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Abstract: We theoretically investigate the properties of an electron energy spectrum in a double
GaAs-Al0.3Ga0.7As quantum ring by using the effective mass and adiabatic approximations, together
with a realistic description of the confining potential profile, which is assumed to be deformed due to
the application of an intense nonresonant laser field. The effects of the applied magnetic field and
spin-orbit interaction are included. We discuss the features of the lowest confined energy levels under
a variation of magnetic field strengths and intense laser parameters. The influence of this external
probe on the linear optical absorption response associated with interlevel transitions is analyzed by
considering both the presence and absence of spin-orbit effects.

Keywords: double quantum ring; intense laser field; Rashba and Dresselhaus spin-orbit interactions;
Zeeman effect

1. Introduction

Due to their unique electronic and optical properties, semiconductor quantum rings
(QRs) have shown great promise for various opto-electronic applications. These nanos-
tructures are a potential building block for next-generation opto-electronic devices, offer-
ing advantages over traditional quantum dots and other semiconductor nanostructures.
QRs can efficiently confine charge carriers, generating single photons by recombining an
electron-hole pair. This property makes QRs excellent candidates for single-photon emit-
ters. Studies have demonstrated the feasibility of utilizing QRs as efficient single-photon
sources [1–3]. In addition to single-photon emitters, the unique energy levels in QRs can
lead to low-threshold lasing, enabling the development of compact and energy-efficient
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lasers [4,5]. Furthermore, semiconductor QRs have shown promise for applications in
photodetection and photovoltaics. The engineered energy spectrum in QRs can be tailored
to match specific wavelengths, making them suitable for wavelength-tunable photode-
tectors [6,7]. As for photovoltaics, QRs have been studied for their potential to enhance
light absorption and charge separation, which could lead to improved efficiency in solar
cells [8,9]. Another emerging application of semiconductor QRs is in spintronics. Spin-orbit
coupling in QRs can enable efficient manipulation and control of spin states, which is
essential for spin-based electronic devices [10,11]. The effects of spin-orbit interaction (SOI)
on the opto-electronic properties of QRs have also been investigated [12–15].

When considering a one-dimensional QR, the optically induced Aharonov-Bohm
effect in mesoscopic rings has been reported by Sigurdsson and coworkers [16]. They show,
theoretically, that strong electron coupling to circularly polarized photons in non-singly
connected nanostructures results in an artificial gauge field that changes the electron phase,
which is analogous to the well-known Aharonov-Bohm phase effect. Within the Floquet the-
ory of periodically driven quantum systems, Kozin et al. studied the electronic properties
of semiconductor quantum rings with the Rashba spin-orbit interaction irradiated by an
off-resonant high-frequency electromagnetic field, finding a relevant modification of all the
electronic characteristics of the rings under the dressing field effects (see, for instance, [17]
and the references therein). The previous study has been extended to a two-dimensional
QR array, demonstrating that a strong high-frequency circularly polarized electromagnetic
field can turn a two-dimensional periodic array of interconnected QRs into a topological
insulator [18].

Double semiconductor quantum rings (DSQRs) generally consist of two concentric
rings with different bandgap materials, leading to interesting quantum confinement effects.
The confinement in the radial and azimuthal directions gives rise to a rich energy spectrum
and various optical transitions. Several research works have delved into the properties
and potential applications of DSQRs. For instance, experimental realizations of these
particular nanostructures have appeared at different moments. Kuroda and collaborators
first reported on the fabrication of concentric DQRs and investigated the excitonic tran-
sitions in those structures [19,20]. Transport in Coulomb-coupled double rings under a
magnetic field was measured in Ref. [21], whereas Kim reported on the optical transitions
in GaAs-Al0.3Ga0.7As DQRs grown by droplet epitaxy [22].

Theoretically speaking, reports on electronic states in concentric DQRs were published
early, for instance, by Li et al., within the framework of the effective mass envelope
function approach [23], and by Planelles and Climente, including magnetic field effects [24].
The influence of an applied, intense nonresonant laser field on the electronic and optical
properties of semiconductor DSQRs has been dealt in several previous works [25–27],
and the systematic treatment on optical absorption in concentric DQRs was recently put
forward [28].

