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Abstract: We investigate the electronic properties of a semiconductor quantum ring with an elliptical
shape and non-uniform height, allowing for distributed quantum-dot-like bulges along its perimeter.
The adiabatic approximation and the finite element method are combined to calculate the allowed
electron states in the structure under the effective mass approximation, considering the contributions
from Rashba and Dresselahaus spin–orbit interactions and the Zeeman effect in the presence of
an applied magnetic field. We discuss the features of the calculated spectra for two different ring
geometries: a symmetric one with four dot-like bulges, and an asymmetric one with three hilled
protuberances. The information about those states allows us to evaluate the linear optical absorption
response associated with interlevel transitions between the ground and lowest excited states. This
phenomenon takes place at resonant energies of only a few milielectronvolts. It is observed that
spin–orbit interactions tend to quench this response under zero-field conditions in the case of
symmetric confinement.

Keywords: 2D quantum ring; effective band gap; finite confinement; finite element method

1. Introduction

Semiconductor quantum rings (QRs) are low-dimensional structures
that—ideally—exhibit total confinement for the movement of charge carriers and dis-
play peculiar electronic and optical properties [1], particularly in the presence of magnetic
fields, such as the Aharonov–Bohm effect [2–4]. Among the practical methods for obtaining
these systems, droplet epitaxy has enabled the formation of annular nanostructures using
various materials, including Group IV elements and III-V compounds [5–13]. These reports
show that, in general, the fabricated structures exhibit certain deformations in terms of
the height of the ring walls, and often, along the perimeter, bulging regions in the form of
quantum dots can be observed. In particular, the report of Ref. [7] reveals the presence
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of multiple such bulges in the case of InP-based systems, to the extent that the obtained
structures are referred to as annular quantum dot molecules.

Some previous attempts have theoretically modeled the confinement profiles of such
deformed QRs by proposing specific mathematical functions [14,15]. The model in [15]
embodies a simple expression that allows tuning the position, number, and height of those
dot-like bulges in the multi-hilled structure. However, once the confining design of the
deformed QR is analytically described or somehow reproduced from experimental data,
the mathematical task of solving the effective mass differential equations in 3D remains.
Then, numerical schemes such as finite difference [16] and finite elements [17] are tools
of choice.

The effect of spin–orbit interaction (SOI) is relevant to a III-V semiconductor electronic
structure, as was shown by Kane 66 years ago [18]. Specific contributions to this interaction
appear when there is no centrosymmetry in the system. In this sense, there are two of them:
One is related to structure-induced asymmetry (Rashba interaction, RI), and the other is
associated with bulk-induced asymmetry (Dresselhaus interaction, DI) (see details in [19]
and references therein). The particular subject of low-dimensional semiconductor structures
entails one or both of mentioned situations, so it becomes relevant to explore their possible
influences on charge carrier states in those systems as, for instance, was performed in the
case of QRs by Nowak and Szafran [20]. Several works that incorporate the study of these
SOI mechanisms in QRs have been published in recent years. For instance, Khordad [21],
Zamani et al. [22–24], and Pourmand and Rezaei [25] investigated the influence of SOI
on different nonlinear optical responses of QRs, considering contributions from RI and
DI. More recently, Bejan and Stan studied electron spin and donor impurity effects on
light absorption in QRs under magnetic fields [26], while Lia and Tamborenea reported on
general RI and DI in narrow QRs [27].

With all that in mind, the purpose of the present work is to theoretically investigate the
features of electronic states in structurally non-uniform GaAs/AlGaAs QRs in the presence
of externally applied magnetic fields, taking into account the combined effects of RI and DI
SOIs as well as the Zeeman effect. In particular, we use the adiabatic approximation to deal
with the 3D problem of determining the energy spectrum. Ultimately, this approach leads
to a 2D numerical procedure within the Finite Element Method (FEM). The information
about allowed states is then taken as starting point to evaluate the linear optical absorption
related to transitions between the lowest confined energy levels. In Section 2, we explain
the theoretical environment. Section 3 is devoted to presenting and discussing the obtained
results, and, finally, conclusions will be given in Section 4.

