
generated model decides whether the sample has the disease or not. 
By focusing on a specific taxonomic level, we can use the G component 
to find the most significant group for the disease under study. This 
approach provides the advantage of focusing on either the macroscopic 
or microscopic view of the most important group to distinguish 
between healthy samples and patient samples. An overview of the 
steps performed in microBiomeGSM is presented in Figure 1.

Let X be  the two-class dataset consisting of the species in the 
columns, and samples in the rows including the class labels (1 
denoting the disease state and 0 denoting the healthy state). To 
understand the approach in detail, let us assume that the taxonomic 
level is selected as “genus” for the “Select taxa rank” step in Figure 1. 
The input Xabd (abundance matrix) is first split into a training set 
(Xtrain) and a test set (Xtest) with a ratio of 80:20 based on the class 
labels. Denote by S the feature space of all species in Xabd and by Ugenus 
all unique genera for S. Grp{} denotes the selection function of each 
Ugenus in S, grouping all species on the basis of similar genuses. 
Grp{Ugenus

i for S} represents each genus in S, with all the species 
grouped by genus. For example, if we take Alistipes as one of the genus 
in Ugenus, we get the following when we apply the Grp function.

Grp{Ugenus
i}, where i = Alistipes and ∈ S.

Grp{Alistipes} = {alistipes_finegoldi, alistipes_indistinctus, 
alistipes_inops, alistipes_shahii}.

TABLE 1 The list of datasets used to test the model.

# Dataset # of Samples # of positives
# of features 

(Species)
# of Groups 

(Genus)
# of Groups 

(Family)
# of Groups 

(Order)

1 CRC 1,262 600 912 261 100 49

2 IBDMDB 1,638 1,209 579 187 77 43

3 IBD 382 148 1,456 448 177 84

4 T2D 290 155 1,456 448 177 84

Number of samples who have positive class label are shown in the second column. The number of features/Species is shown in the third column. Number of groups created at Order, Family 
and Genus taxonomic levels are listed at the 4-6th columns, respectively.
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Similarly, this approach is applied to all genuses that are present 
in Xabd, and a list of genus groups is created, as shown in Figure 1 after 
the select taxa rank step. This is repeated for the three taxonomic 
levels identified.

When Figure 1 is examined, firstly, in the grouping component G, 
for all the groups of genus, we partition Xtrain into sub data denoted as 
sub_dx. Following the earlier example of Alistipes, this group yields 
sub_dalistipes which is created from Xtrain. The sub_dalistipes contains the 
labels of the samples, but the feature space is restricted only to species 
within the Alistipes genus. This is applied to all different genera created 
in the prior step, so we have multiple subsets of data with a feature space 
specified by genus. Secondly, in the scoring step S, the generated sub_d 
is trained on a Random Forest classifier with 5-fold cross-validation 
with randomized stratified shuffling. Each sub_d is given a score equal 
to the mean of the accuracy over all foldings based on the prediction of 
the labels. Each sub_d is scored and then sorted based on the score. The 
top k groups with the highest score are used for the subsequent step. 
The value chosen for k is 10, but other values for k have been tested. 
Following the example of selecting genus as the taxonomic level, the 
top 10 genus groups that show strong discriminative ability are used to 
build the classification model. Thirdly, in the modeling component, the 
species from the top 10 genus groups are used to train a Random Forest 
model with 100-fold Monte Carlo Cross-Validation (MCCV). The top 

ranking set of species corresponding to the top ranked group is trained 
on Xtrain and then tested on Xtest. Then, the second set of species 
corresponding to the second highest scoring group is aggregated with 
the top scoring set of species; and then used to train and test the model. 
This process is repeated until all species in the top 10 ranked genus 
groups are aggregated; and used to train and test the classifier. This 
whole process is repeated 100 times, stratifying the initial Xabd and 
randomly splitting it into Xtrain and Xtest without replacement. The 
classification performance metrics are determined as the average of the 
metrics obtained in 100 folds. Similarly, the top ranked groups and the 
top ranked species are retained for each run.

2.3 Implementation of microBiomeGSM

The microBiomeGSM tool utilizes the pre-existing biological 
knowledge of the assignment of the species into different taxonomic 
levels, such as genus, family, and order. Experiments with the 
microBiomeGSM tool were conducted on the open-source KNIME 
platform (Berthold et al., 2009). This platform can handle a wide range 
of data types and operations. The user can configure the number of 
iterations, the rank function, and the number of iterations for 
MCCV. All rows with missing values are removed within the workflow.

FIGURE 1

G-S-M approach in microBiomeGSM. MCCV denotes Monte Carlo Cross-Validation.
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2.4 Application of feature selection and 
classifiers using metagenomic data

In metagenomics research, it is observed that in studies using 
taxonomic features, the number of observations used for training data 
is higher than the number of observations used for testing data. This 
situation is undesirable if studies are to produce more effective results, 
and researchers are proposing various methods of resolution, 
particularly feature selection methods. Although the process of feature 
selection in disease prediction problems based on metagenome data 
has not been well studied, the literature suggests that this process may 
be as important as the choice of a classification method (LaPierre et al., 
2019). The process of feature selection in metagenome-based disease 
prediction could help us learn more about disease development 
mechanisms. Therefore, further research in this direction is warranted. 
In metagenomics studies, in order to reduce the number of taxa, i.e., 
to select informative species (features), min Redundancy Max 
Relevance (mRMR) (Ding and Peng, 2005), Lasso (Tibshirani, 1996), 
Elastic Net (Zou and Hastie, 2005), and the iterative sure select 
algorithm (Duvallet et al., 2017) have been used extensively. Another 
feature selection method, called Fizzy, addresses the challenge of using 
classification techniques to identify important functional elements for 
downstream analysis (Ditzler et  al., 2015). Oudah and Henschel 
presented an alternative taxonomy-based method for feature selection 
(Oudah and Henschel, 2018). Bakir-Gungor et  al. (2021) applied 
CMIM (Fleuret and Ch, 2004), FCBF (Senliol et al., 2008), mRMR 
(Ding and Peng, 2005), and Select K best (SKB) (Pedregosa et al., 2011) 
to type 2 diabetes-associated metagenomics datasets and obtained 
powerful performance metrics (Bakir-Gungor et al., 2021). Jabeer et al. 
also proposed a robust classification method for evaluating colorectal 
cancer associated metagenomic datasets using a combination of 
feature selection methods and machine learning methods (Jabeer 
et al., 2022). Bakir-Gungor et al. (2022) also proposed a powerful 
method for IBD classification with fewer features by combining feature 
selection methods and machine learning methods (Bakir-Gungor 
et al., 2022). While these feature selection approaches have produced 
effective results in a variety of fields, they have only recently been 
applied to microbiome-based disease prediction problems.

