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Abstract: In this study, we propose a novel multi-objective nonlinear mixed-integer mathematical
programming model for the transit network design and frequency setting problem that aims at designing
the routes and determining the frequencies of the routes to satisfy passenger demand in a transit
network. The proposed model incorporates the features of real-life transit network systems and
reflects the views of both passengers and the transit agency by considering the in-vehicle travel time,
transfers, waiting times at the boarding and transfer stops, overcrowding and under-utilization of
vehicles, and vehicle fleet size. Unlike previous studies that simplify several aspects of the transit
network design and frequency setting problem, the proposed model is the first to determine routes
and their frequencies simultaneously from scratch, i.e., without using line and frequency pools while
considering the aforementioned issues, such as transfers and waiting. We solve the proposed model
using Gurobi. We provide the results of what-if analyses conducted using a real-world public bus
transport network in the city of Kayseri in Türkiye. We also present the results of computational tests
implemented to validate and verify the model using Mandl benchmark instances from the literature.
The results indicate that the model produces better solutions than the state-of-the-art algorithms in
the literature and that the model can be used by public transit planners as a decision aid.

Keywords: public transport; transit network route design and frequency setting problem; urban
public transportation; urban transit network design; mathematical programming; nonlinear mixed-
integer programming; real-world application

MSC: 90-10

1. Introduction

The world has been experiencing rapid urbanization due to immigration from rural
areas and the mobility of people around the globe. As of 2018, 55% of the world’s population
lives in urban areas, which will increase to 68% by 2050 [1]. This unprecedented trend
will surely bring many problems, e.g., increasing housing prices that impel residents to
move from downtown and city centers to the outskirts and thus increase daily commuting
and traffic [2]. Comprehensive urban planning is required to avoid severe repercussions,
one of the essential parts of which is the design of an effective urban transit system using a
systematic decision-making approach. This study proposes a mathematical programming
model that can be used as a decision support tool in planning an urban public transit
network system.

Decisions regarding an urban transit system can be categorized into strategic, tactical,
and operational, considering their time horizon. Ceder and Wilson [3] classify decisions
as network route design, frequency setting, timetable development, vehicle scheduling, and crew
scheduling. Network route design is a strategic problem that involves designing routes, as
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well as constructing roads/links [4], locating stops/stations [5], and expanding transit
infrastructure [6]. The frequency setting is a tactical problem in which the number of vehicles
serving per time unit (e.g., hour, day) for each route is determined to satisfy the passenger
demand. Timetable development is also a tactical problem and creates a timetable for trips
on the routes. Vehicle scheduling and crew scheduling are operational problems and develop
schedules of vehicle and crew fleets considering the prepared timetable, respectively. These
problems are mostly solved separately, and most studies address only certain aspects of the
problems. However, there exist studies that attempt to integrate some of these problems.
This study will focus on such an integrated problem, namely the transit network design and
frequency setting problem (TNDFSP).

TNDFSP considers network route design and frequency setting problems simultaneously
and aims at designing routes and frequencies of the routes to satisfy passenger demand
given as an Origin–Destination (OD) demand matrix. Some literature refers to TNDFSP as
the line planning problem, especially in railway network settings [7]. TNDFSP is an NP-hard
problem and computationally challenging even for small networks [8].

Durán-Micco and Vansteenwegen [9] give a recent survey of TNDFSP studies for bus
and rail transit settings. Some of their findings are as follows: (1) Due to the complexity of
real-world transit network settings, TNDFSP is hard to model for practical applications.
Therefore, studies primarily focus on simplified networks [10]. (2) Many assumptions
are made before appropriately addressing the problem, which results in different studies
making different assumptions leading to different problems for which the results cannot be
directly compared. (3) Case studies stemming from real-world networks simplify passenger
demand and deviate from realism by only considering a proportion of OD demand pairs,
i.e., a highly-sparse OD demand matrix is used [11]. (4) Frequencies are set iteratively, i.e.,
a predefined, initial set of frequencies is updated according to the passenger assignment
rather than determining them endogenously in a model [12]. (5) Passenger assignment is
performed mainly by ignoring overcrowding. A few studies consider crowding issues and
use incremental algorithms in which the frequency of crowded routes is updated iteratively.
(6) There is a need for new models and approaches to add more realistic concepts and solve
real-world problems.

In addition to these issues pointed out by Durán-Micco and Vansteenwegen [9], all
studies except for [13,14] design routes out of a predefined route/line pool or use a route-
generation algorithm [15] with the risk of overlooking optimal routes. (Meta)heuristic
studies are mostly preferred because of the computationally challenging nature of the prob-
lem. Although metaheuristic approaches can provide good solutions for some benchmark
instances, solution quality depends mainly on instance data and requires much tuning
effort. Moreover, they are not flexible enough to easily incorporate realistic features and
cannot provide information regarding the quality of the generated solutions.

Considering the aforementioned issues, we are motivated to develop a novel mathe-
matical model for TNDFSP that represents real-world transit network features. Rather than
developing an exact solution methodology for the problem and focusing on computational
performance, our goals are to solve the model using off-the-shelf commercial solvers, con-
duct what-if analyses to provide the decision-makers with managerial insights, and assess
the flexibility and applicability of the models. In this regard, we propose a multi-objective
nonlinear mixed-integer programming (MNMIP) model designed to facilitate the redesign of
bus and train routes and enhance service frequencies, ultimately improving the overall
operational efficiency and benefiting urban commuters and residents. The model allows
several types of analyses to be conducted to assess the tradeoffs among several criteria, e.g.,
total travel time, the number of passengers traveling to their destinations without transfers,
the number of lines, the fleet size, the total cost, and the waiting times at the transfer and
waiting nodes.

The contribution of this study is twofold: (1) We propose a novel mathematical
programming formulation based on realistic concepts. The model reflects passengers’
route choices realistically by considering in-vehicle travel time, transfers, and waiting times at
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boarding (departure) and transfer stops, as well as overcrowding and the under-utilization of
vehicles in the passenger assignment. The model also reflects the transit agency’s perspective
by allowing the transit agency to determine the service level by imposing limitations on
several parameters, such as the vehicle fleet size. The model endogenously determines routes,
including their terminal and intermediate stops, as well as their frequencies. To our knowledge,
the model is the first to determine routes and their frequencies simultaneously from scratch, i.e.,
without using line and frequency pools while considering the aforementioned issues, such
as transfers and waiting. (2) We provide the results of what-if analyses conducted using a
real-world public bus transport network in the city of Kayseri in Türkiye. We also present the
results of computational tests implemented to validate and verify the model using Mandl
benchmark instances from the literature [16]. The results obtained using Gurobi as the solver
indicate that the model produces better solutions than the state-of-the-art algorithms in the
literature and that the model can be used by public transit planners as a decision aid.

