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With the exponential growth in the daily publication of scientific articles, automatic
classification and categorization can assist in assigning articles to a predefined
category. Article titles are concise descriptions of the articles’ content with
valuable information that can be useful in document classification and
categorization. However, shortness, data sparseness, limited word occurrences,
and the inadequate contextual information of scientific document titles hinder the
direct application of conventional text mining andmachine learning algorithms on
these short texts, making their classification a challenging task. This study firstly
explores the performance of our earlier study, TextNetTopics on the short text.
Secondly, here we propose an advanced version called TextNetTopics Pro, which
is a novel short-text classification framework that utilizes a promising combination
of lexical features organized in topics of words and topic distribution extracted by
a topic model to alleviate the data-sparseness problem when classifying short
texts. We evaluate our proposed approach using nine state-of-the-art short-text
topic models on two publicly available datasets of scientific article titles as short-
text documents. The first dataset is related to the Biomedical field, and the other
one is related to Computer Science publications. Additionally, we comparatively
evaluate the predictive performance of the models generated with and without
using the abstracts. Finally, we demonstrate the robustness and effectiveness of
the proposed approach in handling the imbalanced data, particularly in the
classification of Drug-Induced Liver Injury articles as part of the CAMDA
challenge. Taking advantage of the semantic information detected by topic
models proved to be a reliable way to improve the overall performance of ML
classifiers.
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1 Introduction

Numerous scientific research papers are being published daily with
the increasing advancement of computer and information technologies
and digital platforms. Publication output is reported to reach 2.6million
worldwide in 2018 (White, 2019). 36% of publications correspond to
health-related research (i.e., health sciences, biological and biomedical
sciences) as the largest global field of science, followed by other domains
such as computer and information sciences. Manual classification of
these documents is tedious and prone to human mistakes or deletions
due to the immense size of textual data. Therefore, to deal with such
documents efficiently, there is a need for automatic document
classification (ATC) to classify articles accurately and quickly into
one or more predefined categories according to their content (e.g.,
one topic or another). The ATC process will assist in organizing
documents and facilitate the extraction of relevant information
related to the topic of interest. Most of the studies in this field
considered the abstract section or combined the abstract with the
title for classification. Only a few studies in this field used the titles
by itself. Article titles are brief word descriptions of the articles’ content
with valuable information that one can utilize in document
classification. However, due to the concise nature of article titles,
title-based article classification presents a significant challenge, as it
can be difficult to identify key features that are distinctive enough.

In fact, the number of features in a short text is a small portion of
the set of all features presented in all of the training records. This
situation creates feature sparseness. Although this is problematic for
regular-sized text, it is more critical for short text. In particular, short
texts tend to have diversification in content; the same topic can be
expressed in multiple ways, which increases the feature space and
reduces the frequency of a feature occurring in a given record, as well
as the number of records in which a particular feature occurs,
leading to the scarcity of feature overlap. This situation makes it
challenging to accurately determine a feature’s salience in a specific
class in supervised machine-learning tasks (Bollegala et al., 2018).

As mentioned above, the severe data sparsity, high dimensionality,
lack of word co-occurrence, and insufficient shared context are other
distinctive characteristics that distinguish short texts from general ones.
Inevitably this situation negatively affects the classification performance
when conventionalmachine-learningmethods are used. In otherwords,
traditional classification methods are not optimized for use in such a
context (Alsmadi and Gan, 2019; Song et al., 2014).

Topic Modeling (TM) is an unsupervised learning task aiming to
discover latent thematic contents in a collection of text documents. TM
provides a simple way to analyze, understand, summarize, and
categorize large volumes of unlabeled text (Kherwa and Bansal,
2018). The basic notion of the classical topic models assumes that a
document is generated from a multinomial distribution over topics,
whereas a topic has a multinomial distribution over terms. Once
estimated (e.g., using Gibbs sampling), a topic model provides two
byproducts: 1) a document-topic distribution matrix containing the
distribution of topics over documents (reflecting a high-level
representation of the document’s semantics). 2) a topic-word
distribution matrix containing the distribution of words across
topics (i.e., TM assigns a word to a topic with a probability). Each
topic comprises a group of words that co-occur in documents according
to specific patterns. In other words, a topic model can differentiate
words with distinct semantics and group them into topics based on their

co-occurrence (Vayansky and Kumar, 2020; Barde and Bainwad, 2017).
In addition to discovering topics and uncovering the latent semantics of
the unstructured text collection, research studies used TM with broad
success for text classification tasks (Xia et al., 2019).

In this aspect, TextNetTopic (Yousef and Voskergian, 2022) is a
novel text classification approach that performs feature selection by
selecting top-ranked topics (a topic is a group of terms detected by a
Topic Model) as features to train the classifier. It fulfills dimensionality
reduction while preserving more thematic and semantic information in
the text document representations. Typically, conventional methods for
feature selection involve evaluating the importance or significance of
individual words by assigning scores to each one without considering
the relationships between words. In contrast, the TextNetTopics
approach relies on the fact that words are related and should be
organized into topics that are detected by using a suitable topic
modeling technique. TextNetTopics was developed to perform topic
selection rather than word selection.

This study compares the performance of TextNetTopics (Yousef
and Voskergian, 2022) on short text with other competitive feature
selection algorithms, such as Extreme Gradient Boosting (XGBoost)
(Chen and Guestrin, 2016), Fast Correlation Based Filter for Feature
Selection (FCBF) (Senliol et al., 2008), and Select K Best (SKB)
(Pedregosa et al., 2011). In addition, this article proposes a novel
short text classification approach called TextNetTopics Pro [an
enhancement of TextNetTopics (Yousef and Voskergian, 2022)],
utilizing various short text topic models designed for sparse data,
such as the Gibbs Sampling algorithm for Dirichlet Multinomial
Mixture (GSDMM) (Yin and Wang, 2014), Gamma-Poisson
Mixture (GPM) (Mazarura et al., 2020), Biterm Topic Model
(BTM) (Yan et al., 2013), Word Network Topic Model (WNTM)
(Zuo et al., 2016a), Self-Aggregation-based Topic Model (SATM)
(Quan et al., 2015), Pseudo-document-based Topic Model (PTM)
(Zuo et al., 2016b), Latent feature model with DMM (LFDMM)
(Nguyen et al., 2015), General Pólya Urn Dirichlet Multinomial
Mixture (GPU-DMM), and General Pólya Urn Poisson-based
Dirichlet Multinomial Mixture (GPU-PDMM) (Li et al., 2018).

This research study is primarily driven by a fundamental
research question: What is the extent of the impact when
employing a novel scheme that combines topics as lexical and
semantic features on text classification, as compared to
traditional methods that rely exclusively on a single feature type?

We organize the rest of this article as follows. Section 2 provides
an overview of related research utilizing topic models in short-text
classification. Section 3 describes different topic models for short
text. Section 4 presents a brief overview of TextNetTopics and
describes our proposed approach for short-text classification.
Section 5 elaborates on the experimental setup and evaluation.
Section 6 encompasses the results and discussions. In section 7,
we draw our conclusion and future work.

2 Related work—Short text
classification approaches utilizing topic
models

The short text problem was studied in many areas, such as social
media (Al Qundus et al., 2020). Various studies proposed short-text
classification approaches utilizing topic modeling to tackle and
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alleviate the issue of data sparsity in short-text classification. They
utilized two approaches: 1) enriching short texts with external
domain knowledge base resources (external resource-based
approach). In other words, topics extracted from large-scale
external corpora are added into short text documents as external
features. 2) expanding short texts using internal knowledge
acquisition (corpus-based approach). The identified topics from
the same short-text corpus can be seen as features. For instance,
the distribution of the topics across documents can be used to
generate compact and dense document representations in low-
dimensional semantic space for text classification (Sun and Chen,
2018; Qiang et al., 2022).

Using the first approach, Vo and Ock (2015) proposed a
framework for short-text classification. They estimated a Latent
Dirichlet Allocation (LDA)-based topic model through Gibbs
sampling on three universal datasets (DBLP, LNCS, and
Wikipedia). Then, they used the topic model to improve features
in short text documents by merging the optimal number of
matching topics (according to predefined equations) to each
word and combining adapted topics’ words as external features.
Finally, they used the enriched data to construct a feature vector
before applying it to various classification algorithms.

Zhang and Zhong (2016) proposed a short-text classification
framework consisting of three phases (topic learning, topic/word
vector learning, and classification). They used a corpus related to the
short text to be classified to build a topic model using LDA. Then, they
enriched the corpus and short texts by assigning topics to words (word-
topic assignment) and integrating them into the text (they treated topics
as newwords). Then the enriched corpus is used to learn both word and
topic vector representations interactively via modified Continuous Bag
of Words (CBOW) and skip-gram methods. Finally, they represent the
features of enriched short texts (i.e., words and topics) by the learned
vectors for training the classifier.