In this study, we have comparatively evaluated microBiomeGSM 
with different classifiers and with different feature selection methods. 
As the feature selection methods, we have utilized Select K best (SKB), 
Fast Correlation Based Filter (FCBF), Extreme Gradient Boosting 
(XGBoost), Min Redundancy Max Relevance (mRMR), Information 
Gain (IG), and Conditional Mutual Information Maximization 
(CMIM). Wang and Liu (2020) compare the performance of classifiers 
with traditional methods and ensemble methods for disease prediction 
based on human microbiome data. They use Elastic Network and 
SVM as traditional methods and Random Forest and Extreme 
Gradient Boosting (XGBoost) as ensemble methods. In their study, 
they find that the XGBoost algorithm shows superior performance 
compared to other algorithms (Wang and Liu, 2020). In another study, 
Marcos-Zambrano et al. (2021) conducted an important review paper 
to reveal the links between the microbiome and diseases. In this study, 
which included information on the performance of machine learning 
methods, they found that the Support Vector Machines (SVM), 
Random Forest (RF), k-Nearest Neighbors (k-NN), and Logical 
Regression (LR) algorithms were widely used. They concluded that 
when selecting a machine learning algorithm, several factors should 

be considered such as the set of observations, the set of features, the 
type of data, and the quality of the data. They suggest using several 
different methods, comparing them, and choosing the one that 
provides the best performance value (Marcos-Zambrano et al., 2021).

2.5 microBiomeGSM model performance 
evaluation

Accuracy, F1 score, sensitivity, specificity, and AUC were used to 
evaluate the predictive performance of the proposed models. AUC 
score is a common measure for performance evaluation and a reliable 
metric for evaluating balanced datasets. Other metrics such as F1 
score, sensitivity, specificity, and accuracy, were used to evaluate the 
performance of the created models because the dataset for this study 
has an uneven distribution of classes. When a balance between 
precision and recall is desired and there is an uneven distribution of 
classes, the F1 score is a good option among the performance metrics 
(many true negatives). Several classifiers report the probability values 
for their predictions, which can also be considered as confidence values 
for the prediction. The AUC often uses this information to figure out 
how often incorrect predictions occur at different confidence levels. In 
real life, test results from positive and negative examples overlap. AUC 
illustrates how the threshold or cut-off value for identifying positive 
examples affects the relationship between recall and precision. In this 
study, all of the above-mentioned metrics were calculated as the mean 
of 100 times MCCV. After each iteration, we obtain lists of significant 
taxonomic groups and species associated with these taxa groups for a 
given disease. To assign scores to the entities in the taxonomic groups 
list and in the species lists, a prioritization approach is used. For this 
purpose, we integrated the RobustRankAggreg algorithm (Kolde et al., 
2012) and microBiomeGSM. RobustRankAggreg algorithm is available 
as an R package. Each entity (taxonomic group or species) in the lists 
is given a value of p by the RobustRankAggreg technique, indicating 
how highly ranked that entity. Using the RobustRankAggreg tool, 
microBiomeGSM outputs a list of species to which it has assigned a 
significance value (value of p) for a specific taxonomic group. Each taxa 
group is assigned a significance value and the species associated with 
that group are assigned the same value.

3 Results

The main objective of this study is to identify the microbial 
communities that are associated with specific diseases. In order to 
facilitate disease diagnosis, using metagenomic data we develop an 
efficient classification model based on taxonomic levels. In this section 
we  present our findings for four different datasets. Here we  also 
present comparative evaluation results against other existing methods.

3.1 Comparing varying group size for 
microBiomeGSM

One approach to evaluate model performance in the context of 
microBiomeGSM is to compare model performance between different 
values of the parameter k. k represents the number of groups (taxa) 
used in microBiomeGSM models. This approach can help researchers 
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determine the optimal value of k that balances model complexity and 
predictive power, ultimately leading to more effective and interpretable 
models in microbiome-related research. It provides insight into how 
the inclusion or exclusion of specific taxa affects the overall 
performance of microBiomeGSM models.

Supplementary Table S2 shows the performance metrics obtained 
with 100-fold MCCV for the aggregated top  10 groups for four 
different datasets compared at three different taxonomic levels (genus, 
family, order) for grouping. For the IBDMDB dataset, 
microBiomeGSM achieved an AUC of 93% using the top 1 group at 
the family level. Performance metrics are shown for the top 2 groups 
via combining species from the first and second highest scoring 
groups. We  obtained an AUC of 97% when the top  2 groups are 
combined at the family taxonomic level for the IBDMDB dataset. In 
this way, microBiomeGSM provides cumulative performance results 
for the top 10 highest scoring groups. For the IBDMDB dataset, the 
highest performance metric (an AUC of 98%) is obtained using the 
species from the top 10 groups at the order taxonomic level. For the 
IBD dataset, the highest performance metric (an AUC of 93%) is 
obtained using the species from the top  9 groups at the order 
taxonomic level. For the T2D dataset, the highest performance metric 
(an AUC of %74) is obtained using the species from the top 9 groups 
at the order taxonomic level. For the CRC dataset, the highest 
performance metric (an AUC of %83) is obtained using the species 

from the top 10 groups at the family taxonomic level. While examining 
other performance metrics (such as accuracy, sensitivity, specificity in 
Supplementary Table S2), it is noteworthy that satisfactory results are 
obtained with microBiomeGSM for each taxonomic level, especially 
for the IBDMDB dataset. The high sensitivity values that are reported 
for the CRC, IBDMDB, and IBD datasets display the success of the 
microBiomeGSM tool in terms of detecting the patient samples. In the 
CRC, IBDMDB, and IBD datasets, the strikingly high specificity 
values indicate that the microBiomeGSM tool correctly identifies the 
negative samples (i.e., individuals who do not have the disease). 
However, in the T2D dataset, the specificity rate appears to be relatively 
low compared to the other datasets. Nevertheless, the ability to detect 
negative samples remains at a reasonable level.