2. Theoretical Model

This work considers an elliptical QR with variable height, consisting of GaAs in an
AlGaAs matrix. An ellipse delimits the elliptical QR. The equation for the geometry of an
elliptical QR is:

g(x, y, Rx2, Ry2) < 1 < f (x, y, Rx1, Ry1) . (1)

Here, f and g are the outer and the inner borders of the QR and are defined by:

f (x, y, Rx1, Ry1) =

(
x

Rx1

)2
+

(
y

Ry1

)2
(2)

and

g(x, y, Rx2, Ry2) =

(
x

Rx2

)2
+

(
y

Ry2

)2
, (3)

where Rx1 and Rx2 are the semiaxes on x-direction of the inner and outer ellipses, respec-
tively, and Ry1 and Ry2 are the semiaxes on the y-direction.
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The equation of the height as a function of x, y is given by:

z(x, y) = h(x, y)

1−


∣∣∣2− f−1/2 − g−1/2

∣∣∣
f−1/2 − g−1/2

2  , (4)

where the height corresponds to a parabolic profile. Additionally, h represents the angularly
modulated height of the quantum ring in z-direction and is given by

h(x, y) = H +A cos

[
n arccos

(
x√

x2 + y2

)]
, (5)

where H denotes the average height of the quantum structure, A represents the amplitude
of the harmonic modulation, and n = 3, 4 is the number of height maxima.

Considering the effective mass as a function of position (with constant values on each
QR region) in the form:

m∗(~r) =

{
m∗i , inner of the QR (GaAs)
m∗o , outer of the QR (AlGaAs)

(6)

and a Coulomb gauge for the magnetic vector potential ~A = B
2 (−y, x, 0) (∇ · ~A = 0,

B is the magnetic field strength), we write the 2D Hamiltonian for an electron in the QR
confining potential

V(x, y) =

{
0, inner of the QR
V0, outer of the QR,

(7)

in the form
Ĥ2D =

1
2

(
−ih̄∇+

e
c
~A
) 1

m∗(~r)
·
(
−ih̄∇+

e
c
~A
)
+ V(x, y). (8)

Now, with the inclusion of Zeeman and SOI terms, we have the total energy operator,

Ĥ = Ĥ2D I2 +
1
2

gBµBσz + ĤR + ĤD, (9)

where I2 represents the identity matrix of order 2× 2, g is the Landé factor, and µB labels
the Bohr magneton. Besides, σz is the z-component of the Pauli matrices. ĤR and ĤD are
the Rashba and Dresselhaus terms, respectively, which contain the contribution from SOI.
These SOI terms are given by [26]:

ĤR = α
(
kyσx − kxσy

)
(10)

and
ĤD = β

(
kxσx − kyσy

)
, (11)

where α and β are the coupling constants for the Rashba and Dresselhaus interactions,
respectively, σi(i = x, y, z) are Pauli matrices, and kx and ky are the components of the 2D
wavevector operator. According to the matrix nature of such a model, solutions for the
system will be two-component wavefunctions that incorporate information on both spin
orientations, up and down.

To consider the finite QR height (z-direction), we shall use the adiabatic approximation
(AA). In our case, this is justified by the very geometry of the system, where the height
of the ring is always much smaller than the semi-axes of the ellipse. Ref. [28] provides a
detailed explanation of the procedure. This approach leaves the problem to solve in the
form of a 2D effective differential equation, which needs to be solved to determine the
eigenenergies and eigenfunctions of the corresponding effective-mass problem. This task is
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addressed in numerical form, using FEM, as implemented in the COMSOL-Multiphysics
environment [29].

The information on electron states obtained through the procedure mentioned above
will be used to evaluate the light absorption coefficient, considering transitions between
the ground and the first two excited states in the system. Details of the expressions used
for this purpose are found in Ref. [30].

Figure 1a depicts the scheme of GaAs-Al0.3Ga0.7As QRs with non-uniform height,
showing three and four dot-like hills. For the FEM calculation, the particular meshes chosen
for the inner and outer QR regions are shown in Figure 1b. Before proceeding with the
specific subject of the present work, we would like to provide additional validation to the
essential approximation made to obtain the allowed electronic states.

y 
x 

z 

(a) (b) 

x 

y 

Figure 1. (color online) Schematic representation of a GaAs-Al0.3Ga0.7As quantum ring. The two
configurations studied in this work are shown in (a), four and three hills around the ring. In (b) is
shown the 2D quantum ring used to solve spectra, and adiabatic approximation is included to take
into account the variable heights in (a).