Like Zhang’s work, Sun et al. (2022) proposed an enhanced
approach for acquiring vector representations for topics and words.
They created word-topic pairs by matching each word with its
corresponding topic. The word in the pair was used to predict
contextual words, while the topic was used to predict contextual
topics. In other words, a topic is predicted only by other topics
without words. Following this approach, they learn two sets of
vector representations for the short text: word and topic vectors. In
addition, they employed a supervised Multi-Cluster Feature Selection
algorithm to select the optimal topic subset and proposed a novel topic-
merging strategy to mitigate the loss of features (topics). Finally, short
text matrices are created by utilizing learned vector representations, and
these matrices are then inputted into a convolution neural network.

Yang et al. (2013) proposed a short-text classification approach
by combining lexical and semantic features. They assigned each
word in a short text with a learned topic from a background
knowledge repository through a Gibbs sampler for LDA, then
transformed the text into a semantic vector representation with a
size corresponding to the number of topics, where each cell contains
times of appearance of each assigned topic inside the text. Moreover,
they used an improved expected cross entropy to select the top
distinctive words in each category. Then, they combined those
lexical features with the semantic features by mapping them to
topics with different weights to reflect their discriminative
characteristics.

Sun and Zhao (2017) proposed a novel feature extension
approach to solving short-text classification problems. They
trained the TNG algorithm, an improved topic model that can
infer unigram words and phrases distribution on each topic, on an
extensive text collection related to the domain as universal data.
They used these features to build a feature extension library.
Afterward, a Topic Weight Vector is computed for each short
text, and the topic with the highest value is used to define its
topic tendency. Then, appropriate candidate words and phrases
associated with that topic are selected from the feature extension
library to extend the original short texts. Finally, an LDA is used to
obtain the document-topic distribution for the extended short texts
to train an SVM classifier.

The main problem with the first approach is that it relies on a
vast volume of high-quality external data, which we may lack for
some special domains and languages, or it can be very costly to
collect such data.

Following the second approach, Bagheri et al. (2020) introduced
an ETM (enrichment by topic modeling) algorithm for clinical
sentence classification. Instead of employing external knowledge
repositories, ETM uses internal knowledge acquisition to enrich text
by incorporating LDA’s short texts’ distribution probabilities
(i.e., document-topic and topic-word probabilities), the length of
the document, and the value of TF-IDF of the word to smoothen
their semantic representation. They used SVM and neural network
algorithms for the classification tasks.

Chen et al. (2016) proposed a novel distance metric formula for
the KNN algorithm to classify short texts. It integrates the LDA
semantic features with discriminative word relationship
information. It considers the shared latent topics assigned to the
discriminative words in the two short texts as third-party features to
compare their similarity. They embedded this assumption in a
modified feature vector and used the cosine method to calculate
the topic similarity.

Liu et al. (2022) proposed a short text classification approach
utilizing a convolutional neural network. They combined the latent
document-topic vector extracted by RLDA, an enhanced LDA topic
model based on the Relevance formula and the latent semantic
vector representation of the document extracted by a word2vec word
vector model to construct a new text feature representation; and
then applied it to a four-layer CNN.

Pei et al. (2018) introduced a novel convolutional neural
network, TW-CNN, employing topic information and word
embedding for short text classification. The word vector matrices
are first generated using LDA topic modeling and word2vec and
then fed into two distinct CNNs. These CNNs consist of convolution
and pooling layers and generate two different vector representations
of the text. The resulting vectors are then combined with the text-
topic vector acquired from LDA, which produces the final
representation vector of the text. The final vector is used to
perform softmax text classification.

Ge et al. (2020) classified short texts based on Word-network
Triangle Topic Model (WTTM) and word vector. They aggregated
the short text corpus in one document and used it to train word
vectors using the Word2Vec-CBOW model. In addition, they
trained WTTM based on Gibbs sampling to obtain the topic-
word distribution matrix and the topic-word files. Each word
inside the text is matched with the topic-word distribution
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matrix, selecting the topic with the highest probability and taking n
words from the topic-word file as the feature extension of the
original word. Finally, both vectors (word and topic extended
feature vectors) are merged and used to train a random forest
classifier.

As we have noticed, most studies used Latent Dirichlet
location (LDA) as the main source for performing topic
modeling to enrich the short text, which only works
efficiently with long text. Nevertheless, many other topic
modeling algorithms exist, with some of them customized for
short texts and well-tuned for sparse documents, and picking a
good one is not straightforward. This study proposes a novel
short text classification approach called TextNetTopics Pro,
which is an enhancement of TextNetTopics, leveraging
various short text topic models, i.e., GSDMM, GPM, BTM,
WNTM, SATM, PTM, LF-DMM, GPU-DMM, and GPU-
PDMM, designed for sparse data. Moreover, since
TextNetTopic performs feature selection, we compare its
performance on short text with other competitive feature
selection algorithms, such as XGBoost, FCBF, and SKB.

3 Short-text topic model

Topic modeling refers to a set of algorithms that aim to discover
the underlying structures and hidden topics in an unlabeled text
corpus. In contrast to regular-sized documents, inferring the latent
topics and discovering the hidden semantic structure in a collection
of short documents is challenging.

Insufficient word co-occurrence information within individual
short texts significantly contributes to a notable decline in
performance (i.e., less reliable and inferior topic inference, the
resultant topics are semantically less coherent) when utilizing
traditional topic models across short texts, which implicitly
captures the word co-occurrence patterns at the document level
to discover topics (Yan et al., 2013; Qiang et al., 2022). This situation
makes classical topic models highly influenced by the length of
documents and the number of documents related to each underlying
topic (Zuo et al., 2016a).

Recently, researchers have proposed topic models specially
designed to handle short texts to overcome the problem of
shortness, severe data sparseness, high dimensionality, and the
minimal availability of word co-occurrence information in each
of them (Qiang et al., 2022). These studies mainly follow the
following three approaches.

- Dirichlet multinomial mixture (DMM): Unlike the LDA,
which adopts a complex assumption that each text is
sampled over a set of topics, DMM follows a simple
assumption that each text is modeled from only one latent
topic.

- Global word co-occurrences: It infers latent topics leveraging
the global word co-occurrence patterns obtained from the
whole corpus.

- Self-aggregation: It aggregates short texts into lengthy pseudo-
document before conducting topic inference (training a topic
model) to improve word co-occurrence information.

Some relevant algorithms related to short-text topic modeling
can be summarized as follows:

GSDMM: Yin and Wang proposed a Gibbs Sampling algorithm
for Dirichlet Multinomial Mixture. GSDMM is inherently a mixture
of a unigrams model, with the generative assumption that the
document is sampled from one topic instead of multiple topics
like in the LDA, and the words depend on that topic. GSDMM
samples a latent topic for a document based on collapsed Gibbs
sampling (Yin and Wang, 2014).

GPM: The Gamma-Poisson Mixture model is a topic modeling
technique that employs an independent Poisson distribution to
describe the frequency of word occurrences in fixed-length
documents, as opposed to the GSDMM and LDA models, which
use a multinomial distribution. GPM differs from the GSDMM,
which uses the Dirichlet distribution as a conjugate prior to the
multinomial distribution by assuming a Gamma prior distribution
as a conjugate prior to the Poisson distribution. Similar to the
GSDMM, the GPM model is a mixture model that assumes each
document is generated from a single topic rather than a mixture of
topics. The model utilizes a collapsed Gibbs sampler to
automatically estimate the number of topics in a document
collection (Mazarura et al., 2020).

BTM: A Biterm Topic Model can be considered a specialized
form of the mixture of unigrams. Unlike conventional topic models
that model word generation from the document level to implicitly
capture word co-occurrence patterns, the BTM explicitly models the
generation of biterms (unordered pairs of words co-occurring in the
same context) in the whole corpus to infer topics over short text. It
considers that the corpus composes a mixture of topics, and each
biterm is drawn from a specific topic only (Yan et al., 2013).

WNTM: Word Network Topic Model is designed to tackle the
sparsity and the significant imbalance in short text document
distribution (i.e., heavily skewed). It can discover rare topics
contained in fewer documents. WNTM learns the latent word
groups (topic components) by applying the standard Gibbs
sampling for LDA in a word co-occurrence network rather than
the document collection. Moreover, unlike other approaches,
WNTM models the distribution of latent topic components for
each word instead of the distribution of topics for each document
(Zuo et al., 2016a).

SATM: Self-Aggregation-based Topic Model integrates topic
modeling and text self-aggregation (clustering) simultaneously
during topic inference. It assumes that each piece of short text is
sampled from a long pseudo-document hidden in the current text
corpus, following the multinomial distribution. It uses the standard
topic modeling (i.e., Gibbs sampling) to infer latent topics from
pseudo-documents without relying on metadata or auxiliary
contextual information, which is too costly for deployment and
not always available. However, SATM is prone to overfitting since
the number of SATM parameters grows linearly with the size of the
corpus, and its time complexity is very high (Quan et al., 2015).