In addition, Figures 2, 3 show the sensitivity and specificity values 
obtained with the microBiomeGSM tool for all datasets. Figure 2 
shows the sensitivity values obtained using the microBiomeGSM tool 
across all datasets. One can notice from Figure 2A that for the CRC 
data set the highest sensitivity value (73%) is obtained for the order 
taxon level using 10 cumulative groups. In particular, the sensitivity 
values calculated for the IBDMDB dataset were quite impressive, 
especially in group 1 and group 6, both at the family taxon level, 
reaching 99% sensitivity value, as shown in Figure  2B. Figure  2C 
shows another impressive set of results for the IBD data set. In 
Figure 2C, we observe high values for sensitivity, in particular 87% 

FIGURE 2

Sensitivity values obtained at the family, order, and genus taxon levels for the top 10 significant groups across all 4 datasets. (A–D) Represents the 
results obtained in CRC, IBDMDB, IBD, T2D datasets, respectively.
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FIGURE 3

Specificity values at the order, genus, and family taxon level for the top 10 significant groups for all 4 disease datasets. (A–D) Represents the results 
obtained in CRC, IBDMDB, IBD, T2D datasets, respectively.

sensitivity at the taxon level in group 1. As shown in Figure 2D, the 
highest sensitivity value for the T2D data set is 69%. This result is 
obtained for the genus taxon level using 10 cumulative groups. A 
sensitivity value of 69% is also obtained for the family taxon level 
using 4 cumulative groups.

Figure  3 shows the specificity values obtained using the 
microBiomeGSM tool for all datasets. As shown in Figure 3A, the 
specificity value obtained for the CRC dataset is remarkable, reaching 
an impressive specificity value of 94% at the family taxon level for 1 
group. Figure 3B depicts that the highest specificity value obtained for 
the IBDMDB dataset is 93% for 1 group at the order taxon level. As 
displayed in Figure 3C, the highest specificity value obtained for the 
IBD dataset is 85% for the 4 cumulative groups at the order taxon 
level. The same result is also obtained at the order taxon level for the 
5 cumulative groups. One can notice in Figure 3D that the highest 
specificity value that is obtained for the T2D dataset is 71% for the 6 
cumulative groups at the order taxon level.

The number of significant groups used to train the model could 
affect the performance of microBiomeGSM. Table  3 shows the 
influence of the number of groups and the number of species at family, 
genus and order levels on four datasets. Table  3 presents the 
performance of the top 10 cumulative groups and top 1 group for each 
taxonomic level on different tested datasets. For the IBDMDB dataset, 
for the family taxonomic level, one can observe that the AUC increases 

by 5% when we consider the top 10 significant groups cumulatively, 
while we increase the number of species from 34 to 205. On the same 
dataset, an increase of 8% in AUC score is observed at the Genus 
taxonomic level via increasing the number of species from 34 to 119. 
For the same dataset, a decrease of 1% is observed at the Order 
taxonomic level. Order taxonomic level using the top group that 
includes 98 species achieves the highest AUC success rate of 98% for 
the IBDMDB dataset. Similarly, family taxonomic level using the 
top 10 combined groups achieves 97% AUC on the IBDMDB dataset, 
but these 10 combined groups include a much higher number of 
species (205 species). For the IBD dataset, the highest AUC value of 
91% was obtained using the microBiomeGSM tool. This value at the 
family taxonomic level was obtained by cumulatively combining 10 
groups, using an average of 260.4 species. For the T2D dataset, the 
highest AUC value of 72% was obtained using the microBiomeGSM 
tool. This value, obtained at the order taxanomic level, was obtained 
by combining 10 groups cumulatively. For 1 group, an average of 
138.28 species are used at the taxonomic level, while for 10 groups, an 
average of 596.99 species are used. For the CRC dataset, the highest 
AUC value of 87% was obtained using the microBiomeGSM tool. This 
value at the order taxanomic level was obtained by cumulatively 
combining 10 groups, using an average of 604 species.

microBiomeGSM reports important groups of features that are 
detected at different taxonomic levels for the disease under study. 
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Table  4 lists the top  10 important groups that are identified by 
microBiomeGSM for three different taxonomic levels on four different 
datasets. The identified features are ranked by their importance scores 
from high to low. The feature with the highest importance value is the 
strongest candidate to be  announced as potential taxonomic 
biomarker for the disease under investigation.

The microBiomeGSM tool lists a number of associated species for 
each identified group. The species included in the top  5 significant 
groups are listed in Supplementary Tables S3–S5 for family, order, and 
genus taxonomic levels, respectively for four different datasets. All 

species for the family, order, and genus taxonomic levels for the T2D, 
IBDMDB and CRC datasets can be found in Supplementary Tables S6–S14, 
respectively.

For the IBDMDB dataset, the changes in the AUC score when the 
number of groups is increased from 1 to 10 are shown in 
Supplementary Figure S1. For the IBDMDB dataset, a high AUC 
score is obtained at the order taxonomic level. When the number of 
groups was increased, the AUC score decreased relatively, and no 
significant change was observed after 5 groups. At the genus and 
family taxonomic levels, there is a significant increase in the AUC 

TABLE 3 The effect of the number of groups that are generated at different taxonomic levels on performance metrics for all dataset.