The rest of the paper is organized as follows. Section 2 reviews the literature on
TNDFSP focusing on mathematical programs. Section 3 describes the problem and presents
the proposed mathematical model. Section 4 explains the solution methodology, and
Section 5 gives the results of the computational tests performed for the validation and
verification of the proposed model and compares the performance of the proposed model
with those of the state-of-art studies in the literature. Section 6 presents the results of
what-if analyses for a real-world network application. Section 7 concludes the study with
managerial insights and future research directions.

2. Related Work

Guihaire and Hao [17], Kepaptsoglou and Karlaftis [18], Farahani et al. [8], Ibarra-Rojas
et al. [19], Iliopoulou et al. [20], and Durán-Micco and Vansteenwegen [9] provide a detailed
review of TNDFSP studies. The surveys indicate that the scope of studies varies significantly
depending on the assumptions regarding objectives, solution approaches, parameters, and
network settings. In this study, we focus on studies that employ mathematical programming
approaches.

Mathematical programming-based TNDFSP studies are rare and mostly make as-
sumptions that simplify the realistic aspects of the problem. The models in the literature
essentially differ in how they handle the (1) route design, (2) frequency setting, (3) transfer and
waiting at the stops, (4) passenger assignment to the routes, and (5) vehicle fleet size. Most studies
select the best routes from a predefined route set instead of generating routes from scratch
using endogenous variables within the models. Marwah et al. [21] generate a candidate
route set using an ad-hoc heuristic procedure and propose a linear mathematical program
to determine the best routes out of this route set to minimize the number of transfers.
Early studies, such as [22–25], set frequencies as a sequential step after determining the
route network instead of assigning them simultaneously with the route design. On the
other hand, van Nes et al. [26] claim that the sequential solution procedure deviates from
reality and propose a model that simultaneously addresses both the route design and the
frequency setting. However, they consider only a set of candidate routes constructed using
an algorithm described by [3] and a limited number of frequencies. A different approach
by [27] considers routes as facilities and uses set covering and facility location models to
select efficient ones out of a candidate set.

Wan and Lo [13] introduce a mixed integer programming model that designs routes
from scratch rather than selecting from a candidate route set. However, their model neither
treats the transfers of passengers nor considers the waiting times. Guan et al. [28] model
transfers by adding expected transfer times to predefined paths for each OD demand pair.
Therefore, they assign passengers to lines with minimum in-vehicle travel and transfer
times along their path. Schöbel and Scholl [29] use a candidate line pool of railway lines and
frequencies. They model passenger transfers on an extended version of the transit network,
the change-and-go graph, obtained by adding arcs between two nodes if they are consecutive
stations of the same line or the same station on different lines. Cancela et al. [15] also utilize
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a similar extension and obtain a trajectory graph by adding waiting and transfer arcs to the
transit network to model transfer and waiting times. Recently, De-Los-Santos et al. [14]
proposed a mathematical model that does not need a line pool. Their model constructs
routes from scratch and treats transfers between different stops by considering the walking
option of passengers. However, frequencies of routes are given as an input to the model
rather than letting the model determine them simultaneously.

Borndörfer et al. [30] formulate a path-based frequency model with a multicommodity
flow path variable that tracks the number of passengers traveling on a predefined set of
paths from origins to destinations. Borndörfer et al. [31] propose another multicommodity
flow-based service network design model based on the work of [32]. The model constructs
lines using a binary line flow variable and works with a given finite set of frequencies as
well as starting and ending terminals. The advantage of service network design formulation
is that it does not require a line pool. However, both path-based and service network design
formulations ignore passenger transfers. Borndörfer and Neumann [33] later add transfer
modeling for the path-based model by including a decision variable defining the number
of passengers that travel on a path with at least a certain number of transfers. Szeto and
Jiang [34] utilize a bilevel mathematical program in which the upper level minimizes
the number of transfers considering the vehicle fleet size while the lower level assigns
passengers to the routes designed in the upper level. Routes are generated between a
predetermined set of terminal stops with the help of an artificial bee colony algorithm, and
associated frequencies are improved with an iterative approach using a linear program.

Modeling waiting times at boarding and transfer stops directly affects passenger as-
signment to the routes. However, there exist limited studies that address this issue. Spiess
and Florian [35] suggest assigning passengers to the routes using the frequency share rule,
which presumes that the probability that a vehicle arrives at a stop first is proportional to
the frequency of its route. Hence, assuming passengers get on the first vehicle arriving
at the stop, passengers are assigned to routes proportional to their frequencies. The fre-
quency share method can lead to detours from shortest paths and the overcrowding or
under-utilization of the vehicles, which are eliminated later mainly through an iterative
frequency setting (e.g., [36]). Cancela et al. [15] utilize this concept to model waiting times
on the trajectory graph by associating waiting arcs with a predefined, finite set of frequencies
for candidate routes. They test the model using only one of the Mandl benchmark instances
and solve a simplified bus network with 84 stops in Uruguay without allowing transfers.
Alternatives to frequency share are user equilibrium and system optimal approaches. The
user equilibrium approach (e.g., [13]) ignores overcrowding issues since passengers of one
OD pair are assigned to the same route(s) by following the shortest paths from origins to
destinations. The system optimal approach (e.g., [10]) assigns passengers to the routes to
minimize the total travel time of all passengers on the network. When there is a limited
number of vehicles, some passengers may be redirected from the shortest paths if it de-
creases the total travel time in the network. In a recent line-planning study, Zhou et al. [10]
address transfers, waiting times, and route frequency simultaneously using a line pool
and solve a simplified version of the Hong Kong rail network consisting of 44 stations with
52 links. Line frequencies are not considered in the initial passenger assignment; they are
updated iteratively.

To sum up, as stated by Durán-Micco and Vansteenwegen [9], the studies in the
literature make many simplifying assumptions about the route design, frequency setting,
transfers, waiting, passenger assignment, and vehicle fleet size in handling the problem, and
there is a need for new models and approaches that are more realistic in solving real-
world problems. In fact, only a few studies consider all the aforementioned issues. To our
knowledge, mathematical models that address all issues simultaneously without a route/line pool
exist neither in a bus transit planning setting nor in a rail transit planning setting.