PTM: Like SATM, the Pseudo-document-based Topic Model
assumes that much less normal-sized latent documents named
‘pseudo documents’ generate the vast volume of short texts in
the corpus. It learns the topic distributions of pseudo documents
rather than short texts. However, PTM is substantially different
from SATM in its generative processes. In addition, PTM has a fixed
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number of parameters, so when the training corpus is in relative
shortage, it gains the power to avoid overfitting (Zuo et al., 2016b).

GPU-PDMM and GPU-DMM: These algorithms are variants of
DMM. Both algorithms exploit the general word semantic relations
incorporated in word embeddings learned by neural network
language models, such as CBOW and Glove, during the Gibbs
sampling process (i.e., topic inference process) through the
generalized Polya urn (GPU) model. After sampling a topic,
words highly relevant to the topic are selected and linked with
their semantically related words together under the same topic, even
though they share limited or no co-occurrences in the modeled
short-text corpus (Li et al., 2018). Regarding PDMM, the Poisson-
based Dirichlet Multinomial Mixture Model, is a variant of DMM.
Since a single-topic assumption in some short-text corpus may be
too strong, it assumes a short text is sampled by one or a limited
number of topics, whereas the Poisson distribution models the
number of topics (Li et al., 2018).

LF-DMM: Latent feature model with DMM incorporates word
embeddings into Dirichlet Multinomial Mixture by replacing the
topic-word Dirichlet multinomial component with a two
components mixture of a Dirichlet multinomial component and
a latent feature (a continuous word embedding) component. It uses
a binary switch variable (sampled from a Bernoulli distribution) to
choose which component generates a word. The model projects the
topics into the same continuous latent space as the word
embeddings to estimate the word embedding component of each
word. This is achieved by optimizing a regularized log-linear model
(Nguyen et al., 2015).

4 Methodology

4.1 TextNetTopic

TextNetTopic is a topic model-based topic selection algorithm
developed for textual data analysis that was based on a prior study
TopicsRanksDC for topics ranking based on the distance between
two clusters that are generated by each topic (Yousef et al., 2020). It
relies on the generic Grouping, Scoring, and Modeling (G-S-M)
approach (Ge et al., 2020). It uses Latent Dirichlet Allocation (LDA)
as a default topic model to detect latent topics, where each topic
contains the most related words indicative of the underlying topic.
TextNetTopics scores the topics (a topic here represents a group of
semantically related words) and finds the top significant r topics,
determined by their high scores (i.e., mean classification accuracy),
which form an aggregated subset of words that effectively
discriminate the two classes of documents (in case we are dealing
with a binary classification problem). These selected topics are then
used to train the classifier. Scoring topics is computed by using a
machine learning model (i.e., Random Forest algorithm) (Yousef
and Voskergian, 2022). As shown in Yousef and Voskergian (2022),
TextNetTopics outperformed other traditional feature selection
techniques for regular-sized documents.

Similar bioinformatics tools were developed based on the
G-S-M that also perform grouping based on prior biological
knowledge. These are some of those tools: maTE (Yousef
et al., 2019) which uses microRNA target gene information for
grouping the genes; miRcorrNet (Yousef et al., 2021a) and

miRModuleNet (Yousef et al., 2022), which detect feature sets
via concurrently analyzing mRNA and miRNA expression
datasets; CogNet (Yousef et al., 2021b) and PriPat (Yousef
et al., 2023) that use KEGG pathway information for grouping
the genes; GediNet (Qumsiyeh et al., 2022) that uses disease gene
associations, miRdisNET (Jabeer et al., 2023) that uses miRNA
target gene information while assigning the genes into sets,
GeNetOntology (Ersoz et al., 2023) uses the Ontology
information for grouping the genes. 3Mint (Unlu Yazici et al.,
2023) is a recent tool that integrates 3-omics datasets in order to
detect groups and apply the G-S-M model.

4.2 TextNetTopics Pro

TextNetTopics Pro is an enhancement over TextNetTopics. It is
a topic model-based approach to short-text classification, which
integrates lexical information (topic words) and document-topic
distribution information. In other words, it strives to find the top-
ranked r topics, each defined as sets of semantically related words,
that align most effectively with the topic distribution for providing
the best classification performance.

The main aim of TextNetTopics Pro is to reduce the original
text’s dimensionality and make the short text less sparse and more
topic-oriented for classification purposes.

By using semantically richer document representation,
TextNetTopics Pro can distinguish alternative forms expressing
the same notion or concept. Therefore, it reduces the noise
caused by synonymy and polysemy found in textual data.

Let D = {d1, d2, . . . , dn} be the collection of n short-text
documents (See Figure 1, D collections).

Let TD be the matrix of document-topic distribution (See
Figure 1, TD table), representing the likelihood or proportion of
each topic present in a given document. The dimension of TD is n
rows and k columns, where k is the number of detected topics.

Let TW be the topic_word matrix (See Figure 1, TW table),
representing the distribution of words across topics, where each row
corresponds to a topic and contains a set of m words that are
semantically related within that topic.

TextNetTopics Pro algorithm consists of the following five main
components, as shown in Figure 1.

- T component incorporates a short-text topic model (e.g.,
GSDM, BTM, etc.) to detect latent topics from the
preprocessed collection of documents. The number of topics
(k) and the number of terms per topic (m) are user-defined
parameters. The main output of this component is two
byproducts: a document-topic distribution matrix (TD)
reflecting the topics’ proportions over documents and a
topic-word distribution matrix (TW) where each word is
assigned to each topic with probability.

- G component input is the topic_word matrix (TW) that
represents the detected topics. For each topic that consists
of m terms/words, the G component generates a representative
two-class m-dimensional sub-dataset with its associated class
labels from the training Bag-of-Words (BOW) table. In other
words, each of these sub-datasets corresponds to a specific
topic, containing only the terms that constitute that topic.
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- S component utilizes an internal machine learning cross-
validation applied to each representative two-class sub-
dataset to assign a score or weight as the mean accuracy of
the cross-validation. The score also might be another
performance measurement, such as the area under the
curve, and rank them accordingly. A topic score indicates
the ability of words belonging to a topic to classify class labels.

- C component considers the top-ranked topics (topic = set of
terms) in an accumulated fashion (referred to in Figure 1 as
Topic Set (TS), e.g., top_1 ranked topic, top_1 + top_2 ranked
topics, till top_1 to top_r ranked topics are merged, where
r≤k), forming an aggregated subset of words, then extracts its
two-class sub_dataset from the training BOW dataset and
concatenates it with the TD matrix (same number of rows).
This procedure is repeated cumulatively, creating r new
datasets that we refer to each by C_TWDi, where i = 1 . . .

r. Each C_TWDi will serve as input to the M component.
- M component performs the training of the machine learning
model (we use Random Forest) and the testing to create the
performance table. From all the candidate subsets of features,

we choose the optimal feature subset containing topics’ terms
and distributions that provide the best performance (i.e., best
discriminative power) with a reduced number of features for
training the final classifier.

5 Experimental work

5.1 Datasets

In order to evaluate TextNetTopics and its enhanced version on
short text documents, we conducted experiments on two publicly
available datasets, the CAMDA dataset (CAMDA, 2022) and the
arXiv dataset (arXiv Paper Abstracts, 2022).

1) CAMDA dataset: As part of a contest, the CAMDA panel has
collected titles and abstracts of a large set of PubMed papers
relevant to Drug-Induced Liver Injury (7,097 positive instances)
and a challenging set of unrelated papers (7,026 negative
instances). The DILI-related papers are validated by a

FIGURE 1
Workflow of TextNetTopics Pro.
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committee of DILI specialists and referenced in the NIH
LiverTox database. Additionally, in CAMDA the following
datasets are provided:
- Testing dataset (T1-T3): CAMDA has provided three
unbalanced test sets at different difficulty levels. In other
words, these datasets include an increasing amount of true
negatives (where the majority of manuscripts are non-DILI
related) to reflect the difficulty of the real-world task.

- Validation (V1-V4): Four validation sets are provided at the
end of the competition. In addition to hidden parts of T1-T3
datasets, CAMDA has prepared V4 - a domain transfer
challenge to enable participants to assess the generalizability
of the “DILI relevance detection” models.

CAMDA has provided Test Leaderboards that allow the user to
upload a list of predictions of each test (T1-T3) and other Validation
Leaderboards for validation datasets (V1-V4).

Table 1 provides information about the CAMDA training,
testing, and validation datasets utilized in this study.