CRC

Taxonomic 
hierarchy

# of 
groups

Average # 
of species

Accuracy Sen Spe F measure AUC Precision

Family 10 239.11 0.78 0.84 0.72 0.79 0.84 0.76

Family 1 16.17 0.67 0.91 0.43 0.73 0.69 0.62

Genus 10 102.06 0.77 0.82 0.71 0.78 0.84 0.76

Genus 1 7.16 0.66 0.88 0.44 0.72 0.71 0.63

Order 10 604 0.82 0.86 0.78 0.82 0.87 0.81

Order 1 154.25 0.76 0.82 0.71 0.78 0.81 0.76

IBDMDB

Taxonomic 
hierarchy

# of 
Groups

Average # 
of species

Accuracy Sen Spe F measure AUC Precision

Family 10 205.76 0.95 0.98 0.87 0.95 0.97 0.93

Family 1 34 0.93 0.98 0.81 0.94 0.93 0.9

Genus 10 119.4 0.92 0.98 0.82 0.95 0.97 0.93

Genus 1 34 0.92 0.98 0.80 0.94 0.91 0.91

Order 10 341.22 0.93 0.97 0.86 0.95 0.98 0.93

Order 1 98 0.96 0.98 0.93 0.97 0.98 0.95

IBD

Taxonomic 
hierarchy

# of 
Groups

Average # 
of species

Accuracy Sen Spe F measure AUC Precision

Family 10 260.24 0.82 0.85 0.79 0.82 0.91 0.81

Family 1 51.59 0.78 0.78 0.78 0.78 0.86 0.78

Genus 10 121.78 0.81 0.83 0.79 0.81 0.88 0.8

Genus 1 12.26 0.7 0.67 0.74 0.69 0.78 0.73

Order 10 608.27 0.82 0.82 0.81 0.82 0.9 0.82

Order 1 174.86 0.81 0.82 0.8 0.81 0.9 0.81

T2D

Taxonomic 
hierarchy

# of 
groups

Average # 
of species

Accuracy Sen Spe F measure AUC Precision

Family 10 321.16 0.65 0.68 0.63 0.66 0.71 0.65

Family 1 39.86 0.59 0.71 0.47 0.63 0.63 0.58

Genus 10 129.8 0.64 0.64 0.64 0.64 0.69 0.65

Genus 1 15.94 0.56 0.62 0.49 0.58 0.58 0.55

Order 10 596.99 0.65 0.65 0.64 0.64 0.72 0.65

Order 1 138.28 0.59 0.67 0.52 0.62 0.64 0.59

The results in bold in table represent the best AUC results.
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TABLE 4 Top 10 groups identified by microBiomeGSM for different taxonomic levels, applied on all microbiome datasets.

CRC

# Taxonomic levels

Rank Family Order Genus
1 PEPTOSTREPTOCOCCACEAE CLOSTRIDIALES PARVIMONAS

2 PEPTONIPHILACEAE TISSIERELLALES PEPTOSTREPTOCOCCUS

3 FUSOBACTERIACEAE BACTEROIDALES FUSOBACTERIUM

4 BACILLALES_UNCLASSIFIED FUSOBACTERIALES GEMELLA

5 VEILLONELLACEAE BACILLALES DIALISTER

6 LACHNOSPIRACEAE VEILLONELLALES LACHNOCLOSTRIDIUM

7 ERYSIPELOTRICHACEAE ERYSIPELOTRICHALES PREVOTELLA

8 RUMINOCOCCACEAE LACTOBACILLALES STREPTOCOCCUS

9 PREVOTELLACEAE ACTINOMYCETALES PORPHYROMONAS

10 STREPTOCOCCACEAE DESULFOVIBRIONALES SOLOBACTERIUM

IBDMDB

# Taxonomic levels

Rank Family Order Genus
1 BACTEROIDACEAE BACTEROIDALES BACTEROIDES

2 LACHNOSPIRACEAE CLOSTRIDIALES ALISTIPES

3 RUMINOCOCCACEAE FIRMICUTES_UNCLASSIFIED EUBACTERIUM

4 RIKENELLACEAE VEILLONELLALES ROSEBURIA

5 FIRMICUTES_UNCLASSIFIED BURKHOLDERIALES FIRMICUTES_UNCLASSIFIED

6 TANNERELLACEAE METHANOMASSILIICOCCALES PARABACTEROIDES

7 EUBACTERIACEAE DESULFOVIBRIONALES RUMINOCOCCUS

8 CLOSTRIDIACEAE ERYSIPELOTRICHALES COPROCOCCUS

9 VEILLONELLACEAE BIFIDOBACTERIALES BLAUTIA

10 ODORIBACTERACEAE EGGERTHELLALES CLOSTRIDIUM

IBD

# Taxonomic levels

Rank Family Order Genus
1 LACHNOSPIRACEAE CLOSTRIDIALES BLAUTIA

2 BIFIDOBACTERIACEAE CORIOBACTERIALES BIFIDOBACTERIUM

3 CORIOBACTERIACEAE BIFIDOBACTERIALES EUBACTERIUM

4 RUMINOCOCCACEAE ERYSIPELOTRICHALES DOREA

5 ERYSIPELOTRICHACEAE BACTEROIDALES COLLINSELLA

6 CLOSTRIDIALES_FAMILY_XIII_INCERTAE_SEDIS LACTOBACILLALES PEPTOSTREPTOCOCCUS

7 EUBACTERIACEAE SELENOMONADALES COPROCOCCUS

8 PEPTOSTREPTOCOCCACEAE VERRUCOMICROBIALES ERYSIPELOTRICHACEAE_NONAME

9 CARNOBACTERIACEAE CANDIDATUS_SACCHARIBACTERIA_NONAME LACHNOSPIRACEAE_NONAME

10 CLOSTRIDIACEAE BACILLALES BACTEROIDES

T2D

# Taxonomic levels

Rank Family Order Genus
1 LACHNOSPIRACEAE CLOSTRIDIALES EUBACTERIUM

2 BIFIDOBACTERIACEAE BIFIDOBACTERIALES BIFIDOBACTERIUM

3 RUMINOCOCCACEAE CORIOBACTERIALES BLAUTIA

4 EUBACTERIACEAE BACTEROIDALES DOREA

5 CORIOBACTERIACEAE LACTOBACILLALES LACHNOSPIRACEAE_NONAME

6 CLOSTRIDIALES_FAMILY_XIII_INCERTAE_SEDIS ERYSIPELOTRICHALES RUMINOCOCCUS

7 ERYSIPELOTRICHACEAE SELENOMONADALES COPROCOCCUS

8 PEPTOSTREPTOCOCCACEAE VERRUCOMICROBIALES PEPTOSTREPTOCOCCUS

9 CARNOBACTERIACEAE METHANOBACTERIALES ERYSIPELOTRICHACEAE_NONAME

10 BACTEROIDACEAE BACILLALES GRANULICATELLA
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score until 5 groups are combined and no significant change after 
5 groups.

3.2 Comparing against traditional machine 
learning methods

Our Grouping-Scoring-Modeling (G-S-M) approach emerges as 
a paradigm shift from traditional feature selection methods. Instead 
of pinpointing individual informative features, the GSM methodology 
groups these features. These groups are then scored, and a classification 
model is built using these top-ranking feature conglomerates. The 
versatility of the GSM method, as detailed in our prior work (Yousef 
et al., 2021b), lies in its adaptability. Groups can be created either by 
computational/statistical methods or by using domain-specific 
knowledge. In order to use the GSM strategy for a given dataset, a 
deep domain expertise is required to skillfully define these groups, 
which makes each application different. The modifications required to 
tailor the G-S-M approach to the unique needs of microbiome 
research highlight the adaptability of the G-S-M method and the 
novelty of our current study.