In that sense, we leave aside, for the moment, the influence of any external field and
switch off SOI in the system, and focus on an alternative—a simpler—system, which is
a circular GaAs/AlGaAs QR of rectangular cross-section and a height of 3.5 nm. A FEM
calculation, in this situation, implies enclosing the QR region in a cylindrical cage with
a height equal to 20 nm and a radius of 60 nm. The potential energy within the ring is
assumed to be equal to zero, and, outside, it has a constant barrier value of 262 meV.

Three different numerical approaches are applied to calculate the lowest electron
energy levels: A 2D axisymmetric scheme that implies separating variables in cylindrical co-
ordinates, with angular contribution exp (ilϕ) to the wavefunction, and a (ρ, z)-dependent
part is numerically determined. A second approach is the 3D complete numerical solution
via FEM, whereas the third method employs AA and separates (x, y) motion from the
strongly confined z one, as discussed in [28], leaving the contribution to the wavefunction
in the xy-plane to be calculated via FEM.

Let us now discuss the outcome of such a comparison. For that purpose, we plot in
Figure 2 the spectrum of lowest energies depending on the radial size of the circular QR.
In Figure 2a, the energy value as a function of the increase of the ring’s width indicates
a decrease in all used approaches due to the loss of spatial carrier confinement. It can be
readily noticed that the 2D axisymmetric and the complete 3D numerical solutions coincide
all along the range of ring sizes considered given, precisely, the symmetry of the structure.

The results obtained with the AA remain slightly below (just a few meV) the numeri-
cally determined in the “exact” cases. However, such a difference tends to disappear when
the ring size augments, and this happens more rapidly for the upper levels. Actually, for
the larger value of QR width analyzed, the AA-obtained second excited state coincides with
the value resulting from the non-adiabatic approaches. Nonetheless, the energy separation
for the lowest two levels is, at that value of QR width, about 1 meV. This fact is verified by
observing the plot in Figure 2b. There, the first energy levels for the widest QR considered
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in Figure 2a are represented, indicating the associated values of the “orbital” quantum
number l in each case. One may notice the very good coincidence of the levels determined
via the three described approaches. All this serves us as means for justifying the use of the
AA in calculating the allowed energy states in the non-uniform elliptic QR of our interest
here. Then, the 2D numerical FEM procedure employs the mesh partition depicted in
Figure 1b.

To support that in the case of symmetry loss, an elliptical ring with variable height
is working properly. Table 1 compares the results for four quantum dots on the elliptical
ring under the adiabatic approximation method and the 3D model. Note that the last
column presents the relative error, around 1%. It is also important to highlight that when
the two excited states are compared, the energy difference between the ground state and
the first two excited states only differs by 0.2 meV. The geometrical parameter values are:
H = 3 nm, A = 0.3 nm, Rx1 = 10 nm, Rx2 = 22 nm, Ry1 = 12 nm, and Ry2 = 24 nm and,
for the external parallelepiped of sides, Rxout = 2 Rx2, and height = 9.9 nm (for the 3D
model). This calculation was carried out without both the SOI and Zeeman effect. This
result comparison allows us to establish that the adiabatic approximation is adequate in
this study even with the loss of symmetry and has the advantage that the calculation times
are significantly reduced. For example, to calculate the solutions for zero magnetic field,
the AA method takes 5 s, in contrast to the 3D model, in which, for the same case, it takes
106 seconds on a computer with an AMD Ryzen 5 3550H processor, 16 GB of RAM, and
frequency 4.0 GHz.

Table 1. Comparison between the adiabatic approximation method and the 3D model for an elliptical
quantum ring with variable height. The geometrical parameter values are: H = 3 nm, A = 0.3 nm,
Rx1 = 10 nm, Rx2 = 22 nm, Ry1 = 12 nm, and Ry2 = 24 nm, and, for the external parallelepiped of
sides, Rxout = 2 Rx2, and height = 9.9 nm (for the 3D model).

Magnetic Field (T) Energy Level 2D AA (meV) 3D (meV) Relat. Error (%)

0

Ground state 170.8 169.6 0.7

First excited 172.0 170.6 0.8

Second excited 172.9 171.5 0.8

10

Ground state 171.6 170.2 0.8

First excited 172.8 171.2 0.9

Second excited 173.7 172.1 0.9

20

Ground state 174.0 172.1 1.1

First excited 174.9 172.8 1.2

Second excited 175.9 173.8 1.2

On the other hand, in reference [31], a study on the adiabatic approximation is carried
out. In particular, in that work, an asymmetric three-dimensional case is analyzed, and the
authors conclude on the method’s effectiveness even in the absence of cylindrical symmetry.