Here, we aim to present a theoretical investigation of the electronic properties of
double concentric QRs by considering the influence of externally applied nonresonant
intense lasers and magnetic fields and the effect of spin-orbit coupling. Knowledge about
electron states allows for an evaluation of the system’s interlevel linear optical absorption
response. The adiabatic approximation is assumed to separate the vertical from the in-plane
electron motions for the calculation. The solution for the latter is then tackled by using
the finite element method. The article is organized as follows: Section 2 establishes the
theoretical model used in this article. Section 3 presents the results, with and without
considering SOI, along with the corresponding discussion. Section 4 summarizes the main
findings.

2. Theoretical Framework

The system under study is a GaAs double ring embedded in an Al0.3Ga0.7As matrix
under the combined effects of a magnetic field in the z-direction and a nonresonant laser
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field (ILF). The geometry shown in Figure 1a was generated from the profile data of the
AFM measurements from the work of Kuroda et al. [19].

Under the effects considered, the Schrödinger equation for a confined electron can be
expressed by

H ψ(x, y, t) = ih̄ I2
∂

∂t
ψ(x, y, t), (1)

where ψ =

(
ψ↑
ψ↓

)
is the wave function in a vector, with the components representing spin

up and spin down. H =

(
H11 H12
H21 H22

)
, h̄ is the reduced Planck constant, and I2 is the 2× 2

identity matrix. The Hamiltonian can be written as the sum of several contributions:

H = H0 I2 +
1
2

gµBσz + HR + HD (2)

where

H0 =
h̄2k2

2 m∗c
+ V(h(x, y)) . (3)

Here, h(x, y) is the height, and it is a function of the position in the (x, y)-plane.
Note that in Equation (3), the confinement potential is a function of the QR’s height,
which is a function of the coordinates in the (x, y)-plane. In this case, we use the adiabatic
approximation to convert a 3D problem into a 2D problem, where the confinement potential
in the ring region is given by the energy associated with a quantum well of width h with
finite potential barriers (the height of the barrier in the whole space is obtained from the
product between the band offset and the gap difference between the well and barrier
materials). By using the adiabatic approximation, in this study, we propose that the ring
height along the z-axis in all of the space is generally much smaller with respect to the
dimensions of the ring in the (x, y)-plane. More details on the method can be viewed in
[29]. In other words, the fast movement occurs along the z-direction, whereas the slow
movement occurs along the (x, y)-plane.

Since we have cylindrical symmetry, equal radii
√

x2 + y2 have the same height,
k = −i∇+ e

h̄ (Am + Al), g is the Landé factor, µB is the Bohr magneton, B is magnetic
Field, σj (j = x, y, z) are the j component of the Pauli matrices vector, m∗c is the effective
mass with c = w, b for the GaAs double quantum ring and Al0.3Ga0.7As matrix, respectively.
The terms HR and HD are the Rashba and Dresselhaus spin-orbit interactions, respectively.

This system is taken to be under external magnetic and nonresonant intense laser field
(ILF) effects. The incident ILF was defined for elliptical and linear polarizations. The vector
potential of the laser field is given by

Al(t) =
(

x cos(ωt) + κ y cos
(

ωt +
π

2

))
A0, (4)

where x and y are the unit vectors, A0 is the amplitude, ω is the frequency of the laser field,
and κ = 0, 1 is the linear and right circularly polarizations, respectively.

For the applied magnetic field, B = B z. It uses the symmetry gauge
Am = B

2 (y x− x y), with B = −∇×Am.
When applying the Kramers-Henneberger transformation [30] to Equation (3), it

becomes a time-independent Schrödinger equation

H′ φ(x, y) = E I2 φ(x, y), (5)

where the H0 term becomes

H′0 =
h̄2∇2

x,y

2 m∗c
+ i

e B h̄
2 m∗c

(y x− x y ) · ∇+ Vd(x, y) . (6)
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Figure 1. (a) Schematic representation of a double GaAs-Al0.3Ga0.7As quantum ring, with the profile
taken from the work of Kuroda et al. [19]. The drawn vectors represent a magnetic field B in the
z-direction, a nonresonant intense laser field for x, and circular polarizations. (b) Confinement
potential with and without the presence of a magnetic field. (c) Laser-dressed potential for the three
values of laser parameter α0.