We have comparatively evaluated the performance of 
microBiomeGSM against 4 different classifiers and 6 different feature 

selection methods using the same datasets. All algorithms are run with 
default parameters. The developed approach and feature selection 
methods were executed multiple times, and the results were averaged 
and shared. Table 5 shows the performance of the different feature 
selection algorithms and different classifiers on the same disease 
associated microbiome datasets. In these experiments, the number of 
features was set to 100. The best result for the IBDMDB dataset is 
obtained by using the XGBoost feature selection algorithm in 
combination with the Random Forest classification algorithm with 
98% AUC. For the CRC dataset, the best result is obtained by using 
the XGBoost feature selection algorithm in combination with the 
Random Forest classification algorithm with an AUC of 85%. For the 
IBD dataset, the best result is obtained using the Random Forest 
classification algorithm with 92% AUC and the SKB feature selection 
algorithm. For the T2D dataset, the best result is obtained by using the 
XGBoost feature selection algorithm in combination with the Random 
Forest classification algorithm with 70% AUC.

We would like to note that the primary objective of 
microBiomeGSM is not to compete with other feature selection 
methods (FS). Even if microBiomeGSM’s performance is on par with 
or slightly less favorable than other FS methods, its fundamental 
contribution lies in identifying the most informative microbiomes. 
These microbiomes play a pivotal role in aiding researchers in gaining 

TABLE 5 Area under the curve (AUC) results obtained using 100 features for different feature selection methods and classifiers for all dataset.

CRC

Model SKB IG XGB FCBF MRMR CMIM

Adaboost 0.75 ± 0.02 0.71 ± 0.05 0.78 ± 0.04 0.71 ± 0.05 0.63 ± 0.06 0.77 ± 0.04

DT 0.67 ± 0.04 0.64 ± 0.04 0.69 ± 0.04 0.63 ± 0.06 0.61 ± 0.04 0.65 ± 0.05

Logitboost 0.76 ± 0.04 0.72 ± 0.05 0.78 ± 0.06 0.70 ± 0.04 0.64 ± 0.06 0.76 ± 0.05

RF 0.82 ± 0.03 0.79 ± 0.04 0.85 ± 0.03 0.77 ± 0.05 0.74 ± 0.04 0.80 ± 0.03

IBDMDB

Model SKB IG XGB FCBF MRMR CMIM

Adaboost 0.89 ± 0.04 0.90 ± 0.03 0.89 ± 0.06 0.49 ± 0.08 0.51 ± 0.08 0.51 ± 0.08

DT 0.83 ± 0.03 0.82 ± 0.04 0.84 ± 0.03 0.46 ± 0.07 0.50 ± 0.07 0.50 ± 0.06

Logitboost 0.89 ± 0.04 0.91 ± 0.03 0.86 ± 0.06 0.50 ± 0.06 0.51 ± 0.08 0.49 ± 0.08

RF 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.01 0.46 ± 0.1 0.54 ± 0.08 0.52 ± 0.07

IBD

Model SKB IG XGB FCBF MRMR CMIM

Adaboost 0,90 ± 0.07 0,89 ± 0.03 0,91 ± 0.03 0,51 ± 0.06 0,51 ± 0.03 0,66 ± 0.08

DT 0,78 ± 0.08 0,70 ± 0.08 0,73 ± 0.07 0,53 ± 0.08 0,51 ± 0.04 0,56 ± 0.09

Logitboost 0,90 ± 0.04 0,90 ± 0.05 0,92 ± 0.05 0,55 ± 0.1 0,53 ± 0.05 0,59 ± 0.1

RF 0,92 ± 0.03 0,88 ± 0.06 0,91 ± 0.04 0,53 ± 0.09 0,55 ± 0.07 0,63 ± 0.11

T2D

Model SKB IG XGB FCBF MRMR CMIM

Adaboost 0,56 ± 0.12 0,60 ± 0.05 0,64 ± 0.07 0,50 ± 0.10 0,5 ± 0.01 0,50 ± 0.12

DT 0,52 ± 0.08 0,52 ± 0.08 0,53 ± 0.05 0,41 ± 0.10 0,51 ± 0.02 0,49 ± 0.10

Logitboost 0,55 ± 0.10 0,58 ± 0.09 0,62 ± 0.10 0,48 ± 0.08 0,50 ± 0.01 0,51 ± 0.11

RF 0,62 ± 0.11 0,62 ± 0.07 0,70 ± 0.06 0,49 ± 0.08 0,51 ± 0.03 0,54 ± 0.10

The results in bold in table represent the best AUC results for the respective disease (CRC, IBDMDB, IBD, T2D).
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TABLE 6 Evaluation metrics obtained with microBiomeGSM on four datasets for different taxonomic levels, compared with traditional classifiers using 
all features.

CRC

Model # of Species Accuracy Sensitivity Specificity Precision AUC

AdaBoost 912 0.72 ± 0.06 0.79 ± 0.09 0.66 ± 0.17 0.7 ± 0.09 0.78 ± 0.04

DT 912 0.68 ± 0.09 0.75 ± 0.12 0.62 ± 0.26 0.66 ± 0.09 0.7 ± 0.04

LogitBoost 912 0.73 ± 0.06 0.78 ± 0.09 0.68 ± 0.18 0.71 ± 0.09 0.78 ± 0.04

RF 912 0.78 ± 0.05 0.82 ± 0.08 0.75 ± 0.14 0.76 ± 0.09 0.86 ± 0.03

microBiomeGSM: family 292.88 ± 16.09 0.74 ± 0.65 0.7 ± 0.39 0.77 ± 0.91 0.75 ± 0.83 0.81 ± 0.67

microBiomeGSM: genus 161.21 ± 5.17 0.74 ± 0.67 0.69 ± 0.41 0.79 ± 0.92 0.76 ± 0.84 0.8 ± 0.68

microBiomeGSM: order 607.5 ± 188.32 0.73 ± 0.69 0.72 ± 0.66 0.75 ± 0.73 0.74 ± 0.71 0.81 ± 0.77

IBDMDB

Model # of Species Accuracy Sensitivity Specificity Precision AUC

AdaBoost 579 0.92 ± 0.02 0.97 ± 0.02 0.79 ± 0.1 0.93 ± 0.03 0.94 ± 0.01

DT 579 0.91 ± 0.02 0.94 ± 0.01 0.84 ± 0.05 0.94 ± 0.02 0.89 ± 0.02

LogitBoost 579 0.92 ± 0.01 0.98 ± 0.01 0.76 ± 0.07 0.92 ± 0.02 0.91 ± 0.04

RF 579 0.98 ± 0.01 1 ± 0 0.93 ± 0.06 0.98 ± 0.02 0.98 ± 0.01

microBiomeGSM: Family 205.76 ± 16.23 0.94 ± 0.02 0.98 ± 0.01 0.86 ± 0.05 0.93 ± 0.05 0.97 ± 0.02

microBiomeGSM: Genus 119.4 ± 15.87 0.93 ± 0.02 0.98 ± 0.01 0.85 ± 0.05 0.93 ± 0.05 0.97 ± 0.02

microBiomeGSM: Order 341.22 ± 15.6 0.93 ± 0.02 0.97 ± 0.02 0.86 ± 0.06 0.93 ± 0.06 0.98 ± 0.03