To evaluate the optical response of the system, the following expression for the linear
absorption coefficient between the ground state and the first excited state was used

Ω1j = ω

√
µ0

ε0 ε

|M1j|2 e2 ρ1j h̄ Γ1j

(E1j − h̄ ω)2 + (h̄ Γ1j)2 , (12)

where ω is the frequency of incident laser, µ0 = 4 π 10−7 is the magnetic permeability of
free space, ε0 is the vacuum permittivity, ε the relative permittivity, e elementary charge,
ρ1j is the population difference between the ground state and the j-th state per unit volume,
and Γ1j the inter-level broadening [32]. The specific values of these optical parameters are
presented in the section of the results.



Condens. Matter 2023, 8, 82 6 of 13

5 6 7 8 9 10 11 12
130

145

160

175

190

1 2 3 4 5 6 7 8 9
130

150

170

190

210

width of the ring (nm)

en
er

gy
 (m

eV
)

Solid lines: 2D axisymmetric
Dots: 3D model
Dashed lines: 2D adiabatic approximation   

(a) 

 3D
 2D - axysimmetric
 2D adiabatic approximation

number of energy level

(b) width of the ring = 12 nm  0  1

0

 2

 3

 4
 5

 1
 2

Figure 2. (color online) (a) Comparative behavior of the first three electron energy levels in a circular
GaAs quantum ring in an Al0.3Ga0.7As matrix as a function of the width from three methods, 2D-
axisymmetric, 3D model, and 2D adiabatic approximation. The inner radius is 10 nm, and the constant
height is 3.5 nm. The cylinder for the AlGaAs matrix was fixed in radius 60 nm and height 20 nm
with the center in the half of quantum ring height. In (b), the lowest energy levels are plotted for a
fixed width of the ring in 12 nm. The potential energy within the ring is taken as zero; outside, it has
a value of 262 meV.

In this article, the expression for calculating the matrix elements is given by

M1j =
1√
2

∫∫ [
(φ∗↑)2 (x + iy) (φ↑)1 + (φ∗↓)j (x + iy) (φ↓)1

]
dxdy . (13)

These transition elements between the 1- to j-states were calculated for right circular
polarization. Note that in Equation (12), each spinor has a real and imaginary compo-
nent; For example, (φ↑)1 = Re((φ↑)1) + i Im((φ↑)1). Consequently, Equation (13) can be
expanded in the following form

M1j =
1√
2

∫∫ [
(Re((φ↑)j)− i Im((φ↑)j)) (x + iy) (Re((φ↑)1) + i Im((φ↑)1))

]
dxdy

+
1√
2

∫∫ [
(Re((φ↓)j)− i Im((φ↓)j)) (x + iy) (Re((φ↓)1) + i Im((φ↓)1))

]
dxdy . (14)

In general, Equation (14) shows that it is not intuitive to predict the behavior of dipole
moments, which definitely involves the symmetries of the real and imaginary parts of each
spinor in each of the two wave functions involved in the matrix element. Let us analyze a
particular case that corresponds to the study system with n = 4, where two hills are located
along the x-axis (at θ = 0, dot 1, and at θ = π, dot 3) and two along the y-axis (at θ = π/2,
dot 2, and at θ = 3 π/2, dot 4). Taking the case of B = 0, although it is not shown in the
figures, the real and imaginary parts of the spinors of the ground state and the first excited
state exhibit the following symmetries: (i) for the ground state, the spinors that spin up
and spin down their real and imaginary parts are even functions along both the x-axis and
the y-axis (ii) for the first excited state, the spin-up and spin-down spinors, their real and
imaginary parts, are even functions along both the x-axis and the y-axis. Considering that
the polarization introduces odd linear functions, then, clearly, at zero magnetic field, the
M12 dipole element is null since it involves the product of even functions by odd functions,
which finally leads to integrals of odd functions in both x and y. A similar analysis must be
performed for finite magnetic fields and for the case n = 3.