Most mathematical programming-based studies do not present computational re-
sults for benchmark instances or specific transit networks because the models are hard to
solve even for small instances. That has led researchers to use metaheuristics primarily.
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Iliopoulou et al. [20] and Durán-Micco and Vansteenwegen [9] survey the proposed meta-
heuristics. Good quality solutions are obtained for small Mandl instances that consist of only
15 nodes and 21 links using evolutionary algorithms [37,38], a genetic algorithm [39,40],
simulated annealing [36], a memetic algorithm [41], and hybrid approaches, which combine
genetic, simulated annealing, tabu search, or greedy algorithms [42–45]. Ahern et al. [36]
test their algorithm using large Mumford instances with the number of nodes changing from
30 to 127 and the number of links changing from 90 to 425 and obtain satisfactory results.
However, like mathematical programming-based studies, metaheuristic-based approaches
make many simplifying assumptions, and only a few address all the abovementioned
issues simultaneously. Moreover, solution quality depends mainly on instance data and
requires much tuning effort. They are not flexible enough to easily incorporate realistic
features and cannot provide information regarding the quality of the generated solutions.
In this regard, we offer an all-encompassing, novel mathematical programming model
that addresses all the issues simultaneously. Moreover, we obtain solutions for instances
based on a real-world network with 204 nodes, 455 links, and 13,338 OD demand pairs, which
is significantly larger than the problems in the literature, using an off-the-shelf software.
Table 1 presents the properties of this study as well as those of mathematical programming-
and heuristic-based studies in the literature related to our paper.

Table 1. Comparison of the proposed model with the studies in the literature.

Wan and Lo
[13]

Cancela et al.
[15]

Zhou et al.
[10]

Ahern et al.
[36]

De-Los-Santos
et al. [14] Current Study

Route design Endogenous Line pool Line pool
Route

generation
algorithm

Endogeneous Endogenous

Modeling
Capability

Transfer
Penalty ×

√ √ √ √ √

Waiting Times ×
√ √ √ √ √

Frequency Setting Endogenous Selection out of
a finite set Approximation Iterative Parametric

analysis Endogenous

Passenger Assignment Rule User
equilibrium

Frequency
share

System
optimal

Frequency
share

User
equilibrium

System
optimal

Solution Method Off-the-shelf
solver

Off-the-shelf
solver

Off-the-shelf
solver

Simulated
annealing

Off-the-shelf
solver

Off-the-shelf
solver

Validation

Transit Type Bus Bus Railway Bus Bus Bus

Features A 10-node
instance

A Mandl
instance

A 44-node
instance

Mandl and
Mumford
instances

10-, 15-,
30-node

instances

Mandl
instances

Real-world Implementation ×

84 nodes with
363 OD

demand pairs
(Riviera,

Uruguay)

× ×

43 nodes with
543 OD

demand pairs
(Seville, Spain)

204 nodes with
13,338 OD

demand pairs
(Kayseri,
Turkiye)

√
, exists; ×, does not exist.

3. Problem Description and Proposed Mathematical Model
3.1. Problem Description

Consider a directed network G = (N, A) with node set N = {1, . . . , n} representing
stops and directed arc set A representing the roads/links between stops. An arc (i, j)
between stops i and j exists only if i and j are adjacent and there is a direct road from i and
j. Without loss of generality, we assume that the roads between i and j are bidirectional. A
subset S ⊆ N (D ⊆ N) is distinguished as the set of supply/origin (demand/destination)
nodes. A node i ∈ S generates flows ωij > 0 for some j ∈ D, i.e., the number of passengers
who would like to go from stop i to stop j. ωij are represented in an Origin–Destination
(OD) demand matrix and specified over a time period (e.g., hour, day, month). It is possible
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that a node i is in both S and D. For nodes i and j that are both in S and D, it is not necessary
that ωij = ωji. For a supply node k ∈ S, the total outbound flow is ηk = ∑j∈D ωkj.

The passengers desire to go from their origins/boarding stops to their destinations on
a single vehicle in the shortest possible time, which requires a route/line between each pair
of stops in both directions. However, this is not practical from the perspective of the transit
agency as it would be too costly. In this regard, the transit agency is to determine a route
set T to provide transport service to passengers. Each route t ∈ T is a simple path with no
repetition of nodes and composed of a starting node (terminal), an ending node (terminal), a
set of intermediate nodes, and a set of arcs (i, j) ∈ A connecting the nodes in t. On each route
t, several vehicles with a specific capacity (βt) operate bidirectionally depending on the
frequency (i.e., the number of vehicles per time unit) needed to satisfy the demand.

Passengers departing from i and destined to j may go directly on a single vehicle if
a route passing through i and j exists. Otherwise, passengers may go indirectly to their
destination by changing their route(s) at transfer points where two or more routes coincide.
Even if it is possible to move from i to j using a single route, passengers may prefer to
transfer depending on waiting times at the boarding and transfer points, which are imposed
by the frequencies of the routes. Because making transfers is annoying for passengers, a
transfer discomfort penalty (in time units) is used to control the number of transfers. Thus,
the total travel time for passengers to arrive at their destination from their origin is the sum
of the (1) in-vehicle travel time, (2) waiting time at the boarding stop, (3) waiting time(s) at the
transfer stop(s), and (4) total penalty time resulting from transfers. The lower this total travel
time and the number of transfers, the better for passengers.

Let θij be the travel time (cost) from stop i to stop j, with θij being represented in a
symmetric OD cost matrix as in the literature, i.e., θij = θji. Thus, in-vehicle travel time is
the sum of θij for all (i, j) on which passengers travel. Waiting times at boarding and transfer
stops are not known (i.e., variables) and are determined by the headway of a route. The
headway ht is the reciprocal of the frequency ft, i.e., ht = 1/ ft, and indicates the time
between two consecutive vehicles on a route. For instance, if ft = 10 vehicles per hour,
then ht =

1
10 hours per vehicle, which is 6 min. Assuming that the arrivals of passengers at

boarding and transfer stops are uniformly distributed, the waiting times of passengers for
a route are set to half of the headway as an approximation as in Esfeh et al. [46].

The transit agency needs to design a system taking into account the perspective of
passengers. Specifically, the transit agency should attempt to minimize the total travel time
of passengers, including in-vehicle travel, waiting, and transfer times, and to maximize the
number of direct-traveler passengers (i.e., minimize the number of transfers). However,
considering only passengers’ perspectives may be too costly for the transit agency. In this
regard, it should also try to minimize the costs, e.g., the costs of trips as well as the fixed
and operational costs of operating a vehicle fleet. In doing so, the transit agency needs
to make several decisions, e.g., the number of routes to operate, the size of the vehicle
fleet, the number of stops on a route, and the percentage of direct travelers. Depending
on how several objectives are prioritized, the resulting systems may significantly differ;
hence, an analysis of different scenarios needs to be conducted to devise a system balancing
both perspectives.

3.2. The Proposed Model

We propose a mathematical programming model, namely the Public Transportation
Planning Model (PTPM), to solve TNDFSP. We define PTPM on an extended network
GT = (NT, AT) obtained by adding (1) two dummy nodes to N, namely, a and b that
act as a super source node and a super sink node, respectively, and (2) two sets of di-
rected arcs to A, namely, Asource = {(a, i) : i ∈ N} and Asink = {(i, b) : i ∈ N}. That is,
NT = N ∪ {a} ∪ {b} and AT = A ∪ Asource ∪ Asink. We assume that all nodes are num-
bered, with a and b having the smallest and largest numbers, respectively. Figure 1 gives a
schematic representation of the extended network GT = (NT, AT).
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Figure 1. Representation of a transit network GT = (NT, AT).