The term Vd is the laser-dressed potential, and this is calculated as an average of the
potential by means of the following integral:

Vd =
e2 B2

8

∫ 2 π
ω

0

(X2(t) + Y2(t))
m∗c

dt +
ω

2 π

∫ 2 π
ω

0
V(X(t), Y(t)) dt , (7)

where X(t) = x + cx α0 cos(ωt), Y(t) = y + cy α0 cos(ωt + π/2), and

cx =

{
1 linear

1√
2

circular
cy =

{
0 linear

1√
2

circular .
(8)

Here, the last coefficients were defined by convenience to tune the ILF-laser parameter
intensity α0 for the two polarizations, linear and circular, according to the definitions in
Equation (8). Equation (7) is solved via numerical integration. The laser parameter α0 is
expressed in terms of the geometrical domains αin

0 = eA√
2m∗inω

∼
√

I0
ω2 (I0 is the laser intensity),

and αout
0 = αin

0
m∗in
m∗out

are the inner (GaAs) and outer (AlGaAs) laser parameters of the DQR,
respectively. For the laser dressing potential, see the Appendix A at the end.

The terms Rashba and Dresselhaus are obtained from the following two expressions

HR = α(σ × k)z = α(σx ky − σy kx), HD = β(σx kx − σy ky) (9)

When expanding these terms, each of the elements of the matrix H is obtained.

H11 = H0 +
1
2

g µB B

H22 = H0 −
1
2

g µB B

H12 = (α− i β)
∂

∂x
+ (β− i α)

∂

∂y
+ α

e B
2 h̄

(x− i y)− β
e B
2 h̄

(y− i x)

H21 = −(α + i β)
∂

∂x
− (β + i α)

∂

∂y
+ α

e B
2 h̄

(x + i y)− β
e B
2 h̄

(y + i x)

(10)
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In order to evaluate the optical response of the system, the following expression for
the linear absorption coefficient was used:

θjl = ω

√
µ0

ε0 ε

|Mjl |2 e2 ρjl h̄ Γjl

(Ejl − h̄ ω)2 + (h̄ Γjl)2 (11)

In this article, the expression for calculating the matrix elements is given by

Mjl =
∫∫ [

(φ∗↑)j ξ (φ↑)l + (φ∗↓)j ξ (φ↓)l

]
dxdy (12)

These elements of the transition from state l to j were calculated for different types of
polarization, linear (ξ = x), right circular

(
ξ = x+i y√

2

)
, and left circular

(
ξ = x−i y√

2

)
.

Finally, to solve for the uncoupled xy-motion of the electrons in the DQR, we used the
finite element method, as implemented in the COMSOL Multiphysics software package [31–33].

3. Results and Discussion

The parameters used in this study are µ0 = 1.257× 10−6 Tm/A, m∗(GaAs) = 0.067 m0,
m∗(AlxGa1−x As) = 0.093 m0, V(AlxGa1−x As) = 262 meV, ε = 12.58, h̄Γ = 0.5 meV,
Landé factor g = −2.15, Rashba coefficient α = 5.4 meV·nm, and Dresselhaus coefficient
β = 10.8 meV·nm. Here, m0 is the free electron mass.

Figure 1 shows a diagram of the GaAs-AlGaAs double quantum ring, with the profile
taken from the work of Kuroda et al. [19] (in that study, the profile was obtained through
AFM characterization measurements). An azimuthal symmetry was assumed, which
allowed for a reduction in computational cost since the solution in the azimuthal angle
co-ordinate is known analytically. Thus, the problem is reduced in numerical terms to the
solution of a two-variable differential equation. A three-dimensional diagram of the double
ring is shown in panel 1(a), where it can be seen that the variable height along the radial
direction is small compared to the dimensions of the (x, y)-plane, which allows for obtaining
adequate solutions by using the adiabatic approximation. In panel 1(a), the magnetic field
vector (in the z-direction) is also shown, as well as two more vectors representing the
polarization of the intense nonresonant laser, that is, in the x-direction (linear) and right
circular. A cross-section of the confinement potential due to the variable height, without
and with the presence of a magnetic field, B = 0 and 5 T, respectively, is presented in panel
1(b). It can be observed that the magnetic field generates significant changes in confinement
in the outer ring. In panel 1(c), the laser-dressed potential for the two values of the laser
parameter and in the absence of the fields for comparison purposes is reported. The value
of alpha0 = 10 nm generates a lower barrier (approx. 190 meV) when compared to 262 meV
without laser effects, and this also eliminates the double ring behavior of the geometry.
For the higher laser field, a double ring appears with the appearance of a barrier in the
area where, fundamentally, there is greater height for the first ring. These effects exhibited
under the presence of the laser allow for treating the system as if it has another geometry
(reference article).