2) arXiv paper abstract dataset: This dataset is found in Kaggle, and
it is used for building multi-label text classifiers. In this study, we
have converted this dataset into two balanced class dataset to
evaluate our approach. We chose the Computer Vision and
Pattern Recognition papers as a positive class
(8,822 instances) and merged the remaining fields to create a
negative class (8,341 instances). We performed stratified
sampling for the non-relevant fields to retain their
distribution in the final corpus.

Although both datasets consist of titles and abstracts of scientific
publications, this study utilizes the titles’ part for experimental
evaluation, except for the final section, which also uses the
abstract part.

We plot the title length histogram to gain more insight into
both datasets (refer to Supplementary Figures S1 and S2). The
number of words in article titles tends to have a normal
distribution. CAMDA titles have an average of 8.3 and a
median of 8 words, while arXiv titles have an average of
6.9 and a median of 7 words. Supplementary Material includes
detailed descriptive statistics for both datasets.

5.2 Preprocessing

This step is crucial to refine the text data to remove irrelevant,
redundant, noninformative, and noisy data. Otherwise, their
presence misleads the classifier, degrades performance, and
substantially increases the computational time of machine
learning. For the preprocessing task, we utilized the Knime

workflows found in Yousef (2023) in order to perform the
following Natural Language Processing operations: we removed
all punctuations, numbers, non-alphanumeric characters, terms
with less than three characters, and stop words (overly common
terms which are neither descriptive nor meaningful and carry no
semantic importance). We performed case-folding (lowercasing)
and tokenization. Moreover, we stemmed text utilizing the Snowball
Library, which aids vocabulary standardization. Finally, we used a
minimal frequency cut-off to filter out the rare terms with a
frequency of less than 20; these terms have no significant
relevance and lack power in distinguishing different documents,
yielding a total vocabulary of 1,293 terms for the CAMDA dataset
and 1,175 terms for the arXiv dataset that are thematically unique
and descriptive. However, we omitted the final step (minimum
word-document frequency filter) for TextNetTopics Pro since we
observed it degrades the final performance. Without this step, we
can preserve more semantic information/structure in the text. After
the preprocessing step, we utilized a term-weighting method called
relative Term Frequency format, where each value in a document
vector results from the division of the respective term count by the
total number of terms in a document.

5.3 Experimental setup

To extract the topic-word matrix and the latent semantic
representation (document-topic matrix) from the above-
mentioned state-of-the-art algorithms (GSDMM, GPU-DMM,
GPU-PDMM, LFDMM, BTM, PTM, SATM, and WNTM), we
used STTM (Version = 1.8) (Qiang et al., 2022; Qiang, 2023), an
open-source java library for Short Text Topic Modeling. Pre-
trained 200-dimensional GloVe (Pennington et al., 2014) (Global
Vectors) word embeddings were utilized by DMM-based
algorithms (GPU-DMM, GPU-PDMM, LF-DMM). Regarding
the Gamma Poisson mixture model (GPM), we used GPyM_
TM (Version = 3.0.1) (jrmazarura, 2022), a Python package, to
perform topic modeling.

For all algorithms, we use fixed hyperparameters of α = 0.1 and
β = 0.01. We run Gibbs sampling inference for 1,000 iterations in all
methods to guarantee convergence, and the final samples are utilized
to estimate model parameters. We set the number of topics and the
number of words per topic to twenty since it yielded the best
performance among variants.

Concerning TextNetTopics and TextNetTopics Pro, we utilized
their KNIME workflow implementations, which can be found in
(Yousef, 2023).

Finally, we employed a stratified Monte Carlo Cross-Validation
(MCCV) to evaluate the performance of our approach and measure
its statistical significance, repeated ten times. Each time, we divide
the dataset into two parts: ninety percent for training and ten

TABLE 1 Information on training, testing, and validation datasets used in this study.

Tr T1 T2 T3 V1 V2 V3 V4

# records ~1,400 4,763 21,724 82,753 6,494 32,814 100,265 1,400

a) Train b) Test c) Validation
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TABLE 2 TextNetTopics performance over accumulated top-ranked topics in the CAMDA dataset, utilizing the various short-text topic modeling methods in the T
component.

# of
Accumlated_Topics

# of
terms
(mean)

Accuracy
(mean)

Recall
(mean)

Specificity
(mean)

F-
measure
(mean)

AUC
(mean)

Precision
(mean)

Cohen’s
kappa
(mean)

GSDMM 20 185 85.10 84.75 85.46 85.14 90.34 85.54 70.21

18 167 85.15 84.17 86.13 85.08 90.16 86.03 70.29

16 149 85.12 83.52 86.75 84.97 90.21 86.48 70.25

14 133.3 84.69 82.70 86.70 84.47 89.95 86.33 69.39

12 117.8 84.49 82.26 86.75 84.22 89.63 86.30 68.99

10 103 83.71 81.19 86.26 83.38 88.82 85.70 67.43

8 84 83.04 80.37 85.74 82.67 88.52 85.12 66.09

6 67 82.80 79.62 86.02 82.32 87.89 85.24 65.61

4 48.4 81.18 76.70 85.72 80.40 86.00 84.49 62.38

3 40 80.64 75.39 85.96 79.67 85.14 84.50 61.31

2 32.4 79.58 73.68 85.56 78.40 83.56 83.82 59.19

1 20 76.44 67.48 85.52 74.23 79.91 82.58 52.94

PTM 20 275 85.95 86.31 85.59 86.07 91.99 85.85 71.90

18 244 86.04 85.73 86.36 86.07 91.87 86.44 72.09

16 219.6 85.86 85.30 86.43 85.86 91.66 86.44 71.73

14 193 85.59 84.50 86.69 85.51 91.30 86.55 71.18

12 171 85.35 83.68 87.03 85.18 90.86 86.75 70.70

10 145.3 84.83 82.67 87.02 84.58 90.32 86.59 69.67

8 120.5 83.80 81.24 86.39 83.46 89.33 85.83 67.61

6 93 81.94 77.85 86.07 81.26 87.02 85.00 63.89

4 67.2 77.69 71.20 84.27 76.26 81.95 82.12 55.42

3 54 76.66 69.58 83.84 75.00 80.77 81.36 53.37

2 37.7 74.33 64.37 84.43 71.60 77.59 80.73 48.73

1 20 69.74 55.47 84.20 64.84 72.33 78.11 39.60

BTM 20 194 85.45 84.78 86.13 85.43 90.71 86.10 70.91

18 182 85.61 84.65 86.58 85.55 90.63 86.47 71.22

16 170.5 85.41 83.97 86.86 85.27 90.62 86.62 70.82

14 149.8 85.01 82.90 87.15 84.77 90.04 86.73 70.03

12 131 84.85 82.60 87.13 84.58 89.95 86.67 69.72

10 114.6 84.53 82.15 86.93 84.23 89.65 86.43 69.06

8 93.5 83.92 81.03 86.85 83.53 89.09 86.19 67.85

6 71.5 83.37 80.34 86.45 82.94 88.25 85.73 66.76

4 53.6 82.30 78.59 86.06 81.71 86.76 85.10 64.61

3 42.5 79.94 73.71 86.26 78.70 83.54 84.45 59.92

2 32 76.71 66.68 86.88 74.23 79.84 83.74 53.48

1 20 75.81 66.80 84.93 73.54 78.59 81.84 51.67

SATM 20 245 85.72 86.12 85.30 85.85 91.68 85.59 71.43

(Continued on following page)
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TABLE 2 (Continued) TextNetTopics performance over accumulated top-ranked topics in the CAMDA dataset, utilizing the various short-text topic modeling
methods in the T component.