All constructed routes start at node a and end at node b. The model constructs a route
t ∈ T from scratch by selecting an arc (a, i) ∈ Asource, an arc (j, b) ∈ Asink, and a set of arcs
from A that forms a path from i and j, where nodes i and j are the starting and ending
terminals of the route t, respectively. Figure 2 depicts the construction of routes in the
model. In the figure, there are two routes: a-4-3-1-2-b and a-1-3-5-6-b. Because a and b are
dummy nodes, the routes on the real physical network are 4-3-1-2 and 1-3-5-6. A similar
approach that uses dummy nodes for selecting terminal nodes for routes can be found in
the work of [47].

To construct routes, we define binary decision variables dijt. Since a route is bidi-
rectional, we define dijt for arcs (i, j|i, j ∈ N ∧ i < j) to reduce the number of decision
variables. If dijt = 1, then nodes i and j are consecutive stops in route t and passenger flow
is allowed in both directions (i, j) and (j, i) on the route. For dait = 1 and djbt = 1, stops
i and j are the starting and ending terminals of route t. Another variable set associated
with route construction is yit that take on the value of 1 if i ∈ N is a part of route t and 0,
otherwise. It is possible to impose additional requirements on the routes, e.g., the minimum
(maximum) number of stops in a route and the maximum distance of a route. The decision
variables ft and ht represent the frequency and headway of a route t, respectively.

In addition to the variables above, we define (1) xijkt that represent the flow of passen-
gers of origin k ∈ S in arc (i, j) (i.e., traveling from stop i to stop j) on route t, (2) rijkt that
represent the number of passengers of origin k ∈ S who transfer at node i to route t with
the next stop being node j, and (3) vt that represent the numbers of vehicles required for
route t.
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Figure 2. Illustration of the route design in a transit network GT.

Below we summarize the sets, parameters, and decision variables used in the model.

Sets and Indices:
T set of routes (t ∈ T)
N set of stops (i, j, k ∈ N)
A set of arcs (i, j)
S set of departure/supply stops (S ⊆ N)
a super source node for routes
b super sink node for routes
Asource the set of directed arcs of the form (a, i), i ∈ N
Asink the set of directed arcs of the form (i, b), i ∈ N
NT node set of extended network GT = (NT, AT) with NT = N ∪ {a} ∪ {b}
AT arc set of extended network GT = (NT, AT) with AT = A ∪ Asource ∪ Asink
Dk set of arrival (destination) nodes for passengers of origin k ∈ S

Parameters:
βt capacity of a vehicle in route t ∈ T
ηk the number of passengers of origin k ∈ S
ωik the number of passengers of origin k ∈ S with destination i ∈ N
θij travel time from stop i to stop j
π transfer penalty (in time units)
λ maximum number of stops allowed for a route
µ minimum number of stops allowed for a route
ρ time period for which OD demand matrix is specified
M a big number enough to allow passenger flow
ε values for vehicle fleet size
φ upper limit of vehicle fleet size of the transit agency
ε a small number (ε = 10 × 10−6)

Decision Variables:
xijkt the flow of passengers of origin k who travel from i to j on route t
dijt 1, if arc (i, j), i < j, is selected to be in route t; 0, otherwise
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yit 1, if stop i is in route t; 0, otherwise
rijkt the number of passengers of origin k who transfer at node i to route t with next stop being
node j
ft frequency of route t (vehicle per time unit, e.g., hour, minute)
ht headway of the route t (i.e., time between two consecutive vehicles for route t)
vt vehicle fleet required for route t

Objective Function Terms:

in− vehicle travel time : z1 = ∑
(i,j)∈A

∑
k∈S

∑
t∈T

(
θijxijkt

)
(1)

trans f er time penalty : z2 = ∑
(i,j)∈A

∑
k∈S

∑
t∈T

(
π rijkt

)
(2)

waiting time at boarding : z3 = ∑
(i,j)∈A

∑
k=i

∑
t∈T

(
(ht/2)xijkt

)
(3)

waiting time at trans f er : z4 = ∑
(i,j)∈A

∑
k∈S

∑
t∈T

(
(ht/2)rijkt

)
(4)

vehicle f leet size : z5 = 2 ∑
(i,j)∈A;

i<j

∑
k∈S

∑
t∈T

(
θij ftdijt

)
(5)

The objective function term (1) represents total in-vehicle travel time of passengers.
(2) finds the total transfer time of passengers who transfer and is used to penalize passenger
transfers assuming that each transfer will take a specific time, i.e., penalty time. (3) and
(4) compute waiting times of passengers at boarding and transfer stops, respectively. Objec-
tive function terms (1) through (4) represent the perspective of passengers. The objective
function term (5) computes the total number of vehicles needed by the transit agency for
all routes and is used as a proxy cost to denote the costs of the transit agency associated
with operating the system. To explain how the fleet size is computed, suppose that the
frequency of a route is 16 vehicles/hour and the route length in one direction is 15 min.
Because the route is bidirectional and symmetric, the route length is 2 × 15 min = 30 min.
Then, the number of vehicles needed on the route is

(
16 vehicles

hour

)
× (0.5 h) = 8 vehicles.

Model PTPM: Public Transportation Planning Model (PTPM):
minZpassenger = z1 + z2 + z3 + z4
minZtransitAgency = z5

(6)
(6′)

s.t.
∑

i∈N
dait = 1 t ∈ T (7)

∑
i∈N

dibt = 1 t ∈ T (8)

∑
j∈N;

i<j ∧ (i,j)∈A

dijt + ∑
j∈N;

j<i ∧ (j,i)∈A

djit = 2yit i ∈ N, t ∈ T (9)

∑
i∈N

∑
j∈N;

i<j ∧ (i,j)∈A

dijt ≤ λ− 1 t ∈ T (10)

∑
i∈N

∑
j∈N;

i<j ∧ (i,j)∈A

dijt ≥ µ− 1 t ∈ T (11)

∑
i∈N

∑
j∈N;

i<j ∧ (i,j)∈A

dijt ≤
∣∣S∣∣− 1

S ⊂ N; 3 ≤
∣∣S∣∣ ≤ λ− 1,

t ∈ T
(12)

∑
j∈N;

(i,j)∈A

∑
t∈T

xijkt − ∑
j∈N;

(j,i)∈A

∑
t∈T

xjikt =


ηk, i f i = k
−ωki, i f i ∈ Dk
0, o.w

i ∈ N, k ∈ S (13)