The energies of a double GaAs-AlGaAs ring as a function of the magnetic field, both
with and without SOI effects, are shown in Figure 2a and Figure 2b, respectively. In
Figure 2a, the electron is confined in the outer ring, which is precisely the one that presents
changes in its effective potential due to the magnetic field, as observed in Figure 1b, where
the increase in potential generally leads to higher energy, with oscillations between states.
In Figure 2b, with SOI activated, the states for spin up and down are differentiated. From
Equation (2), it can be seen that the Zeeman term only appears in the presence of a magnetic
field, unlike the SOI Rashba and Dresselhaus terms, which appear even without a magnetic
field. This is evident in Figure 2b, where for B = 0, the first excited state of Figure 1b
appears as two distinct states, even in the absence of a magnetic field. The inclusion
of a magnetic field further accentuates the SOI effects; for example, the ground state is
quasi-degenerate for very small magnetic fields (B <= 0.5). As the intensity of the field
increases, the separation of the states becomes more pronounced, including the appearance
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of oscillations between the ground state and the first excited state. The complexity of the
spectrum under spin effects is not only due to the emergence of new states or breaking
degeneracies; note that for Figure 2a, as the magnetic field increases, the ground state has a
symmetry that comes from higher states in the absence of a field. In contrast, when spin is
taken into account, the ground and first excited states are separated from the higher states,
indicating that the symmetry for these two states does not become that of the higher energy
states. This means that spin-orbit interaction not only causes changes in energy values but
also exhibits important qualitative changes.
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Figure 2. Electron energy in a double GaAs-Al0.3Ga0.7As quantum ring as a function of a magnetic
field withtout (a) and with (b) SOI and Zeeman effects.

Figure 3 displays the energy as a function of the magnetic field in a double GaAs/AlGaAs
ring, both without (first column) and with (second column) spin effects. Additionally, the
presence of an intense nonresonant laser with linear polarization (x-direction) is shown
for two laser parameter values: 10 nm (first row) and 20 nm (second row). Using an ILF
with linear polarization destroys the cylindrical symmetry of the problem, which is most
evident in the lowest states, where it is observed that, for instance, when the laser intensity
is increased (Figure 3c,d), more states lose the characteristic oscillation that occurs in the
absence of a laser. These changes in the energy spectra are equivalent to the changes in the
geometry of the rings, but in this case, they result from the change in confinement created
by the laser. Figure 3d shows that while spin effects differentiate the states as the field
increases, a large value of the laser parameter inhibits the separation between the lowest
energy states.

In Figure 4, energy is plotted as a function of the laser parameter, which is related
to the intensity of the electromagnetic wave used. In addition, a magnetic field of 5 T
was applied in the z-direction. In order to observe the changes induced by the spin in the
spectrum, it is reported both in the absence (a) and under the effects of spin (b). The selected
polarization increases the values of the barriers so that, as the laser parameter increases,
confinement is induced for the lowest states along the y-axis. In Figure 4a, it can be seen
that a higher laser intensity favors the separation of some states, which, in the absence of
ILF, are quasi-degenerate. When spin interaction effects are included (Figure 4b), it becomes
evident that for higher values of the laser parameter, the effect of ILF predominates over
the state separation caused by spin. This is evident in the spectrum for the states that
are separated in the absence of ILF and then come together when the laser parameter
is increased.

Figure 5 displays the energy as a function of the magnetic field for a double GaAs/AlGaAs
ring, both without (first column) and with (second column) spin effects. Additionally, the
presence of an intense nonresonant laser with right circular polarization is shown for two
values of the laser parameter: 10 nm (first row) and 20 nm (second row). These results
highlight that the inclusion of ILF with circular polarization does not result in any loss
of symmetry in the structure, unlike when linear polarization is included, which causes
a loss of azimuthal symmetry. As such, the typical oscillations of the states as a function
of the magnetic field observed in quantum rings are preserved with circular polarization.
In accordance with the effective potential generated by the ILF, the energies are higher
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when the laser parameter is increased, and a lower density of states per unit energy is also
observed. This has important implications for potential applications since the intraband
transition energies can be fine-tuned through the inclusion of ILF.