3. Results and Discussion

Figure 3 contains the density plots of the lowest three electron states in the GaAs/
Al0.3Ga0.7As QRs with non-uniform height, for the two particular examples here considered:
the one with four quantum dot (QD)-like hills (upper row), and that with three QD-like
hills (lower row). The depicted cases correspond to the solutions of the energy operator
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Ĥ2D, with B = 0. It is observed that states have well-defined parities in the symmetric
four-QD design, while no symmetry appears in the three-hilled one.

Figure 3. (color online) Wavefunction representations for the three lowest electron states in the
elliptic GaAs/AlGaAs with multi-hilled configurations studied: four quantum dots (upper row) and
three dots (lower row). Red, blue, and green colors correspond to maximum, minimum, and zero
values. The geometrical parameter values are H = 5 nm, A = 2.5 nm, Rx1 = 10 nm, Rx2 = 22 nm,
Ry1 = 12 nm, and Ry2 = 24 nm, and, for an external parallelepiped of sides, Rxout = 2 Rx2,
Ryout = 2 Ry2, and height 22.5 nm. These results are without spin–orbit couplings.

The following input data have been used to generate the numerical results in the
work: The band parameters for the GaAs/AlGaAs are: m∗i = 0.067 m0, m∗o = 0.093 m0,
where m0 is the free electron mass. The geometrical parameter values are H = 3 nm,
A = 0.3 nm, Rx1 = 10 nm, Rx2 = 22 nm, Ry1 = 12 nm, and Ry2 = 24 nm, and, for a
external parallelepiped of sides, Rxout = 2 Rx2, Ryout = 2 Ry2, and height = 9.9 nm. Landé
factor, g = −2.15.

Figure 4 shows the calculated lowest electron energy levels corresponding to the two
different non-uniform elliptic QRs as functions of the intensity of the applied magnetic
field. Results are shown for two cases without Zeeman and SOI and considering those
two contributions. Analyzing the first of those cases, corresponding to (Figure 4a,c), one
may notice that the zero-field condition produces no degeneracies in the allowed electron
states by having a non-complete symmetry in the elliptic structure. However, when B 6= 0,
the number of QD-like bulges in the structure plays a determining role. When there are
four symmetrically arranged hill structures, the spectrum shows typical Aharonov–Bohm
oscillations. At specific field intensity values, there are crossings between the ground and
first excited states, with the known exchange in wavefunction symmetry. Crossings are
present as well for higher excited states. When only three dot-like structures are in the ring
profile, energy oscillations for lower states are practically extinguished, mainly noticed for
upper excited states without crossings. The overall tendency of increasing energy values
when the field strength augments have to do with the increment in the degree of spatial
confinement introduced by the magnetic field. Considering the second of the mentioned
cases (Figure 4b,d), in which Zeeman and SOI terms are switched on, the zero-field case
reveals the levels disposed of in doubly degenerate states in the four-hilled geometric
setup. Such a degeneracy is immediately broken under nonzero magnetic field conditions
for the three-hill QR. Still, crossings remain at specific B values in the four-hilled one,
with the feature of occurring at different field intensities for each pair of degenerate states.
Furthermore, it can be noticed that the influence of the linear term in B, associated with
the Zeeman operator, reflects in the trend of variation for intense enough applied fields,
mainly affecting the upper levels, which exhibit a nearly linear increment. In addition, the
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presence of the SOI is responsible for a redshift of the entire spectrum, independently of
the geometry considered.

en
er

gy
 (m

eV
)

magnetic field (T)

(a) 4 QDs, without SOI

(b) 4 QDs, with SOI
en

er
gy

 (m
eV

)

magnetic field (T)

(c) 3 QDs, without SOI

(d) 3 QDs, with SOI

Figure 4. The energy levels as functions of magnetic field for two configurations: four QDs in the
first row, and three QDs in the second row. Additionally, the first and second columns, without and
with SOI, respectively. The geometrical parameter values are H = 3 nm, A = 0.3 nm, Rx1 = 10 nm,
Rx2 = 22 nm, Ry1 = 12 nm, and Ry2 = 24 nm.

As our interest is to analyze the interlevel optical absorption in the QRs under con-
sideration, it is convenient to determine the values of the corresponding electric dipole
moment matrix elements Mij. For this purpose, we assume the right circular polarization
(p = (x + i y)/

√
2) of the incident light and limit ourselves to evaluate the off-diagonal

elements associated with transitions from the ground (i = 1) to the first and second excited
(j = 2, 3) states in each case.