∑
k∈S

(
xijkt + xjikt

)
≤ Mdijt

i, j ∈ N; i < j ∧ (i, j) ∈ A
t ∈ T

(14)(
∑

k∈S
xijkt

)
/ρ ≤ βt ft

i, j ∈ N; (i, j) ∈ A
t ∈ T

(15)
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xijkt = ∑
g∈N;

g 6=j ∧ (g,i)∈A

xgikt + rijkt

i, j ∈ N; (i, j) ∈ A
k ∈ S; i 6= k
t ∈ T

(16)

2 ∑
(i,j)∈A;

i<j

∑
k∈S

∑
t∈T

(
θij ftdijt

)
≤ vt t ∈ T (17)

ftht = 1 t ∈ T (18)

rijkt ≥ 0, xijkt ≥ 0
i, j ∈ N; (i, j) ∈ A
k ∈ S, t ∈ T

(19)

ft ≥ 0, ht ≥ 0 + ε t ∈ T (20)
vt ≥ 0, Integer t ∈ T (21)

dijt ∈ {0, 1} (i, j) ∈ AT
t ∈ T

(22)

yit ∈ {0, 1} i ∈ N, t ∈ T (23)

PTPM minimizes the costs of passengers (6) and the transit agency (6′); hence, it is a
multi-objective optimization problem. The objective function (6) minimizes the total travel
time of all passengers and (6′) minimizes the transit agency’s cost, which is represented as
the fleet size required to operate the system. Constraints (7) requires each route t to have
an arc from the super source node a to a stop i ∈ N, which becomes the starting terminal
of that route. Constraints (8) require each route t to have an arc from a stop i ∈ N to the
super sink node b, with i being the ending terminal of that route. If the starting and ending
terminals are known in advance, they can be specified using (7) and (8). Constraints (9)
ensure that each stop in a route is connected to two other nodes (stops or super nodes) as
shown in Figure 2.

Constraints (10) and (11) impose upper and lower limits on the number of stops in
a route, respectively. Constraints (12) eliminate subtours in the routes using the Dantzig–
Fulkerson–Johnson (DFJ) subtour elimination formulation [48], where S is a subset of stops
with the specified cardinality. The number of such constraints increases exponentially with
the cardinality of the node set |N| and hence, they cannot be used directly unless |N| is
very small. Therefore, we add subtour elimination constraints (12) during the solution
process as described in Algorithm 1 only when the candidate solutions violate them.

Constraints (13) are the flow conservation constraints of passengers at the stops and
ensures that passengers move from their origins to their destinations through some routes.
Constraints (14) couple passenger flow variables and arc selection variables and allow
passenger flows only when an arc is selected to be in a route.

Constraints (15) ensure that a frequency for each route t, ft, is determined considering
the maximum passenger load on the route, which is equivalent to the maximum value on
the left-hand side of (15). In other words, ft can be considered as the number of vehicles
needed per time unit to satisfy the demand for route t. Constraints (16) are the flow balance
constraints for the transfer of passengers. They state that the number of passengers of
origin k on arc (i, j) in route t is equivalent to the number of passengers already traveling
on route t and the number of passengers that transfer to route t at node i and move to j.

Constraints (17) compute the number of vehicles for each route. Because routes serve
in two directions, there is a multiplier of 2 on the left-hand side. Constraints (17) with
constraints (15) ensure that vehicles are not overcrowded because each route has a sufficient
number of vehicles to carry passengers. Constraints (18) state that the headway of a route is
the inverse of the frequency of that route. Finally, Constraints (19)–(23) define the variables.
Passenger flow and transfer variables, as well as headway variables, are defined to be
non-negative. Because the problem is strategic, fractional values regarding passenger
flow and transfers may be accepted. To avoid an undefined frequency evaluation due to
constraint set (18), we set a lower bound with a small number, ε, for the headway variable
in constraint (20).

The resulting PTPM is a nonlinear mixed integer programming model because con-
straints (17) and (18) and objective function terms (3), (4), and (5) consist of multiplications
of decision variables.
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4. Solution Methodology
4.1. Multi-Objective Optimization

PTPM is a multi-objective optimization model. In order to solve it using off-the-
shelf software and obtain Pareto-optimal solutions, we convert it into a single-objective
optimization model using the ε-Constraint method. We move the transit agency’s objective
function (6′) to the constraint set as in (24) where the left-hand side represents the vehicle
fleet size and the right-hand side represents an alternative level for vehicle fleet size. We
solve the resulting single-objective optimization model for different levels of the vehicle
fleet size ε to find Pareto-optimal solutions.

∑
t∈T

vt ≤ ε ε ≤ φ (24)

It is worth mentioning that by restructuring the PTPM to include an objective function
that exclusively focuses on minimizing the number of vehicles, a lower bound for the vehicle
fleet size can be determined. The resultant solution derived from this transformation serves
as a reliable reference point for determining the minimum requirement of the vehicle fleet.

4.2. Subtour Elimination

The number of subtour elimination constraints (12) increases exponentially with the
cardinality of the node set |N| and hence, they cannot be used directly while solving PTPM
unless |N| is very small. For this reason, we add constraints (12) during the solution
process only when candidate solutions violate them. The basic idea is to solve PTPM
without constraints (12) and add only those constraints of (12) that eliminate subtours, i.e.,
the cuts, whenever there is an integer solution with subtours.

When PTPM is solved without constraint (12), subtours may occur in a route t ∈ T.
For each integer solution for a route set T, we can check and quickly identify subtours
and add specific cut (12) to separate them. We run this intervention procedure within a
Lazy Constraints Callback function of Gurobi. Lazy Constraints are constructed when the
user defines a violation for an integer solution. Algorithm 1 summarizes the steps of the
intervention procedure.

Algorithm 1: Subtour Elimination.

Step 0: Start solving PTPM without constraints (12) using Gurobi. Due to the formulation consisting of
integer decision space, the solver unfolds a branch and bound tree.
Step 1: When the solver finds an integer solution in any node of the branch and bound tree, run the Lazy
Constraints Callback function defined for detecting subtours.
Step 2: If the callback function finds subtour(s) in the integer solution, go to step 3. Otherwise, go to step 4.
Step 3: Add corresponding subtour elimination constraint (12) for violating the integer solution.
Step 4: Continue exploring the branch and bound tree nodes.