# of
Accumlated_Topics

# of
terms
(mean)

Accuracy
(mean)

Recall
(mean)

Specificity
(mean)

F-
measure
(mean)

AUC
(mean)

Precision
(mean)

Cohen’s
kappa
(mean)

18 221.2 85.47 85.37 85.57 85.54 91.17 85.71 70.95

16 200 85.46 84.55 86.38 85.41 90.85 86.29 70.92

14 177 85.11 83.80 86.43 84.99 90.55 86.23 70.22

12 158.3 84.88 83.30 86.49 84.72 89.96 86.22 69.77

10 135.1 82.53 79.93 85.17 82.14 87.39 84.51 65.08

8 111.4 81.17 77.19 85.20 80.47 85.92 84.06 62.35

6 90 79.67 75.15 84.26 78.81 83.85 82.87 59.37

4 64 77.99 71.73 84.33 76.62 81.96 82.27 56.01

3 50.8 76.78 69.32 84.34 75.01 80.63 81.78 53.61

2 36 75.48 66.14 84.94 73.07 78.87 81.66 51.02

1 20 73.74 62.38 85.24 70.49 76.84 81.10 47.55

WNTM 20 220 84.27 84.13 84.41 84.33 89.89 84.55 68.54

18 199 84.22 83.58 84.87 84.20 89.74 84.86 68.44

16 181 84.26 83.28 85.26 84.19 89.45 85.15 68.53

14 161 84.00 82.21 85.82 83.79 89.43 85.48 68.01

12 142.1 83.47 81.58 85.39 83.25 89.14 84.99 66.95

10 119.9 83.39 81.26 85.54 83.12 88.77 85.08 66.78

8 99.8 82.58 79.97 85.21 82.20 87.85 84.60 65.16

6 80.3 82.04 78.59 85.54 81.50 86.83 84.67 64.10

4 57.2 80.75 76.25 85.30 79.94 85.52 84.04 61.52

3 46 79.27 73.58 85.03 78.12 84.07 83.29 58.56

2 32.3 76.31 69.49 83.21 74.69 80.46 80.76 52.65

1 20 75.84 67.68 84.10 73.81 79.53 81.20 51.72

GPM 18 200 85.00 84.33 85.67 84.98 90.54 85.68 69.99

16 164 84.70 83.82 85.60 84.65 90.16 85.54 69.41

14 145 84.75 83.37 86.16 84.62 90.18 85.95 69.51

12 128 84.55 82.87 86.25 84.37 90.00 85.95 69.10

10 112.4 84.46 82.36 86.58 84.21 89.64 86.16 68.92

8 97.4 83.88 81.56 86.23 83.58 89.16 85.73 67.77

6 77 83.02 79.75 86.35 82.54 87.61 85.57 66.06

4 54.7 82.11 77.43 86.85 81.32 86.70 85.66 64.23

3 45.1 81.39 76.05 86.79 80.44 85.89 85.38 62.80

2 34 79.79 73.61 86.05 78.56 84.02 84.25 59.60

1 20 76.39 64.91 88.02 73.45 79.53 84.60 52.85

GPU_DMM 20 166 85.09 84.96 85.21 85.15 90.40 84.96 85.36

18 150.5 84.96 84.31 85.62 84.94 90.30 84.31 85.61

16 136.7 84.67 83.56 85.79 84.57 90.21 83.56 85.64

(Continued on following page)
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percent for testing. Using MCCV enables every observation in the
dataset to have an opportunity of appearing in the training and
testing set. We utilized stratified splitting, keeping the proportions of
instances in each class equal.

5.4 Evaluation

We adopt the standard performance measures as the evaluation
criteria for our proposed short-text classification framework, such as

TABLE 2 (Continued) TextNetTopics performance over accumulated top-ranked topics in the CAMDA dataset, utilizing the various short-text topic modeling
methods in the T component.

# of
Accumlated_Topics

# of
terms
(mean)

Accuracy
(mean)

Recall
(mean)

Specificity
(mean)

F-
measure
(mean)

AUC
(mean)

Precision
(mean)

Cohen’s
kappa
(mean)

14 122.4 84.38 82.62 86.16 84.18 89.83 82.62 85.84

12 110 84.05 82.39 85.73 83.86 89.25 82.39 85.42

10 90.6 83.61 81.65 85.59 83.37 89.10 81.65 85.18

8 78.2 83.35 81.36 85.37 83.10 88.49 81.36 84.94

6 63.5 82.61 79.90 85.36 82.22 87.69 79.90 84.69

4 46 80.77 75.86 85.74 79.87 85.58 75.86 84.37

3 40 80.11 74.34 85.96 78.99 84.51 74.34 84.30

2 32.6 79.30 72.87 85.82 77.97 83.37 72.87 83.88

1 19.9 76.63 67.17 86.20 74.30 80.17 67.17 83.18

GPU_PDMM 20 276 85.02 85.88 84.15 85.23 91.06 84.59 70.05

18 249 85.03 85.36 84.70 85.16 91.07 84.97 70.06

16 223 85.07 84.98 85.16 85.14 90.86 85.30 70.13

14 194.6 85.08 84.57 85.60 85.09 90.62 85.62 70.16

12 173.6 84.80 83.55 86.07 84.69 90.52 85.88 69.61

10 150 84.55 82.91 86.20 84.37 90.11 85.89 69.10

8 122.5 83.30 80.42 86.20 82.88 88.38 85.53 66.60

6 93.8 82.33 78.50 86.22 81.72 87.07 85.24 64.69

4 63.1 77.75 70.78 84.81 76.18 82.01 82.52 55.54

3 48 77.15 69.73 84.67 75.43 80.98 82.19 54.35

2 35 76.36 67.99 84.84 74.32 79.74 81.98 52.78

1 20 70.14 53.44 87.05 64.26 72.08 81.07 40.40

LFDMM 20 202 85.22 84.91 85.54 85.25 90.50 85.62 70.45

18 180.6 85.27 84.46 86.09 85.22 90.49 86.02 70.54

16 164.8 85.08 84.02 86.16 85.00 90.24 86.02 70.17

14 148 84.93 83.34 86.55 84.77 89.99 86.26 69.87

12 126.9 84.66 82.46 86.89 84.40 89.77 86.44 69.33

10 112.1 84.12 81.56 86.72 83.78 89.43 86.16 68.25

8 92.5 83.57 80.81 86.36 83.18 88.64 85.73 67.14

6 71 82.71 79.34 86.13 82.20 87.49 85.29 65.44

4 53.8 81.36 76.32 86.46 80.47 85.94 85.11 62.74

3 44.3 80.53 74.31 86.82 79.32 84.85 85.09 61.08

2 32 77.35 68.70 86.10 75.31 81.31 83.35 54.74

1 19.5 74.90 64.17 85.76 71.96 78.31 82.08 49.86
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accuracy, recall, specificity, precession, the area under the curve, and
the F1-score. However, in the experimental discussion section, we
focused on F1-score as the primary metric for evaluation.

6 Experimental results and discussion

6.1 Performance evaluation of
TextNetTopics using various short-text topic
models

Given that the utilized short-text topic models yielded
approximately similar performance patterns across the two
datasets, we report only the results obtained for the CAMDA
dataset in this section. However, we included the results attained
by the arXiv dataset as Supplementary Material.

Table 2 reports the performance of TextNetTopics for the CAMDA
dataset when incorporating various short-text topic models in the T
component. In this table, the highlighted cells represent the maximum
F1-score achieved by each topicmodel. According to the F1-score results,
we see robustness in feature subset generation by TextNetTopics. The
change in the performance linearly increases as we increase the feature
subset generated by TextNetTopics. This behavior confirms our feature
selection method’s stability and ability to identify the most relevant and
discriminative topical word features at any subset that optimizes short-
text classification. In other words, TextNetTopics is able to retain only
terms that improve, or at least do not hinder, prediction performance.

Figure 2 presents the performance results of TextNetTopics over
accumulated top topics (topical word subsets) for the DILI-CAMDA
dataset using various short-text topic modeling methods in the T
component. According to Figure 2, Self-aggregation methods

achieved the highest F1 score. For instance, PTM got 86.07%
over the top 19 topics with 257 terms, and SATM got 85.85%
over the top 20 topics with 245 terms. Then BTM got 85.55% over
the top 18 topics with 182 terms. DMM-based models achieved
85.25%, 85.23%, 85.15%, and 85.13% for LFDMM, GPU-PDMM,
GPU-DMM, and GSDMM over the top 20 topics with 202, 276, 166,
and 185 terms, respectively. Regarding the remaining topic models,
although they resulted in comparable results, their F1 score was the
lowest. For example, GPM andWNTM got 84.98% and 84.33% over
the top 18 topics with 200 terms and 20 topics with 220 terms,
respectively. According to Figure 3, when considering only
140 features, the GPU-DMM topic modeling method reported
the highest performance F1-score result (84.87%) in the CAMDA
dataset.

Figure 4 presents the performance results of TextNetTopics over
accumulated top topics (topical word subsets) for the arXiv dataset
using various short-text topic modeling methods in the T
component. According to Figure 4, again, the Self-aggregation
method and GPU-PDMM achieved the highest F1 score. For
instance, PTM got 87.29% over the top 15 topics with 209 terms,
GPU-PDMM and SATM achieved 86.64% and 86.49% over the top
20 topics with 237 and 197 terms. Then GSDMM got 86.26% over
the top 19 topics with 137 terms, WNTM achieved 85.69% over the
top 20 topics with 171 terms, and LFDMM got 85.35% over the top
19 topics with 142 terms. Regarding the remaining topic models,
although they resulted in comparable results, their F1 score was the
lowest. For example, GPU-DMM, BTM, and GPM got 84.96%,
84.88%, and 84.74% over the top 20 topics, with 141, 142, and
141 terms, respectively. According to Figure 5, when considering
only 140 features, the highest F1-score was reported by the GSDMM
topic modeling method (86.2%) in the arXiv dataset.