IBD

Model # of Species Accuracy Sensitivity Specificity Precision AUC

AdaBoost 1,456 0.88 ± 0.04 0.85 ± 0.12 0.89 ± 0.05 0.84 ± 0.05 0.9 ± 0.04

DT 1,456 0.75 ± 0.05 0.72 ± 0.09 0.78 ± 0.06 0.67 ± 0.08 0.75 ± 0.06

LogitBoost 1,456 0.85 ± 0.04 0.81 ± 0.1 0.87 ± 0.07 0.8 ± 0.09 0.88 ± 0.04

RF 1,456 0.87 ± 0.05 0.91 ± 0.1 0.84 ± 0.05 0.78 ± 0.06 0.92 ± 0.05

microBiomeGSM: Family 260.24 ± 26.92 0.82 ± 0.06 0.85 ± 0.07 0.79 ± 0.1 0.81 ± 0.13 0.91 ± 0.07

microBiomeGSM: Genus 121.78 ± 27.83 0.81 ± 0.06 0.83 ± 0.06 0.79 ± 0.1 0.8 ± 0.12 0.88 ± 0.08

microBiomeGSM: Order 608.27 ± 24.22 0.82 ± 0.07 0.82 ± 0.08 0.81 ± 0.09 0.82 ± 0.15 0.9 ± 0.08

T2D

Model # of Species Accuracy Sensitivity Specificity Precision AUC

AdaBoost 1,456 0.68 ± 0.08 0.91 ± 0.08 0.39 ± 0.26 0.67 ± 0.09 0.66 ± 0.1

DT 1,456 0.57 ± 0.05 0.98 ± 0.06 0.06 ± 0.19 0.57 ± 0.06 0.57 ± 0.09

LogitBoost 1,456 0.67 ± 0.08 0.93 ± 0.08 0.36 ± 0.24 0.65 ± 0.08 0.65 ± 0.1

RF 1,456 0.72 ± 0.09 0.91 ± 0.09 0.48 ± 0.29 0.71 ± 0.12 0.75 ± 0.1

microBiomeGSM: family 321.16 ± 36.31 0.65 ± 0.08 0.68 ± 0.09 0.63 ± 0.11 0.65 ± 0.15 0.71 ± 0.08

microBiomeGSM: genus 129.8 ± 35.03 0.64 ± 0.09 0.64 ± 0.1 0.64 ± 0.13 0.65 ± 0.18 0.69 ± 0.09

microBiomeGSM: order 596.99 ± 35.14 0.65 ± 0.08 0.65 ± 0.09 0.64 ± 0.12 0.65 ± 0.17 0.72 ± 0.09

a deeper understanding of the biological underpinnings of the disease 
under investigation. In essence, microBiomeGSM’s value lies in its 
ability to contribute to the advancement of biological knowledge, 
rather than merely outperforming other feature selection techniques.

Table 6 shows the performance metrics of microBiomeGSM for 
each taxonomic level for four different datasets. The # of species 
column shows the number of species (features/variables) used to train 

and test the model. Since the number of species changes in each 
iteration of MCCV, we also report the standard deviation. Performance 
metrics are reported as the average of 100 iterations with the 
corresponding standard deviation. For the CRC dataset, among 
different classifiers the RF algorithm has the highest performance for 
all calculated metrics including the accuracy, sensitivity, specificity, 
precision, and AUC metric. The AdaBoost, LogitBoost and DT models 
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show lower performance compared to the RF model. The performance 
metrics of these three algorithms are similar but not as high as RF 
model. At the order taxonomic level, the mean values of the 
performance metrics are stable and the standard deviations are low. 
This indicates that the order level is a more appropriate choice for 
CRC classification. Comparing the RF model and the microBiomeGSM 
model, similar performance metrics are obtained for the CRC dataset, 
but it is worth mentioning that the number of features used in the 
proposed tool is lower. In other words, for the CRC dataset the 
microBiomeGSM model can accurately classify using fewer taxonomic 
features. For the IBDMDB dataset, among different classifiers the RF 
algorithm has the highest accuracy, sensitivity, specificity, precision, 
and AUC values. In particular, RF model achieved very high sensitivity 
and AUC values. For the IBDMDB dataset, the microBiomeGSM tool 
achieves an AUC of 98% for the order taxon level, the same 
performance metrics as obtained by the RF classification algorithm. 
However, the microBiomeGSM tool uses 341 features for the order 
taxon level, while the RF model uses 579 features. For IBD dataset, the 
RF algorithm generates the highest performance on several metrics, 
including accuracy, sensitivity, specificity, precision, and AUC. It 
performs particularly well on sensitivity and AUC. In our analysis, 
microBiomeGSM achieved an impressive AUC value of 91% at the 
family taxon level. Equally remarkable is the similar performance of 
the RF classification algorithm (an AUC of 92%) for the same task. 
However, it is important to highlight an important difference between 
these two approaches. For IBD dataset the RF classification algorithm 
achieved an AUC of 92% by using a much larger set of features (1,456 
features) for the classification task. For the same dataset, the 
microBiomeGSM tool also showed remarkable performance (an AUC 
value of 91%). In stark contrast, microBiomeGSM achieved nearly 
equivalent AUC performance while using a much smaller set of 
features, only 260 features. This divergence in feature usage highlights 
the effectiveness and potential advantages of the microBiomeGSM 
tool in extracting meaningful information from microbiome data 
while optimizing computational resources. For T2D dataset, the RF 
classification algorithm outperforms other classification algorithms 
on several performance metrics including accuracy, sensitivity, 
specificity, precision and AUC. microBiomeGSM achieved an AUC 
value of 72% at the order taxon level. Interestingly, a similar level of 
performance is observed using the RF classification algorithm, which 
achieves an AUC value of 75%. However, it is important to note that 
the underlying mechanisms of these two methods are very different. 
The RF classification algorithm achieves this AUC value by 
incorporating a much larger set of features, 1,456 features, into its 
classification process. In contrast, the microBiomeGSM tool achieves 
comparable AUC metric by using a leaner set of 596 features. This 
difference in feature usage is worth highlighting as it shows that the 
microBiomeGSM tool is able to deliver competitive results with a 
lower computational load, making it an efficient and resource-efficient 
choice for the classification task at hand. These results highlight the 
nuanced trade-offs in selecting the appropriate tool or algorithm for 
the specific data analysis requirements.