4.3. Solving Large-Size Instances

We can obtain good solutions for small instances such as the Mandl dataset in minutes
(see Section 5) with Gurobi. However, Gurobi cannot find feasible integer solutions for
large-size instances such as a real-world application defined in Section 6. In this regard, we
develop a solution methodology for large-size instances based on essentially providing the
solver with a good warm-start solution for route design variables, dijt. We obtain warm-
start solutions by exploiting the Node Relaxation Heuristic (NoRelHeur) utility of Gurobi
and solving relaxed versions of PTPM. NoRelHeur is an embedded heuristic algorithm of
Gurobi and can be used when the root node relaxation consumes too much time during the
Branch&Cut (B&C) solution procedure. In applying Gurobi with NoRelHeur, NoRelHeur
first tries to find a high-quality feasible solution in the allocated time and then Gurobi
implements the branch and cut algorithm with the warm-start feasible solution found by
NoRelHeur. The solution procedure is summarized in Algorithm 2.

In the application of Algorithm 2, we solve a relaxed, single-objective version of
PTPM, PTPM_Rel, obtained by eliminating constraints (17), (18), (20), and (21), as well
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as terms (3) and (4) in the objective function (6). The eliminated constraints and objective
function terms are related to the vehicle fleet size, as well as to the frequency and headway
decisions. PTPM_Rel tries to minimize the sum of in-vehicle travel time and transfer
penalty time, i.e., z1 + z2, with constraints (7)–(16), (19), (22), and (23) ignoring the objective
function (6′). While solving PTPM_Rel, we apply Algorithm 1 as necessary to eliminate
subtours.

To obtain a warm-start solution for dijt to use in solving PTPM, we solve PTPM_Rel in
two phases. In the first phase, we solve PTPM_Rel only for a specific k ∈ S, i.e., PTPM_Rel_k.
This allows a route network to be constructed considering only passengers of origin k. To
ensure that the route set is connected and consists of all stops, there should be demand for
passengers of origin k at all other nodes, i.e., k should be selected such that ωkj > 0, ∀ j ∈ N.
If such a k does not exist, we select a k with the highest |Dk| and assign an arbitrary positive
value as a demand for j 6= k with ωkj = 0. Let dRel_k

ijt represent the values of decision
variables dijt obtained after solving PTPM_Rel_k. In the second phase, we solve PTPM_Rel
with the original OD demand matrix using dRel_k

ijt as an initial solution for dijt. Let dRel
ijt

represent the values of decision variables dijt obtained after solving PTPM_Rel. In the final
step of Algorithm 2, we solve PTPM with the original OD matrix for different vehicle fleet
levels using dRel

ijt as the warm-start solution. We use Gurobi with NoRelHeur in solving
PTPM_Rel_k and PTPM_Rel while we use Gurobi in solving PTPM.

Algorithm 2: Solution Procedure for Large Instances.

Input: A transit network instance with OD demand and distance matrices.
Step 1: Obtain a route network considering passengers of a specific origin k.

• Solve PTPM_Rel_k for a specific k using Gurobi with NoRelHeur.
• Save dRel_k

ijt that represent the values of decision variables for dijt in the solution of
PTPM_Rel_k.

Step 2: Obtain a route network considering the original OD demand matrix.

• Solve PTPM_Rel setting dRel_k
ijt as an initial solution using Gurobi with NoRelHeur

• Save dRel
ijt that represent the values of decision variables for dijt in the solution of PTPM_Rel.

Step 3: Obtain feasible integer solutions for TNDFSP

• Solve PTPM setting dRel
ijt as an initial solution and using Gurobi for different vehicle fleet

sizes to obtain Pareto-optimal solutions.

Output: Pareto optimal solutions for the transit network for varying vehicle fleet sizes.

5. Computational Tests Using Benchmark Instances

In this section, our goal is to show that PTPM works correctly and produces better
results than the exact and heuristic methods proposed in the literature. We conduct two
sets of experiments. In the first set of experiments, we ignore waiting times at boarding
and transfer points because the studies with which we compare our results use different
assumptions in modeling waiting times and hence, the results are not comparable when
waiting times are taken into account. In the second set of experiments, we obtain solutions
considering waiting times.

To verify and validate PTPM, we use Mandl benchmark instances for which features
are given in Table 2. We do not use Mumford instances because they are considered
inappropriate for TNDFSP tests due to highly unrealistic frequencies [9]. We conduct
experiments with Gurobi 9.5 solver using the Julia programming language [49] and JuMP
modeling language package [50] on a computer of an Intel Core i7@3.30 GHz with 16 GB
of RAM. We use the default settings of Gurobi parameters except for NonConvex = 2,
MIPFocus = 1, and BranchDir = 1. NonConvex = 2 tells Gurobi that the model is nonlinear.
MIPFocus = 1 emphasizes improving the primal bound. BranchDir = 1 requires the up-
branch to be explored first when a branching decision is to be made. This setting reduces
the number of explored nodes and decreases the computer’s RAM load especially for
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large-size instances. The runtime for all experiments on Mandl instances is 3600 s. Vehicle
capacity is 50 with a load factor of 1.25, i.e., 40× 1.25 = 50.

Table 2. Features of benchmark instances.

Network Number of
Nodes/Edges

Number of
Routes

Node
Limits

Min/Max

Transfer
Penalty
(Mins.)

Number of
Non-Zero OD
Demand Pairs

Total
Passenger
Demand

Demand
Period
(Mins.)

Vehicle
Capacity

Mandl 15/21 4, 6, 8, 10, 12 2/8 5 172 15,570 60 50

Pareto-optimal solutions are generated with respect to different levels of vehicle fleet
size. We start by setting a vehicle fleet size less than or equal to an upper bound of the
vehicle fleet and then gradually reduce it step by step. This approach is considered safe
because if the number of vehicles is infeasible, the model itself results in infeasibility.

5.1. Benchmark Tests without Considering Waiting Times

In the literature, few studies model waiting times at boarding and transfer nodes and
solve benchmark instances. However, the rules of passenger assignment in these studies
differ from our system optimal approach, which results in different waiting times in different
studies. For example, Ahern et al. [36] use the frequency share method while Liang et al. [37]
assign passengers to routes based on the directness of the trip and the number of transfers.
In this regard, the results of different studies are not comparable when waiting times are
considered. Therefore, we compare our results with those proposed in the previous studies
without considering waiting times, i.e., we solve PTPM with Zpassenger = z1 + z2 by varying
vehicle fleet size to obtain Pareto-optimal solutions as described before.

We present the results in the objective space with the x-axis representing the average
travel time consisting of in-vehicle travel time and transfer penalty time and the y-axis
representing the vehicle fleet size. Figure 3 indicates the results of PTPM, as well as
the results of the studies of Ahern et al. (2022) [36], Bagloee and Ceder (2011) [40], Baaj
and Mahmassani (1991) [12], Buba and Lee (2018) [38], Liang et al. (2020) [37], Zhao et al.
(2005) [42], Zhao and Zeng (2006, 2007, 2008) [43–45], and Zhao et al. (2015) [41] for different
numbers of routes. We show only the results reported in the related studies. We remark
that all studies with which we compare our results are (meta)heuristic-based because there
does not exist mathematical programming-based studies that attempt to solve benchmark
instances with the objective of minimizing the travel time.