Figure 5 contains the plots of calculated absolute values of electric dipole moment
matrix elements as functions of the applied magnetic field intensity. It is seen that, in
the absence of Zeeman and SOI effects, there is a kind of alternating behavior between
these quantities in which a maximum of M12 coincides in B-position with a minimum of
M13 and vice versa. Minima of M13 are zero in the four-dots case due to the symmetry of
involved states and nearly zero in the three-dot one (becoming zero at high enough field
strengths). This indicates that a stronger magnetic field induces a kind of spatial symmetry
in the wavefunctions, so their products acquire parity and nullify the contribution to the
spatial integrals, thus turning the given transition into a forbidden one. Furthermore,
when the magnetic field strengthens, there is a decrease in the absolute values of the off-
diagonal matrix elements. The increment in B implies an increase in the degree of spatial
confinement, and, therefore, the effective integrating region over (x, y) reduces, with a
smaller contribution from the linear terms in the polarization dipole vector.
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Figure 5. (color online) Electric dipole moment matrix elements as a function of the magnetic field for
two multi-hilled quantum ring configurations: four quantum dot-like bulges (upper row), and three
dot-like hills (lower row). The first column is without Zeeman and spin–orbit interaction; the second
includes Zeeman and spin–orbit contributions. The geometrical parameter values are H = 3 nm,
A = 0.3 nm, Rx1 = 10 nm, Rx2 = 22 nm, Ry1 = 12 nm, and Ry2 = 24 nm.

The inclusion of Zeeman and SOI effects causes a change in the shape of the |Mij|
curves as functions of the magnetic field, and there is also a reduction in their values. For
the QR with a four-QD configuration, such a reduction is not so pronounced, and there is a
tendency to keep the alternate behavior above described, with the main deformation of the
curves associated with the smaller values of B. However, Zeeman and SOI terms strongly
affect the size and shape of the |Mij| curves in the spatially nonsymmetric three-QD ring.
In this case, the increase in magnetic field intensity greatly reduces the absolute values
of the off-diagonal matrix elements. Some alternations between respective maxima and
minima are preserved for larger B values, and, significantly—at least within the range
of field strength considered—no zero values of dipole matrix elements appear for the
three-hilled QR.

Figure 6 shows the calculated linear absorption coefficient. In this case, we have
used a value εr = 12.58 for the static dielectric constant of GaAs. In addition, the electron
volume density in the system is homogeneously taken as ρ = 3.0× 1022 m−3, and the
spread of the Lorentzian-type response is associated with a phenomenological damping
rate Γ = 1/τ, with τ = 8.27 ps (h̄Γ = 0.5 meV). Results in the figure correspond to the sum
of contributions from the 1→ 2 and 1→ 3 transitions.

The amplitude of light absorption resonant peaks is proportional to the product
ω|Mij|2, for h̄ω = Ej − Ei, which determines the peak’s energy position. By analyzing, in
the first place, the situation without the influence of Zeeman and SO effects, one notices
that the increase in the magnetic field causes the redshift of the absorption response as
well as the reduction in peak amplitude, in which the decrease in the resonant frequencies
has something to do. By observing Figure 5a,c, it is found that the chosen values of B
correspond to situations in which both involved transitions have nonzero contributions
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through their Mij. The magnitudes of the absolute values of these quantities are very
similar for the three field intensities chosen. Therefore, we mainly ascribe the reduction in
the light absorption signal to its redshift. It is important to notice that in these systems, the
interstate transitions entail energy differences of only a few meV. At this point, it can be
said that, from the quantitative point of view, these light absorption responses are similar
to those investigated in Ref. [30] for double QRs with inversely quadratic confinement.
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Figure 6. The linear absorption coefficient between the ground and the first excited states for a
GaAs-Al0.3Ga0.7As quantum ring without (a,c) and with (b,d) SOI and Zeeman as a function of the
incident laser energy, with right circularly polarized incident light. Three magnetic field values were
used: 0, 10 T, and 20 T. The geometrical parameter values were H = 3 nm, A = 0.3 nm, Rx1 = 10 nm,
Rx2 = 22 nm, Ry1 = 12 nm, and Ry2 = 24 nm. We used a value εr = 12.58 for the static dielectric
constant of GaAs, the electron volume density ρ = 3.0× 1022 m−3, phenomenological damping rate
Γ = 1/τ, with τ = 8.27 ps (h̄Γ = 0.5 meV). The colors black, red, and blue represent the magnetic
fields of 0 T, 10 T, and 20 T, respectively.