As shown in Table 7, the performance of our proposed method 
varies depending on the taxonomic level considered. For the order 
taxonomic level, for all tested datasets, the proposed method 
outperforms other models in terms of the AUC score, except for the 
RF classifier. Similarly, for all datasets, at the family and genus 
taxonomic levels, the AUC values are also highly competitive, 

outperforming those of the other four machine learning algorithms 
used in this study, with the sole exception of the RF classifier. These 
results highlight the robust performance of our method across 
different taxonomic levels. A remarkable performance of our proposed 
method was observed when it is applied on the IBDMDB dataset. 
Here, we obtained an exceptionally high AUC value of 0.98 ± 0.03 at 
the order taxonomic level using a 100-fold MCCV approach. This 
remarkable result demonstrates the exceptional performance and the 
potential of the microBiomeGSM tool.

4 Discussion

The microbiome is considered as a crucial component of the 
human body and it is increasingly associated with numerous aspects 
of development and health. There is growing evidence that the 
microbiota is essential for understanding, diagnosing, and treating 
human diseases. In particular, alterations in the gut microbiome 
community have been linked to a variety of diseases, including CRC 
(Song et al., 2020), T2D (Salamon et al., 2018) and IBD (Alam et al., 
2020). Several research efforts relied on sample-level feature 
abundance data to identify predictive microbiome biomarkers using 
machine learning. In this study, we  proposed to perform more 
effective disease classification and prediction with fewer features. To 
this end, we  developed microBiomeGSM to solve this problem 
compared to tools that perform predictions with a large amount of 
data. The success of microBiomeGSM can be  explained with the 
following features of the G-S-M approach:

 • For the grouping component of microBiomeGSM, only the 
features at the similar taxonomic levels are considered.

 • microBiomeGSM uses efficient classifiers for the scoring 
component to identify the key groups for each taxonomic level;

 • For the modeling component, significant taxonomic groups are 
considered cumulatively using effective classifiers.

Via analyzing metagenomic data, this study aims to solve the 
problem of disease diagnosis using existing taxonomic knowledge; 
and finally introduces a tool called microBiomeGSM. The proposed 
tool is based on the G-S-M (Grouping-Scoring-Modeling) approach 
and uses species-level information by grouping taxonomic features at 
different taxonomic levels such as genus, family, and order. The 
performance of microBiomeGSM on four different disease-associated 
metagenomic datasets was evaluated in comparison to other feature 
selection methods such as Fast Correlation Based Filter (FCBF), Select 
Best K (SKB), Extreme Gradient Boosting (XGB), Conditional Mutual 
Information Maximization (CMIM), Maximum Likelihood and 
Minimum Redundancy (MRMR), and Information Gain (IG).

The presented microBiomeGSM approach offers several 
advantages in the field of disease diagnosis via analyzing metagenomic 
datasets. One significant benefit is its ability to efficiently identify 
disease-associated taxonomic biomarkers through a robust machine 
learning model based on the Grouping, Scoring, and Modeling 
(G-S-M) methodology. Differently from existing approaches, 
microBiomeGSM identifies groups of important taxons and detects 
important species within that taxon for the disease under study. 
Hence, this innovative approach enables the extraction of valuable 
insights from microbiome data, shedding light on the influence of 
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specific taxonomic biomarkers on the disease under investigation. 
Furthermore, the performance evaluation across different diseases, 
different taxonomic levels (genus, family, order); and the comparative 
assessment with different feature selection algorithms exhibits the 
reliability of microBiomeGSM. Finally, the discussions on the 
biological relevance of the findings of the proposed approach, via 
drawing evidence from the existing literature, provide valuable context 
for the identified taxon groups for the disease under study, making 
microBiomeGSM an informative tool in disease research. Our tool’s 
significance transcends its mere application; it holds the potential for 
pioneering discoveries. It is geared to discern not isolated microbial 
entities but entire assemblages of species, paving the way for profound 
biological interpretations. By spotlighting groups of bacteria and 
viruses in lieu of singular entities, our tool offers a holistic view, 
potentially identifying microbial communities implicated in 
specific diseases.

With this study, we would also like to motivate biologists and the 
microbiome community to redesign their grouping methods instead 
of using individual feature selection approaches. We envision that in 
the future, various biological datasets, including multi-omics, will 
be used to redefine the groupings. Such innovative grouping strategies, 
complemented by modeling, promise to provide profound insights 
into the molecular mechanisms of diseases and the role of 
microorganisms in disease development.

4.1 Biological interpretations of 
microBiomeGSM’s findings

This section discusses the biological relevance of the features 
discovered by microBiomeGSM at different taxonomic levels for all 
tested datasets. T2D is a metabolic disease characterized by high 
glucose levels in blood and caused primarily by cellular resistance to 
the activity of insulin (Sedighi et al., 2017). There are several studies 
in the literature that have demonstrated the relation of different 
microorganisms at the genus, family, and order levels with T2D 
development. For the T2D dataset, the top 10 microbiomes identified 
by our method at the genus, family, order levels and the relevant 
literature can be summarized in Supplementary Table S15. On the 
other hand, inflammatory bowel diseases (IBDs), which include 
primarily ulcerative colitis and Crohn’s disease, but also non-infectious 
inflammation of the bowel, have puzzled gastroenterologists and 
immunologists alike since their first modern descriptions around 
some 75–100 years ago (Ni et al., 2018; Bakir-Gungor et al., 2022). For 
the IBDMDB dataset, the top  10 microbiomes identified by our 
method at the genus, family, and order levels and the relevant literature 
can be summarized in Supplementary Table S15. CRC is a prevalent 
malignancy affecting the colon and rectum. It constitutes 
approximately 10% of all newly diagnosed cancer cases worldwide (Li 
X. et al., 2023). For the CRC dataset, the top 10 microbiomes identified 
by our method at the genus, family, and order levels and the relevant 
literature can be summarized in Supplementary Table S15.