Figure 3. Electron energy in a double GaAs-Al0.3Ga0.7As quantum ring as a function of magnetic
field and under the presence of a linearly x polarized intense laser field (ILF) for two laser parameter
values: α0: 10 nm and 20 nm.

Figure 4. Comparative behavior of electron energy levels in a double GaAs-Al0.3Ga0.7As quantum
ring as a function of the linearly polarized intense laser field parameter α0 in the presence of a magnetic
field and for two different cases: (a) without SOI and Zeeman and (b) with SOI and Zeeman.

In Figure 6, the squared matrix elements for transitions 1–2 and 1–3 are displayed as a
function of the magnetic field in the first and second columns, respectively. The first row
shows a calculation that incorporates both the SOI and the Zeeman effects, whereas the
second row shows a calculation without the spin effect. In each of the four panels of Figure 6,
we can observe the complementarity between right and left circular polarization since, in
general, when one is activated, the other loses its magnitude. For the specific values of the
magnetic field, there is even a drastic shift from one to the other. Note that in Figure 6a,b,
the matrix elements either strengthen or weaken gradually, exhibiting behavior closer to
what is expected for this phenomenon. The changes are only abrupt at specific values of
the magnetic field; for example, in Figure 6a, at 4.1 T, there is an activation/deactivation
of the transition depending on whether the polarization of the incident beam is right or
left circular. In Figure 6c,d, when the contribution of spin is not included, the value of
the matrix elements remains practically constant with the increase in the magnetic field,
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only it is observed that the type of circular polarization activates the transition for different
ranges of the field. In Figure 6b, we observe a loss of complementarity between the two
polarizations used since transition 1–3 becomes only a part of the structure of a more
complex spectrum with the appearance of more states due to spin interaction. These results
allow us to highlight the importance of including spin effects in this type of work since the
quantitative and qualitative changes are not negligible.

Figure 5. Electron energy in a double GaAs-Al0.3Ga0.7As quantum ring as a function of magnetic
field and under the presence of a circularly polarized intense laser field (ILF) for two laser parameter
values: α0: 10 nm (first line) and 20 nm (second line).
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Figure 6. Squared matrix elements in a double GaAs-Al0.3Ga0.7As quantum ring as a function of
magnetic field for right and left circularly polarized laser fields, σ+ and σ−, respectively. In panels
(a,b), the SOI and Zeeman contributions are included; in contrast, for panels (c,d), the SOI and
Zeeman contributions are turned off. For both conditions, the transitions 1–2 and 1–3 are studied.
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Finally, in Figure 7, the results obtained for the linear absorption coefficient due to the
1–2 transition are reported without the inclusion of spin interaction (Figure 7a) and with
the contribution of spin interaction (Figure 7b). Three values of the magnetic field were
taken, which were applied in the z-direction, B = 0, 2.5, 5, T. The continuous lines represent
right circular polarization, and the dashed lines represent left circular polarization. In
Figure 7a, it is highlighted that in the absence of a magnetic field, the result is the same
for any of the polarizations, no matter the kind of polarization. In contrast, when the SOI
and Zeeman effects are included, in the absence of a magnetic field B = 0, the results are
different depending on the polarization. Note that the absorption values are reduced when
the effects of spin-orbit interaction are considered.

Figure 7. Linear absorption coefficient as a function of incident laser energy in a double GaAs-
Al0.3Ga0.7As quantum ring for three values of the magnetic field: B = 0, 2.5, and 5 T. Panel (a) does
not include the spin interactions, whereas in (b), it is added. The solid and dashed lines correspond
to right and left circular laser polarizations, respectively.

4. Conclusions

We have investigated the behavior of electron energy levels in a double GaAs-AlGaAs
quantum ring within the effective mass approximation through a realistic confining
potential—which was taken from experimental reports—and dressed by the influence
of an intense nonresonant laser field. The model also assumes the presence of an externally
applied magnetic field and includes the effects of Zeeman and spin-orbit interaction. The
latter is considered both in the Rashba and Dresselhaus formulations.

As expected, spin-orbit coupling causes a splitting of the degenerate levels, even at
a zero magnetic field, but keeps the ground state oscillations, which actually disappear
when an intense laser field acts upon the system. A linearly polarized laser field also
removes some degeneracies, but in combination with spin-orbit interaction, the spectrum
becomes completely resolved. The application of a circularly polarized laser field keeps the
oscillatory variation of the ground state as a function of the magnetic field while raising up
the whole spectrum by almost 10 meV.