The plots in Figure 6b,d correspond to the calculated optical absorption coefficient in
four-QD and three-QD elliptic QR with non-uniform height, incorporating Zeeman and
SOI effects. In all cases, peak amplitudes are smaller than those achieved without such
additional effects. There is no response (or almost zero) at zero magnetic fields in three-
and four-hilled systems. From Figure 5b,d, it is seen that the 1→ 2 transition is forbidden
since the corresponding electric dipole matrix element is zero for such degenerate energies.
Furthermore, note that for the 1→ 3 transition, the corresponding dipole matrix elements
are relatively small for B→ 0. The absorption response presents differences in the three-
and four-hilled cases for the two nonzero field values. The increase in the magnetic field
implies, in both cases, a small redshift. When resonant energies are approximately of the
same value for each magnetic field strength, the variations in the amplitude of the resonant
peaks are controlled by the changes in the dipole matrix elements. In the four-dot geometry,
|M12| has a higher value at B = 20 T, compared with those achieved when the field is
of 10 T. In the three-hilled QR, higher values of |M12| appear. This and the difference in
resonant energies lead to greater absorption amplitude for the lower two field strengths.
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Finally, we want to make some reflections on the system of elliptical QRs of variable
height that we have studied in this article. From the multiple experimental reports that
appear in Fomin’s book on quantum rings [1] and the references included therein, it is
concluded that, generally, the QR systems obtained by different growth techniques are
structures of variable height along the axial coordinate of the system. Despite the excellent
control in the growth processes, obtaining homogeneous annular systems in height is not
easy. However, this, which is apparently a problem, is actually an advantage or strength.
Systems with variable heights give rise to regions where the probability density of finding
the confined charge carrier increases. These regions, corresponding to maximum heights,
are connected through regions of minimum height. This, finally, translates into the presence
of coupled QDs located along the system’s axial coordinate. In our model of variable-height
QRs, we can control for the presence of one, two, three, or more QDs along the ellipse that
defines the ring. Furthermore, with appropriate variations of the function that controls
these distributions, we can vary the dimensions of the QDs. By means of electric, magnetic,
and intense non-resonant laser radiation fields applied to the structure, the coupling can be
generated between these zero-dimensional regions, giving rise to, for example, spatially
direct and indirect excitonic states with considerable variations in the exciton lifetime. Such
coupled QD systems can be technologically used in multiple optoelectronic devices, see
Ref. [1]. Additionally, it is important to note that the presence of these zero-dimensional
structures along the angular coordinate gives rise to azimuthal symmetry breaking, which
means an enrichment in the allowed optical transitions between electronic, excitonic, and
impurity states for different polarizations of the incident resonant radiation. In the same
way, there is a rupture of degeneracies between different states, which can be recovered or
controlled by external fields.

4. Conclusions

In this work, we have investigated the features of the electronic states in the presence
of magnetic fields for elliptic quantum rings with nonuniform height in the form of multi-
hilled profiles that resemble inserted quantum dot structures. Three and four cases of
such protuberances are considered, and the influence of Zeeman and spin–orbit interaction
effects are discussed. The use of the adiabatic approximation in determining the allowed
states is suitably justified and complemented with the finite element calculation—within
COMSOL MUltiphysics—of two-dimensional contributions to electron wavefunctions. The
obtained electron states are then used in evaluating the coefficient of linear light absorption
associated with transitions from the ground to the lowest excited levels in the structures.

The interstate transitions have energy differences of only very few meV, but, under
such circumstances, there is a non-negligible optical response in general. Despite the
presence of a magnetic field that provides for a symmetric confining potential in the system,
the influence of the mentioned additional effects provokes a significant change in the
symmetry of electronic states in the investigated GaAs/AlGaAs elliptic quantum rings,
with the arising of double degeneracies at zero fields and the redshift of the entire spectrum
such a phenomenon. The modification in the electronic structure affects the light absorption
response, with a notorious quenching of the signal in the zero-field case.
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