FIGURE 2
TextNetTopics performance over accumulated top-ranked topics for the CAMDA dataset using various short-text topicmodels in the T component.
Symbols along the line represent the number of accumulated topics.
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To this end, we attribute the minor differences in the
performance of all the short-text topic models to the number of
overlapped terms. Tables 3, 4 provide the number of shared terms

over twenty topics between the topics extracted from the mentioned
models. Interestingly, GPM in both datasets got the lowest
intersected terms with others.

FIGURE 3
TextNetTopics performance over 140 features/terms for the CAMDA dataset using various short-text topic models in the T component.

FIGURE 4
TextNetTopics performance over accumulated top-ranked topics for the arXiv dataset using various short-text topic models in the T component.
Symbols along the line represent the number of accumulated topics.
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6.2 Comparative performance evaluation of
TextNetTopics with other feature selection
algorithms

We have comparatively evaluated TextNetTopic utilizing various
short-text topic models with three different feature selection methods,
namely, selectKBest (SKB), Fast Correlation Based Filter (FCBF), and
Extreme Gradient Boosting (XGBoost), using four different classifiers:
Adaboost, Decision Tree, Random Forest, and LogitBoost. We present
the results in Tables 5, 6, where the highest scores are highlighted in
bold for each metric. We have included the topic models that have
generated a significant number of unique words, ensuring that each

model produced more than 180 features. This selection criterion was
implemented to ensure that the topic models provided an adequate
amount of distinct information for analysis and classification purposes.

In the CAMDA dataset, TextNetTopics with the PTM topic model
achieves the highest accuracy, specificity, and precision. Although
XGBOOST with Random Forest got the highest F1-score and AUC,
TextNetTopics has comparable results. FCBF got the lowest performance
scores (except recall), which reflects its inability to handle short text.

In the arXiv dataset, XGBOOST with Random Forest and
TextNetTopics with the PTM topic model achieves comparable
accuracy, recall, and F1-score performance. Regarding specificity,
AUC, and precision, SKB got the highest results. Concerning FCBF,

FIGURE 5
TextNetTopics performance over 140 features/terms for the arXiv dataset using various short-text topic models in the T component.

TABLE 3 The percentage of shared terms over twenty extracted topics between various short-text topic modeling methods in the CAMDA dataset. The diagonal
values highlighted in bold represent the number of unique terms in twenty topics extracted by each short-text topic modeling method.

GSDMM GPM BTM WNTM SATM PTM GPU_DMM GPU_PDMM LFDMM

GSDMM 185 49% 80% 81% 85% 92% 78% 93% 78%

GPM 44% 205 44% 43% 56% 56% 46% 55% 49%

BTM 76% 46% 194 85% 84% 90% 71% 89% 75%

WNTM 67% 40% 75% 221 74% 81% 65% 81% 64%

SATM 64% 47% 66% 66% 246 81% 60% 80% 63%

PTM 62% 41% 63% 65% 72% 276 57% 80% 62%

GPU_DMM 82% 54% 78% 81% 84% 90% 176 94% 79%

GPU_PDMM 62% 41% 63% 64% 72% 80% 60% 276 61%

LFDMM 69% 47% 69% 67% 74% 81% 66% 80% 211
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it got the lowest performance scores (except recall), reflecting its
inability to handle short text.

The results obtained for TextNetTopics are reasonable since each
short text contains a limited number of words after preprocessing, e.g.,
the omission of stop words, which leads to the scarcity of discriminative

features. In addition, the available information, such as word frequency,
is insufficient for classification, and these problems inevitably
compromise the quality of a classifier. Thus, using only BOW
representation with top-weighted topics is insufficient to boost the
short-text classification performance.

TABLE 5 Comparative performance evaluation of TextNetTopic with various feature selection algorithms using 180 features in the CAMDA dataset.

Feature selection Topic model ML model Accuracy Recall Specificity F1 AUC Precision

TextNetTopic GSDMM RF 85.10 84.75 85.46 85.14 90.34 85.54

PTM 85.62 84.34 86.92 85.51 91.30 86.74

BTM 85.61 84.65 86.58 85.55 90.63 86.47

SATM 85.28 84.54 86.03 85.25 90.65 85.99

WNTM 84.26 83.28 85.26 84.19 89.45 85.15

GPM 84.80 84.38 85.23 84.82 90.21 85.31

GPU_PDMM 85.12 84.44 85.80 85.10 90.59 85.77

LFDMM 85.27 84.46 86.09 85.22 90.49 86.02

XGBOOST Adaboost 84.43 84.64 84.23 84.56 91.44 84.69

DT 83.10 81.50 84.73 82.92 85.42 84.43

LogitBoost 84.67 83.39 85.96 84.56 91.08 85.82

RF 85.40 86.28 84.50 85.60 91.58 84.96

SKB Adaboost 84.56 85.88 83.21 83.92 91.69 84.85

DT 82.06 81.49 82.65 82.68 84.86 82.06

LogitBoost 84.83 85.80 83.84 84.38 91.43 85.06

RF 84.93 86.66 83.17 83.95 91.73 85.27

FCBF Adaboost 53.55 96.36 10.19 67.64 48.04 52.15

DT 50.32 100.00 0.00 66.95 46.07 50.32

LogitBoost 53.57 97.30 9.27 67.86 47.23 52.14

RF 50.81 99.34 1.66 67.03 46.08 50.60

TABLE 4 The percentage of shared terms over twenty extracted topics between various short-text topic modeling methods in the arXiv dataset. The diagonal
values highlighted in bold represent the number of unique terms in twenty topics extracted by each short-text topic modeling method.

GSDMM GPM BTM WNTM SATM PTM GPU_DMM GPU_PDMM LFDMM

GSDMM 140 80% 83% 90% 91% 98% 90% 97% 81%

GPM 75% 149 72% 78% 79% 87% 77% 87% 72%

BTM 82% 75% 142 91% 92% 98% 80% 96% 77%

WNTM 73% 67% 75% 172 83% 92% 73% 92% 70%

SATM 65% 60% 66% 72% 197 91% 64% 91% 63%

PTM 55% 52% 56% 63% 72% 250 55% 86% 52%

GPU_DMM 89% 81% 80% 89% 90% 97% 141 98% 80%

GPU_PDMM 57% 55% 58% 67% 75% 90% 58% 238 55%

LFDMM 75% 70% 72% 79% 82% 86% 74% 87% 152
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6.3 Performance evaluation of
TextNetTopics Pro

In contrast to TextNetTopics, TextNetTopics Pro performs
semantic extension, combining top topics’ words with the topic
distribution generated by the topic model. Such features captured at
the corpus level preserve the relationship information of words with
similar meanings and alleviate data sparsity problems which in turn
improves the classification efficiency.

Tables 7, 8 report the classification performance in the CAMDA
dataset and arXiv dataset when utilizing topical words extracted by
TextNetTopics, topic distribution features generated by Topic Models,
all terms (BOW) combined with topic distribution features, and our
proposed approach, which combines words of top-ranked topics
extracted by TextNetTopics with topic distribution features. In these
tables, the highest scores are highlighted in bold for each metric.

In the CAMDA dataset, according to Table 7 and Figure 6,
TextNetTopics Pro enhances the F1-score performance of
TextNetTopics by 5.10%, 4.73%, 4.59%, 4.20%, 3.78%, 3.73%, 3.40%,
and 1.50%when utilizing GPU_DMM,GSDMM, BTM,GPU_PDMM,
GPM, LFDMM, PTM, and WNTM topic models, respectively. For
SATM, we got similar results to TextNetTopics with no significant
improvement. In addition, our proposed approach enhances the F1-
score performance gained by topic distribution generated with SATM,
GPM, PTM, GPU_DMM, GSDMM, GPU_PDMM, LFDMM, BTM,
and WNTM topic models by 4.89%, 4.72%, 2.21%, 1.85%, 1.78%,
1.22%, 1.01%, 1.00%, and 0.59%, respectively.

Moreover, we compared the performance results obtained when
taking all terms in the preprocessed dataset combined with the semantic
features (topic distribution extracted by the topic model) with our
enhanced tool (refer to Figure 7). TextNetTopics Pro got similar or a
slight improvement in the performance results with a substantial feature

reduction when utilizing GPU_PDMM, GSDMM, BTM, LFDMM,
PTM, and GPU_DMM. For instance, it reduced the feature set size by
79%, 85%, 87%, 85%, 81%, and 88%, respectively, while providing a
similar F1 score. Thus, our proposed approach can select features that
contribute the most to text classification. Regarding SATM, GPM, and
WNTMwith TextNetTopics Pro, we get comparable performance with
an approximate 1% degradation in F1-score. However, they reduce the
feature set size by 81%, 85%, and 88%, respectively.