Spin-orbit influence is responsible for a significant modification of the electric dipole
moment off-diagonal matrix elements that are associated with transitions from the ground
to the first two excited states. This is reflected in the linear optical absorption coefficient in
the form of a noticeable reduction in resonant peak amplitude.
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Appendix A

Without the presence of the magnetic field, spin-orbit interaction, and Zeeman effect;
the single-electron under a nonresonant high-frequency laser field is a simplified case. In
this appendix, the linear polarization case from Equation (3), κ = 0, is inspected.

Let us analyze the interaction between a confined carrier and a laser beam considered
as an ideal monochromatic plane wave, as described by the magnetic vector potential
Al(r, t) = A0 exp[i(k · r− ωt)], with r being the position vector. The laser field is taken
from a semiclassical point of view, and for convenience, the Coulomb gauge is used. This
means that the conditions ∇ ·A(r, t) = 0 (vector potential) and φ = 0 (scalar potential) are
met. The temporal Schrödinger equation under these conditions is given by

ih̄
∂

∂t
ψL(r, t) =

[
1

2m∗
( p̂− eA(r, t))2 + V(r)

]
ψL(r, t) , (A1)

where the subscript in ΨL indicates that the equation is in the so-called laboratory (station-
ary) frame.

By expanding the first term of the Hamiltonian, the product p̂ ·A(r, t) commutes due
to the Coulomb gauge. We may further refer to the “size” of the system as being the span
of the domain where potential V(r) has a significant variation (the domain of interest). We
assume that the wavelength of the laser field is much larger than the size of the system, and
the dependence on r of A can be neglected; thus, only the temporal dependency will be
kept. In mathematical language, A(r, t) = A(t)eik·r = A(t)(1 + ik · r + · · · ) ≈ A(t), which
is the well-known dipole approximation. By using the momentum operator representation
in co-ordinates p̂ = −ih̄∇, the Schrödinger equation can be rewritten as

ih̄
∂

∂t
ψL(r, t) =

[
− h̄2

2m∗
∇2 +

ih̄e
m∗

A(t) · ∇+
e2

2m∗
A2(t) + V(r)

]
ψL(r, t) . (A2)

This equation can be simplified using the Kramers-Henneberger transformation [34,35].
The idea under this technique of including the laser field effect is transferring the time
dependence from the kinetic to potential term [36], which is why this transformation
is largely known as the laser-dressing of the potential. It can be subdivided into two
transformations: U1 and U2 [37]. In the first, the A2(t) term is reduced, and in the second,
the A(t) term is eliminated.

The transformation U1 is an operator defined as

U1 = e−
ie2

2m∗ h̄

∫ t A2(t′)dt′ , (A3)
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and the new, unknown wave function in the velocity frame will be

ψv(r, t) = U†
1 ψL(r, t). (A4)

By applying the U†
1 transformation in Equation (A2), one will obtain

ih̄U†
1

∂

∂t
[U1ψv(r, t)] =

U†
1

[
− h̄2

2m∗
∇2 +

ih̄e
m∗

A(t) · ∇+
e2

2m∗
A2(t) + V(r)

]
U1ψv(r, t).

(A5)

Because U1 is independent of r, on the right side of the equation, only the terms of A2 and
A(t) vary when this operator is applied.

By expanding the derivative on the left side of the previous equation, we obtain

U†
1

e2

2m∗
A2(t)U1ψv(r, t) + ih̄

∂

∂t
ψv(r, t) =

U†
1

[
− h̄2

2m∗
∇2 +

ih̄e
m∗

A(t) · ∇+
e2

2m∗
A2(t) + V(r)

]
U1ψv(r, t).

(A6)

Note that the term A2(t) is eliminated since it appears on the two sides of the equation. In
this new frame, the resulting equation is

ih̄
∂

∂t
ψv(r, t) =

[
− h̄2

2m∗
∇2 +

ih̄e
m∗

A(t) · ∇+ V(r)

]
ψv(r, t). (A7)

The second part aims to eliminate the term associated with A · ∇. For this, we use the
following transformation:

U2 = e−
i
h̄ α(t)· p̂ with α(t) = − e

m∗

∫ t
A(t′)dt′. (A8)

Note that U2 can be rewritten as U2 = e
e

m∗
∫ t A(t′)dt′ ·∇, the new wavefunction will be

ψKH(r, t) = U†
2 ψv(r, t), and by applying this transformation to Equation (A7), one

may obtain

ih̄U†
2

∂

∂t
[U2ψKH(r, t)] =

U†
2

[
− h̄2

2m∗
∇2 +

ih̄e
m∗

A(t) · ∇+ V(r)

]
U2ψKH(r, t).