Numerous studies have investigated the relationship between 
microbiomes and diseases like T2D, CRC, and IBD using similar 
datasets as used within this study. Upon examination of these studies, 
it becomes evident that while their experimental designs may vary, 
they consistently yield comparable results when it comes to identifying 
microbiomes linked to these diseases. These findings align with the T
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important microbiomes identified by microBiomeGSM for T2D, 
CRC, and IBD, showcasing the tool’s effectiveness in accurately 
identifying relevant microbiomes associated with these diseases. 
These congruent findings reinforce the reliability and validity of the 
microbiome associations detected by the microBiomeGSM tool. It 
also underscores the tool’s capacity to identify microbiomes that are 
consistently linked to specific diseases, providing valuable insights for 
disease characterization and prediction. Hassouneh et  al. (2021) 
conducted a series of experiments aimed at uncovering microbiomes 
associated with IBD. In their analysis using the same dataset as used 
by the microBiomeGSM tool, they observed differences in 
Clostridium microbiota among IBD patients. Additionally, another 
microbiome identified for IBD in their study is Ruminococcus. 
Remarkably, these microbiomes align with the important microbiomes 
detected for the IBD disease by the microBiomeGSM tool. This 
correspondence in findings highlights the capacity of 
microBiomeGSM in identifying relevant microbiomes linked to 
IBD. Zhang Y. et  al. (2022) conducted a study with the goal of 
identifying disease-associated microbiome species for Inflammatory 
Bowel Disease Microbiome Database (IBDMDB), employing the same 
dataset (PRJNA289734) as used in microBiomeGSM. In their 
research, they highlighted the significance of the Bacteroides 
microbiome. Interestingly, the Bacteroides microbiome is also 
identified as one of the important microbiomes by the 
microBiomeGSM tool proposed in our study. This alignment in 
findings underscores the effectiveness of microBiomeGSM in 
recognizing key microbiomes associated with diseases like IBD. Bai 
et al. (2022) conducted a series of experiments aimed at identifying 
microbiomes associated with T2D. In their research, they utilized the 
SRA4565 data for T2D and highlighted the significance of the 
methanobacteriales microbiome. Notably, methanobacteriales is 
among the top  10 microbiomes identified by the proposed 
microBiomeGSM tool. This convergence of findings underscores the 
effectiveness and utility of the proposed tool in uncovering 
microbiome associations with diseases like T2D. Forslund et al. (2015) 
conducted experiments utilizing the same T2D dataset employed by 
microBiomeGSM to investigate microbiomes associated with 
T2D. Upon close examination of their experiments, they underscored 
the significance of the Clostridiales microbiome in relation to T2D 
disease. Interestingly, Clostridiales also emerges as one of the 
important microbiomes identified by microBiomeGSM. This 
convergence in findings highlights the relevance and effectiveness of 
microBiomeGSM in identifying crucial microbiomes associated with 
T2D. Ma et  al. (2021) conducted a study that investigated the 
microbiomes associated with CRC using the same dataset as in our 
study. Among the various microbiomes they examined, the Prevotella 
microbiome stood out as strongly linked to CRC. This association 
aligns with the findings of microBiomeGSM, underscoring the 
significance of the Prevotella microbiome in the context of 
characterizing CRC. Chen et al. (2023) conducted research using the 
same dataset to investigate microbiomes in the context of colorectal 
cancer, akin to the proposed microBiomeGSM tool. Similar to the 
findings of microBiomeGSM, their study also identified 
Peptostreptococcus, Fusobacterium, and Porphyromonas 
microbiomes as valuable and effective biomarkers for CRC. This 
convergence in results underscores the potential significance of these 
specific microbiomes in CRC characterization and their importance 
as potential biomarkers for the disease.

In summary, via analyzing the raw microbiome data of specific 
diseases, this study aims to identify taxonomic biomarkers that may 
have a role in the associated diseases. Three different taxon levels 
(genus, family, and order) are studied and disease prediction is 
performed by building effective machine learning models using the 
G-S-M approach. Four different datasets are analyzed and the 
identified microorganisms at genus, family and order levels are 
compared with the existing literature.

4.2 Limitation of the study

The quality and the scope of our study have been significantly 
influenced by several primary limiting factors. These factors 
encompass the nature of the data set, the tools employed for data 
preprocessing, the specific taxon groups considered, and the overall 
volume of data under examination. First and foremost, the data set 
itself plays a pivotal role in shaping the outcomes and conclusions of 
our study. Its size, diversity, and representativeness directly impact the 
generalizability of our findings. Furthermore, the quality of data, its 
sources, and any potential biases within the dataset significantly affect 
the reliability of our results. Equally significant is the role of the tools 
employed for data preprocessing. The choices made in data cleaning, 
feature selection, and data transformation can introduce variability 
and influence the robustness of our analytical pipeline. It is paramount 
to acknowledge how these preprocessing steps can shape the study’s 
outcomes. Additionally, our study’s focus on specific taxon groups 
within the dataset should be  considered. The selection of these 
taxonomic levels and the criteria used for their inclusion or exclusion 
has bearing on the granularity and relevance of our findings. Finally, 
the number of data points utilized in our analysis is another crucial 
factor. A larger dataset provides a broader and potentially more 
representative sample, which can enhance the reliability and statistical 
power of our results. Conversely, a smaller dataset may limit the 
generalizability of our conclusions. A comprehensive understanding 
of these limiting factors is essential for contextualizing our study’s 
outcomes and conclusions.

5 Conclusion

Over the past two decades, the number of microbiome studies has 
increased rapidly thanks to the advances in next generation 
sequencing (NGS) technologies. Lower costs and increasing 
computational power have enabled us to obtain enormous amounts 
of data on the diversity and function of a host or habitat’s microbiome. 
Identifying and accounting for effective taxons in microbiome and 
disease classification can accelerate disease diagnosis, prognosis, and 
treatment. Here, we  use an efficient machine learning model to 
identify taxonomic biomarkers that can diagnose diseases. The 
microBiomeGSM enables researchers to explore the diversity of 
contributions to disease development by examining metagenomic 
data at different taxonomic levels. While analyzing microbiome 
datasets, the microBiomeGSM tool that we  present in this study 
exploits the existing biological knowledge about the taxonomic 
hierarchy of the species at different levels, such as genus, family, and 
order. Our results showed that via analyzing different microbiome 
datasets associated with different diseases, microBiomeGSM builds 
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effective machine learning models to facilitate the diagnosis of 
diseases. It is anticipated that this study will be a guide for future 
studies and will guide and improve the studies to be conducted on this 
topic. With this study, we  hope to highlight the importance of 
taxonomic groups in microbiome-based disease prediction and to 
facilitate the diagnosis of disease using these taxonomic groups.
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