In the arXiv dataset, TextNetTopics Pro enhances the F1-score
performance of TextNetTopics by 4.93%, 4.84%, 3.90%, 3.76%,
3.05%, 2.77%, 1.01%, and 0.69% when utilizing GPU-DMM,
BTM, GPM, GSDMM, GPU_PDMM, LF-DMM, PTM, and
WNTM topic models, respectively (as shown in Table 8 and
Figure 8). For SATM, interestingly, we got a degradation in
performance by 1.30% compared to TextNetTopics, with no
significant improvement. In addition, our proposed approach
enhances the F1-score using the topic distribution generated with
SATM, PTM, GSDMM, GPM, GPU_PDMM, LF-DMM, WNTM,
BTM, and GPU-DMM topic models by 6.31%, 3.14%, 2.75%, 2.28%,
1.70%, 1.24%, 1.23%, 1.12%, and 0.83%, respectively.

Moreover, we compared the performance results obtained
when taking all the terms in the preprocessed dataset combined
with the semantic features (topic distribution extracted by the topic
model) with our enhanced tool (shown in Figure 9). We get similar
or a slight improvement in the performance results with a
substantial feature reduction by utilizing BTM, GPU-DMM,
GSDMM, LF-DMM, PTM, WNTM, and GPU_PDMM with
TextNetTopics Pro. For instance, they reduce the feature set size
by 88%, 90%, 87%, 92%, 80%, 85%, and 81%, respectively, while
providing a comparable F1 score. Thus, our proposed approach can
select features that contribute the most to text classification and
neglect features that mislead the classifier and degrade its

TABLE 6 Comparative performance evaluation of TextNetTopic with various feature selection algorithms using 180 features in the arXiv dataset.

Feature selection Topic model ML model Accuracy Recall Specificity F1 AUC Precision

TextNetTopic PTM 87.80 85.21 90.25 87.16 93.07 89.22

SATM 87.14 83.55 90.53 86.33 92.36 89.32

WNTM 86.42 83.65 89.05 85.69 92.26 87.85

Adaboost 87.79 83.49 91.86 86.92 94.04 90.69

DT 86.44 83.15 89.56 85.62 89.79 88.33

LogitBoost 87.80 83.91 91.48 86.99 93.82 90.33

RF 87.97 85.04 90.74 87.29 93.91 89.71

SKB Adaboost 87.79 83.43 92.10 87.00 94.38 90.93

DT 85.75 83.27 88.09 85.03 88.91 86.89

LogitBoost 87.78 83.66 91.68 86.94 94.21 90.50

RF 87.75 84.74 90.79 87.14 93.98 89.70

FCBF Adaboost 55.00 94.73 17.43 67.33 58.20 52.56

DT 48.60 100.00 0.00 65.41 55.68 48.60

LogitBoost 54.68 94.79 16.75 67.15 56.24 52.29

RF 52.60 94.48 13.00 66.01 55.92 50.95
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TABLE 7 Performance results of various document representations (CAMDA dataset). TD refers to topic distributions extracted by a topic model, TW refers to
topical words subset (accumulated top_ranked topics) selected by TextNetTopics, and BW refers to Bag-of-Words or all the terms in the preprocessed dataset. TW
+ TD refers to our proposed approach.

Topic model Features type # of features Accuracy Sensitivity Specificity Precision F1-measure Cohen’s kappa

GSDMM TW + TD 193 89.65 90.99 88.29 88.79 89.87 79.30

BW + TD 1,312 89.65 91.02 88.27 88.72 89.85 79.30

TW 185 85.10 84.75 85.46 85.54 85.14 70.21

TD 20 87.87 88.98 86.74 87.24 88.09 75.73%

BTM TW + TD 167 90.04 90.25 89.83 90.04 90.14 80.08

BW + TD 1,312 90.23 89.89 90.59 90.64 90.26 80.47

TW 182 85.61 84.65 86.58 86.47 85.55 71.22

TD 20 89.05 89.38 88.71 88.93 89.14 78.09

PTM TW + TD 254 89.38 89.71 89.05 89.29 89.49 78.75

BW + TD 1,312 89.67 89.52 89.83 89.92 89.72 79.34

TW 257 86.04 85.87 86.22 86.33 86.09 72.09

TD 20 87.32 86.46 88.18 88.12 87.28 74.64

SATM TW + TD 245 85.73 84.48 86.99 86.86 85.75 71.46

BW + TD 1,312 86.56 85.50 87.64 87.52 86.49 73.13

TW 245 85.72 86.12 85.30 85.59 85.85 71.43

TD 20 80.93 80.06 81.81 80.06 80.86 61.85

WNTM TW + TD 155 85.78 85.49 86.07 86.19 85.83 71.55

BW + TD 1,312 87.04 87.10 86.98 87.15 87.12 74.08

TW 220 84.27 84.13 84.41 84.55 84.33 68.54

TD 20 85.10 85.39 84.80 85.12 85.24 70.19

GPM TW + TD 191 88.67 88.68 88.66 88.84 88.75

BW + TD 1,312 89.74 89.38 90.10 90.15 89.76 79.47

TW 220 85.00 84.33 85.67 85.68 84.98 69.99

TD 20 84.44 81.37 87.55 86.89 84.03 68.89

GPU_DMM TW + TD 160.7 90.11 91.67 88.52 89.05 90.33 80.21

BW + TD 1,312 90.38 92.52 88.22 88.84 90.64 80.76

TW 166 85.02 85.88 84.15 84.59 85.23 70.05

TD 20 88.30 89.15 87.44 87.84 88.48 76.59

GPU_PDMM TW + TD 281 89.36 89.26 89.47 89.63 89.43 78.73

BW + TD 1,312 89.06 88.36 89.77 89.75 89.04 78.12

TW 276 85.02 85.88 84.15 84.59 85.23 70.05

TD 20 88.13 88.17 88.09 88.29 88.22 76.26

LFDMM TW + TD 201 89.03 89.03 89.02 89.19 89.11 78.05

BW + TD 1,312 89.22 89.46 88.97 89.15 89.30 78.43

TW 191 85.37 84.84 85.92 85.93 85.37 70.75

TD 20 87.97 88.32 87.62 87.90 88.10 75.94
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TABLE 8 Performance results of various document representations (on arXiv dataset). TD refers to topic distributions extracted by a topic model, TW refers to
topical words subset (accumulated top_ranked topics) selected by TextNetTopics, and BW refers to Bag-of-Words or all the terms in the preprocessed dataset. TW
+ TD refers to our proposed approach.

Topic model Features type # of features Accuracy Sensitivity Specificity Precision F1-measure Cohen’s kappa

GSDMM TW + TD 152 90.43 88.71 92.06 91.35 90.01 80.83

BW + TD 1,195 90.34 88.06 92.50 91.74 89.86 80.64

TW 140 87.11 83.19 90.82 89.56 86.25 74.15

TD 20 87.80 86.00 89.51 88.58 87.26 75.57

BTM TW + TD 142 90.09 89.04 91.09 90.42 89.72 80.16

BW + TD 1,195 89.72 88.45 90.92 90.21 89.32 79.41

TW 142 85.77 82.21 89.14 87.77 84.88 71.47

TD 20 88.96 88.32 89.56 88.89 88.60 77.89

PTM TW + TD 242.7 88.61 88.51 88.71 88.12 88.31 77.21

BW + TD 1,195 88.97 87.73 90.15 89.39 88.55 77.92

TW 209.4 87.86 85.82 89.78 88.83 87.29 75.68

TD 20 85.52 85.55 85.49 84.80 85.16 71.03

SATM TW + TD 182 86.07 82.51 89.43 88.07 85.19 72.07

BW + TD 1,195 87.26 83.96 90.39 89.20 86.50 74.47

TW 197 87.22 84.19 90.09 88.94 86.49 74.39

TD 20 79.98 77.01 82.77 80.86 78.89 59.87

WNTM TW + TD 181.5 87.16 83.82 90.31 89.10 86.38 74.25

BW + TD 1,195 87.51 83.83 90.99 89.80 86.70 74.95

TW 171 86.42 83.65 89.05 87.85 85.69 72.79

TD 20 86.00 82.55 89.26 87.91 85.14 71.94

GPM TW + TD 129 89.10 87.53 90.59 89.78 88.64 78.17

BW + TD 1,195 90.29 88.07 92.40 91.63 89.81 80.55

TW 141 85.67 81.88 89.24 87.80 84.74 71.25

TD 20 86.86 85.64 88.02 87.11 86.36 73.69

GPU_DMM TW + TD 117.5 90.39 87.95 92.70 91.92 89.89 80.74

BW + TD 1,195 90.22 87.60 92.70 91.91 89.70 80.40

TW 141 85.87 82.15 89.39 87.98 84.96 71.67

TD 20 89.64 86.82 92.30 91.42 89.06 79.23

GPU_PDMM TW + TD 230 88.91 87.06 90.65 89.79 88.40 77.77

BW + TD 1,195 89.33 87.77 90.81 90.04 88.88 78.63

TW 142 86.22 82.57 89.67 88.33 85.35 72.37

TD 20 87.19 85.97 88.34 87.44 86.70 74.34

LFDMM TW + TD 96 88.70 86.27 91.00 90.06 88.12 77.36

BW + TD 1,195 88.74 86.18 91.16 90.22 88.15 77.43

TW 142 86.22 82.57 89.67 88.33 85.35 72.37

TD 20 87.49 85.25 89.60 88.57 86.88 74.93
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performance. Regarding SATM and GPM with TextNetTopics Pro,
we get comparable performance with an approximate 1%
degradation in F1-score. However, they reduce the feature set
size by 85% and 89%, respectively.