The results indicate that PTPM can provide better Pareto-optimal solutions than other
algorithms. The study closest to ours in performance is Ahern et al. [36]. As the fleet size
increases, the results of PTPM and Ahern et al. [36] get closer. However, as the fleet size
decreases, i.e., when the problems are harder to solve, PTPM produces much better results.

The details of the computational results including the stops, vehicle fleet size, head-
ways and frequencies of routes, average passenger cost and percent of transfers can be
accessed through the following repository (File S1, Supplementary Materials).

5.2. Tests including Waiting Times

Figure 4a,b present Pareto-optimal solutions generated by PTPM for Mandl instances
considering waiting times and without considering waiting times, respectively. The results
in Figure 4a indicate that, for a fixed fleet size, the average travel time decreases as the
number of routes decreases because more vehicles can be assigned to routes, which enables
waiting times at boarding and transfer stops to be decreased. However, as the number of
routes decreases, the passenger load gets higher causing more discomfort to passengers. In
this regard, there is a need to establish a balance between passenger discomfort resulting
from a high passenger load and passenger discomfort resulting from long travel times. The
results in Figure 4b indicate that, for a fixed fleet size, the average travel time increases as
the number of routes decreases contrary to the results in Figure 4a. As the number of routes
decreases, the number of direct travelers increases, and hence, the average in-vehicle travel
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time increases. The results emphasize the importance of incorporating waiting times at
boarding and transfer points as the results without waiting times may mislead the transit
agency in developing plans.
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Figure 4. Pareto-optimal solutions generated by PTPM for Mandl instances considering waiting times.

6. A Real-World Application

In this section, we present the results of computational tests conducted for instances
defined on a real bus transit network in the city of Kayseri, located in the Central Anatolian
Region in Türkiye. Kayseri has a population of about 1.5 million. The current public
transport system consists of a tram network and a bus transit network. The tram and bus
networks intersect at certain points; however, the tram network passes through a limited
number of streets and has limited capacity. The bus network is currently the main public
transport system. The number of stops in both directions in the current bus transit system
is over 3000, which is pretty high for the size of a city such as Kayseri. In this regard,
designing a trunk-and-feeder system is considered as an alternative. Our goal in this study
is to determine trunk lines/routes on the stops selected by Kayseri Transportation Inc.
considering the demand intensity and location diversity. The Kayseri204 network consists
of 204 nodes and 405 edges. The features of the instances considered are given in Table 3.

Table 3. Features for Kayseri204 transit network instances.

Network Number of
Nodes/Edges

Number of
Routes

Node
Limits

(Min/Max)

Transfer
Penalty
(Mins.)

Number of
Non-Zero OD
Demand Pairs

Total
Passenger
Demand

Demand
Period
(Mins.)

Vehicle
Capacity

Kayseri204 204/405 15, 20, 25 2/25 15 13,338 205,090 1000 50

We conduct tests with Gurobi 9.5 solver on an Intel(R) Xeon(R) Gold 6150@2.70 GHz
computer with 256 GB of RAM with the parameter settings of Gurobi defined earlier. Since
Kayseri204 is a large network, we run Algorithm 2 to find solutions for the instances. In the
application of Algorithm 2, we set run times as follows: Step 1: NoRelHeurTime = 2000,
TimeLimit = 3000; Step 2: NoRelHeurTime = 50,000, TimeLimit = 60,000; and Step 3:
TimeLimit = 23,400, i.e., the total runtime of Algorithm 2 is 86,400 s. We remark that we
provide the solution obtained in Steps 1 and 2 as a warm-start solution in Step 3, where we
run just the B&C algorithm of Gurobi.

We obtain results for 15-, 20-, and 25-route options by setting the number of vehicles
to 150, 160, 180, 200, 220, 250, and 300. We assume a transfer penalty of 15 min as in Arbex
and da Cunha [39] and Borndörfer and Karbstein [51].

OD demand and distance matrices as well as the features of Pareto-optimal solutions,
including the average travel time, vehicle fleet size, and optimality gap, can be accessed
through the following repository (File S2, Supplementary Materials).
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6.1. Travel Time vs. Number of Vehicles

Figure 5 gives Pareto-optimal solutions for different numbers of routes. The results
indicate that the 15-route solution dominates 20- and 25-route solutions with respect to
the average travel time per passenger and vehicle fleet size. Similar to Mandl cases, for
a fixed vehicle fleet size, average travel time for 15-route solution is better than 20-route
and 25-route solutions. This is because more vehicles can be assigned to the routes in the
15-route instance, which decreases waiting times at boarding and transfer points. When
the required number of routes increases, more vehicles may be needed to ensure a certain
service level.

We remark that feasible solutions cannot be obtained for the vehicle fleet sizes lower
than 150, 160, and 180 for the 15-route, 20-route, and 25-route instances, respectively. A
sample solution for 15 routes and 150 vehicles is presented in Figure 6 on the Kayseri map,
where each color corresponds to a different route. Parts of some routes coincide and hence
overlap in some segments.
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Figure 6. Sample solution for 15 routes and 150 vehicles for the Kayseri204 network.

Table 4 details the results with respect to the average in-vehicle travel time (AIVT),
waiting time (AWT), transfer penalty time (ATP), optimality gap (Gap%), average travel
time (ATT), and headway (AH) for different numbers of routes. The table shows how
average in-vehicle travel times, waiting times, and transfer penalty times change with the
increasing number of routes and vehicle fleet sizes. For a fixed number of routes, as the
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fleet size increases, all related times essentially get better. As the number of routes increases,
average transfer penalty times decrease because the number of direct travelers increases.
On the other hand, average waiting times increase because average headways increase as
fewer vehicles can be assigned to the routes. Because average in-vehicle travel times are
close to each other and the improvements in the transfer penalty time are lower than the
deterioration in waiting times, the average waiting time becomes dominant and generally
causes the total average travel time to increase for a fixed fleet size. That is, for a fixed fleet
size, increasing the number of routes does not improve the service level with respect to
total average travel time.

Table 4 indicates that optimality gaps change from 47.15% to 61.56%. The resulting high
gaps occur because Gurobi cannot improve the linear programming relaxation bounds, i.e.,
the solutions found by Gurobi may actually be much better. To check the quality of solutions
found by Algorithm 2, we have solved Mandl benchmark instances using Algorithm 2 as
well. The results indicate that Algorithm 2 produces solutions that are very close to and
sometimes better than those found by Gurobi without NoRel with optimality gaps of
about 25% on average. Considering the fact that the solutions found by the proposed
model using Gurobi with these high optimality gaps are better than solutions found by the
state-of-the-art algorithms, we think that the solutions obtained for the Kayseri204 network
may be much better.