(A9)

Expanding the time derivative on the left side of the equation will lead to

U†
2

[
ih̄e
m∗

A(t) · ∇
]

U2ψKH(r, t) + ih̄
∂

∂t
ψKH(r, t) =

U†
2

[
− h̄2

2m∗
∇2 +

ih̄e
m∗

A(t) · ∇+ V(r)

]
U2ΨKH(r, t).

(A10)

The term ih̄e
m∗A · ∇ is eliminated since it appears on both sides of the equation. Hence, the

simplified equation is given by

ih̄
∂

∂t
ψKH(r, t) = U†

2

[
− h̄2

2m∗
∇2 + V(r)

]
U2ψKH(r, t). (A11)
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The transformation leaves invariant the momentum operator. Therefore, we only
concentrate on showing explicitly the effect of the transformation on the term V(r). For
this development, we use the Campbell-Baker-Hausdorff identity eÂ B̂e−Â = B̂ + [Â, B̂] +
[Â, [Â, B̂]]/2! + · · · , and we get

U†
2 V(r)U2 = e

i
h̄ α(t)· p̂ V(r)e−

i
h̄ α(t)· p̂

= V(r) + [α(t) · ∇]V(r) +
1
2!
[α(t) · ∇]2V(r) + · · ·

= V[r + α(t)].

(A12)

This means that the only time dependence of the equation in the Kramers-Henneberger
frame is through the potential V. Note that the U2 operator generates a translation given
by α(t). As a result, we have an effective potential that accounts for the interaction laser
system, commonly called laser-dressed potential. This indicates that the shape of the new
potential is a direct consequence of the laser effect. Therefore, the Schrödinger equation in
this KH-frame has the form

ih̄
∂

∂t
ψKH(r, t) =

[
− h̄2

2m∗
∇2 + V[r + α(t)]

]
ψKH(r, t). (A13)

An additional issue can be highlighted with respect to α(t): by calculating the second
derivative with respect to the time of α(t), we have α̈(t) = e

m∗E(t), where E(t) is the electric
field. Hence, α(t) is interpreted as the classical displacement of the electron under the
electric field E(t) associated with the laser wave. In the case of a steady laser field, i.e.,
E(t) = E0 sin(ωt) x, one may observe that α(t) = eE0

m∗ω2 sin(ωt) x. This can be rewritten as

α(t) = α0 sin(ωt) x, where α0 = eE0
m∗ω2 represents the oscillation amplitude of the electron

under the laser field (called the laser-dressing parameter). E0 is the amplitude of the electric
field, and ω is the angular frequency of the laser.

The Floquet theory provides a solution for the Equation (A13) [35,38]:

ψKH(r, t) = e−
EKH

h̄ t ∑
n

ψKH
n (r)e−inωt, (A14)

where EKH is the quasi-energy of Floquet. Additionally, the potential V can be expanded
by the Fourier series as

V[r + α(t)] =
∞

∑
m=−∞

Vm(α0; r)e−imωt, (A15)

with

Vm(α0; r) =
im

π

∫ 1

−1
V(r + α0u x)Tm(u)(1− u2)−1/2du , (A16)

where Tm(u) are the Chebyshev polynomials. When taking into account the fact that we use
laser fields with high frequency (when compared to the characteristic interlevel transition
frequencies of the system), it is enough to consider the lowest order in Equation (A16):

V0(α0, r) =
1
π

∫ 1

−1

V(r + α0ux)√
1− u2

du. (A17)

By making a trigonometric substitution, the laser-dressed potential can be written as

V0(α0, r) =
ω

2π

∫ 2π/ω

0
V(r + α0 sin(ωt) x)dt. (A18)
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Finally, the Schrödinger equation will have the atemporal form:[
− h̄2

2m∗
∇2 + V0(α0, r)

]
Ψ(r) = EΨ(r) . (A19)

Note that this equation only depends on r since V0(α0, r) corresponds to the average of the
oscillating potential function:

V0(α0, r) =
1
T

∫ T

0
V(r + α(t))dt. (A20)
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