Although the performance of each topic modeling method is
dataset dependent, in both datasets, we observe that DMM-based
methods (GSDMM and GPU-DMM) and BTM outperform others.
Moreover, the SATM and WNTM methods are unable to achieve a
high F1 score.

6.4 Comparative performance evaluation of
TextNetTopics with TextNetTopics Pro on
regular-sized text

In this section, we have comparatively evaluated the
performance of TextNetTopics with TextNetTopics Pro on
regular-sized text (i.e., title and abstract section) for the CAMDA
dataset when short-text topic modeling is employed in the T
component. Compared with the use of titles only, Figures 10, 11

FIGURE 6
Classification performance of CAMDA dataset when utilizing topical words (TW) extracted by TextNetTopics, topic distribution features (TD)
generated by Topic Models, and our proposed approach, combining words of top-ranked topics extracted by TextNetTopics with topic distribution
features (TW + TD). The light-colored columns represent the highest achieved values.

FIGURE 7
Classification performance of our proposed approach over the CAMDA dataset, compared with taking all preprocessed terms with the semantic
features.
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imply a significant improvement in F1 score when abstracts are
incorporated. This improvement makes sense since incorporating
the abstract section provides a more comprehensive and
contextually rich representation of the documents, allowing the
algorithms to capture a broader range of information and
potentially improve their predictive power. For instance,
TextNetTopics using GPM, WNTM, and PTM achieved the
highest F1 scores, with GPM having 93.2% over the top 20 topics
with 201 terms, WNTM obtaining 93.1% over the top 16 topics with

188 terms, and PTM achieving 93.0% over the top 17 topics with
208 terms. Compared with using titles alone, incorporating abstract
information resulted in a substantial improvement of 8%, 9%, and
7% for GPM, WNTM, and PTM, respectively. Other topic models
showed comparable F1 measures, ranging from 92.5% to 92.9% (as
shown in Figure 10). As shown in Figure 11, TextNetTopics Pro
showed a remarkable enhancement in the F1-score compared with
TextNetTopics. Specifically, TextNetTopics Pro achieved an
impressive F1 score of 94.7% with the GPU-DMM topic model.

FIGURE 8
Classification performance on the arXiv dataset when utilizing topical words (TW) extracted by TextNetTopics, topic distribution features (TD)
generated by Topic Models, and our proposed approach, combining words of top-ranked topics extracted by TextNetTopics with topic distribution
features (TW + TD). The light-colored columns represent the highest achieved values.

FIGURE 9
Classification performance on the arXiv dataset when utilizing our proposed approach versus taking all preprocessed terms with the semantic
features.
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Compared with using titles alone, a substantial improvement (4%) is
achieved when incorporating abstract information. GSDMM and
BTM showed comparable F1 measures (94.4% and 94.3%
respectively). Other topic models showed similar F1 measures,
ranging from 93.5% to 93.7%. Tables reporting the title and

abstract-based classification performance in the CAMDA dataset
utilizing topical words extracted by TextNetTopics, topic
distribution features generated by Topic Models, all terms
(BOW) combined with topic distribution features, and our
proposed approach, which combines words of top-ranked topics

FIGURE 10
Performance of TextNetTopics over accumulated top-ranked topics using various short-text topic models in the T component on regular-sized
text, i.e., titles + abstract (CAMDA dataset). Symbols along the line represent the number of accumulated topics.

FIGURE 11
Performance of TextNetTopics Pro over accumulated topic distributions with top-ranked topics using various short-text topic models in the T
component on regular-sized text, i.e., titles + abstract (CAMDA dataset). Symbols along the line represent the number of accumulated topics.
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extracted by TextNetTopics with topic distribution features, are
provided as Supplementary Material.

6.5 Performance evaluation of
TextNetTopics and TextNetTopics Pro on
imbalanced datasets

In our further experiments, we want to test the robustness and
effectiveness of our models in handling imbalanced data,
particularly in the classification of DILI (Drug-Induced Liver
Injury) articles as part of the CAMDA challenge (CAMDA,
2022). After carefully evaluating the performance of various
models (as presented in the previous section, section 6.4), in
these further experiments, we have focused on the ones that
demonstrated the highest performance. Specifically, we chose
TextNetTopics with PTM and TextNetTopics Pro with GPU-
DMM as the models to be employed for the testing, validation,
and comparison.

Table 9 shows that TextNetTopics Pro consistently outperforms
the TextNetTopics model across all datasets. It achieves notably higher
accuracy, F1-score, precision, and recall measures on most datasets,
demonstrating its ability to handle imbalanced data more effectively.
For instance, TextNetTopics Pro gains a significant F1-score
performance improvement over TextNetTopics with 1.8%, 3.9%, and
14% when applied to T1 till T3 datasets, and 2.3%, 5.0%, 11.5%, and
5.3% when applied to V1 till V4 datasets. Overall, TextNetTopics Pro
exhibits superior performance compared with TextNetTopics,
establishing itself as being a more robust, reliable, and effective
solution for handling imbalanced data in classifying DILI articles.

7 Conclusion

This study evaluated the performance of TextNetTopics on
short text using various short-text topic models. TextNetTopics
utilizing the PTM topic model reported the highest performance
results along both datasets. Moreover, TextNetTopics achieved
competing performance metrics with other feature selection
algorithms, such as the XGBOOST.

Additionally, in this study, we proposed TextNetTopics Pro, a
novel approach that performs feature selection oriented towards the

short text classification domain, and presented its application on
article title categorization. Our findings show that TextNetTopics
Pro improved the overall classification performance of short text by
incorporating the two types of representative features learned from
the same corpus for semantically richer text representation, topical
words, and topic distributions. Among various short-text topic
models, TextNetTopics Pro utilizing BTM and DMM-based
methods (GSDMM and GPU-DMM), reported the highest
performance results along both datasets.

Moreover, our study has demonstrated the robustness and
effectiveness of TextNetTopics Pro in handling imbalanced data,
particularly in the classification of DILI (Drug-Induced Liver Injury)
articles as part of the CAMDA challenge.

The significance of our approach is that it provides dimensionality
reduction of the Vector Space Model (VSM) while preserving semantic
structures in the text and making sparse short texts more related and
topic-oriented. Unlike the BOW model, our approach considers the
relationship between words, maintaining semantic and syntactic
information in document representation, such as word meanings
and context association, and thus alleviating short text sparseness
and the low number of feature problems. Such semantically
enhanced feature representation enables machine learning
algorithms to discover deeper patterns in data and assure better
generalization. In addition, it greatly affects the performance of text
classifiers in terms of computational time and learning accuracy over
the traditional one.

Onemain limitation of our approach is that the number of topics to
detect from the unstructured textual documents is user-defined.
However, determining the optimal number of relevant latent topics
is not straightforward, as this quantity is dataset dependent and not
known in advance. An inadequate or exorbitant number of topics can
degrade the predictive performance of the classification algorithms built
upon topic modeling. In addition, each topic model requires several
other parameters to calibrate, which are critical to their performance,
and their configuration is not a tedious task.
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the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

TABLE 9 Performance a) of TextNetTopics, b) of TextNetTopics Pro, c) F1 score improvement achieved by TextNetTopics Pro over TextNetTopics (represented as a
percentage %), when applied to CAMDA datasets (T1-T3, V1-V4).

Accuracy
(%)

F1
(%)

Precision
(%)

Recall
(%)

Accuracy
(%)

F1
(%)

Precision
(%)

Recall
(%)

F1-score
improvement

T1 86 88 87 90 T1 88 90 87 93 +1.8%

T2 93 77 68 89 T2 95 81 74 89 +3.9%

T2 93 46 31 89 T2 96 60 46 86 +14.0%

V1 86 86 84 89 V1 88 89 85 93 +2.3%

V2 93 73 61 89 V2 95 78 69 89 +5.0%

V3 93 47 32 89 V3 96 58 45 85 +11.5%

V4 86 87 82 92 V4 92 92 87 98 +5.3%
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