We remark that even though the gaps are high, this study is the first to obtain solutions
for instances significantly larger than those in the literature using mathematical program-
ming and off-the-shelf software (204 nodes and 13,338 OD pairs in comparison to 84 nodes
and 363 OD pairs in the literature).

Table 4. Average travel times for Kayseri204 network instances.

Route Fleet AIVT AWT ATP ATT AH Gap (%)

15

150 26.69 13.74 8.51 48.94 21.67 57.82

160 26.31 12.22 7.83 46.35 19.56 55.47

180 26.07 10.31 7.04 43.43 16.9 52.47

200 25.87 9.13 6.89 41.89 14.93 50.73

220 25.96 8.06 6.72 40.75 12.68 49.34

250 25.84 7.29 6.76 39.89 12.02 48.25

270 25.68 6.59 6.82 39.10 10.48 47.20

300 25.69 6.02 6.83 38.54 9.62 46.44

20

160 27.53 17.68 8.48 53.69 39.3 61.56

180 26.70 14.68 6.46 47.84 31.2 56.85

200 26.21 12.22 6.01 44.44 26.8 53.55

220 25.93 10.93 6.00 42.86 22.33 51.83

250 25.61 9.42 5.87 40.90 20.31 49.53

270 25.39 8.67 6.00 40.06 18.38 48.47

300 25.36 7.79 5.91 39.06 15.51 47.15

25

180 26.12 15.83 5.87 47.82 44.27 56.83

200 26.11 14.48 6.20 46.80 36.39 55.89

220 25.55 12.96 5.96 44.47 32.21 53.58

250 25.52 10.72 5.16 41.40 25.17 50.14

270 25.36 9.91 5.12 40.39 22.47 48.90

300 25.33 9.32 5.19 39.85 22.05 48.20
AIVT: average in-vehicle time, AWT: average waiting time, ATP: average transfer penalty, ATT: average travel
time (AIVT + AWT + ATP), AH: average headway. These units are in minutes.
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6.2. Utilization of Vehicle Capacity

Analyzing the utilization of vehicle capacity for a route helps the transit agency to
evaluate route crowding and under-utilization issues. The utilization of vehicle capacity for
a route set can be computed as follows: Let nvt represent the number of vehicles assigned
to route t, vc the capacity of a vehicle, plijt passenger load on the link from i to j on route t,
and nlt the number of links on route t. The utilization of vehicle capacity for the link from

i to j on route t is vcuijt =
plijt

vc×nvt
× 100, the average utilization of vehicle capacity for route

t is acut =
∑ij plijt

nlt
, and the average utilization of vehicle capacity for the whole route set is

u = ∑t(acut×nvt)
∑t nvt

.
Figure 7 gives the average utilization of vehicle capacity for different numbers of

routes and vehicle fleet sizes for the Kayseri204 network. For a fixed number of routes, the
average utilization of vehicle capacity decreases as the vehicle fleet size increases.

Figure 8 depicts an example analysis of the most and least utilized routes for a 15-route
instance with 150 vehicles. Figure 8a–d show the utilization of vehicle capacity on the links
of the busiest route (the least busy route), route #5 (route #9), in forward and backward
directions, respectively. A bar in the figure indicates the utilization of vehicle capacity for
the link between two consecutive nodes in the x-axis. For instance, the first blue bar in
Figure 8a represents the utilization of vehicle capacity for the link from 82 to 80. The results
indicate that the intensity of passengers and hence the utilization level gets higher towards
the middle segment of the routes as expected, reaching 100% for some links. Even though
route #9 is the least busy route, the utilization level for some links is 100%.
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Figure 8. Utilization of vehicle capacity for the busiest and the least busy routes for a 15-route solution
with 150 vehicles.

7. Conclusions and Future Research Direction

In this paper, we address the transit network design and frequency setting problem
(TNDFSP) that aims at designing the routes and determining the frequencies of the routes
to satisfy passenger demand in a transit network. We propose a novel mathematical pro-
gramming model for TNDSFP that incorporates the features of real-life transit network
systems. The proposed model reflects the views of both passengers and the transit agency
by considering in-vehicle travel time, transfers, waiting times at the boarding and transfer
stops, overcrowding and under-utilization of vehicles, and vehicle fleet size. The model
is the first to determine routes and their frequencies simultaneously from scratch, i.e.,
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without using line and frequency pools while considering the aforementioned issues such
as transfers and waiting.

We solve the proposed model using Gurobi. We conduct computational tests using
Mandl benchmark instances and a real-world transit network. The first group of tests
indicates that the proposed model works correctly and produces better Pareto-optimal
solutions than those obtained by the state-of-the-art algorithms. The second group of tests
shows how what-if analyses may be helpful in designing a transit network system. The
main insights from what-if analyses may be summarized as follows:

• For a fixed fleet size, the total average travel time gets better with a decreasing number
of routes because more vehicles can be assigned to the routes.

• For a fixed fleet size, average waiting times at boarding and transfer points increase
with the increasing number of routes because fewer vehicles can be assigned to
the routes.

• For a fixed fleet size, the average transfer penalty time decreases because the number
of direct travelers increases with the increasing number of routes.

• For a fixed number of routes, the total average travel time, average transfer penalty
time, and average waiting times improve with the increasing fleet size.

• The average utilization of vehicle capacity decreases with an increasing vehicle
fleet size.

• The average utilization of vehicle capacity may reach up to 100% on some links even
for the least busy routes.

• More vehicles may be needed to ensure a certain service level with respect to the total
average time with the increasing number of routes.

• Incorporating waiting times and transfer times as well as the vehicle fleet size into the
modeling may change the results significantly and hence is of high importance.

The insights imply that, instead of investing heavily in maintaining or expanding
existing routes or lines, transit agencies might consider dramatically modifying the current
lines or establishing entirely new ones. They should also be aware that passenger demand
patterns will change over time, making even optimized route planning suboptimal in the
long run.

We remark that the insights may change depending on the values of different pa-
rameters. However, the results indicate that the model can be useful as a decision aid for
designing a transit network system or evaluating a current system.

This study is the first to obtain solutions for instances significantly larger than those in
the literature using mathematical programming and off-the-shelf software (204 nodes and
13,338 OD pairs in comparison to 84 nodes and 363 OD pairs in the literature); however, the
model is difficult to solve for large-scale problems in designing a system from scratch and
hence, there is a need to improve the solvability of the model as a future research direction.
In this regard, problem-specific cuts, decomposition algorithms, and heuristics may be
developed and incorporated into the solution procedure. Moreover, methods to reduce the
sizes of the problems, e.g., network analysis or aggregation rules, may be proposed.
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