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Abstract. New proofs of the classical Fejer inequality and discrete Hermite-

Hadamard inequality (HH) are presented and several applications are given,

including (HH)-type inequalities for the functions, whose derivatives have in-
flection points. Morever, some estimates from below and above for the first mo-

ments of functions f : [a, b] → R about the midpoint c = (a+b)/2 are obtained

and the reverse Hardy inequality for convex functions f : (0,∞) → (0,∞) is
established.

1. Introduction

The famous Hermite-Hadamard inequality (HH) asserts that the integral mean
value of a convex function f : [a, b] → R can be estimated above and belove by its
values at the points a, b and (a+ b)/2. More precisely,

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (HH)

Equality holds only for functions of the form f(x) = cx+d. Following Niculescu
and Persson [17], we denote the right and left sides of (HH) by (RHH) and (LHH),
respectively.

(HH) has many generalizations, extensions and refinements. There is an exten-
sive literature in this area, such as books by Niculescu and Persson [18]; Mitrinovic,
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Pecaric and Fink [16]; Dragomir and Pearce [6] and papers [1–5,7–12,15,17,19,21,
22], which are a small part of the relevant references.

The content of this article is organized as follows.
In Section 2 we give two new proofs of (HH). We first present a short proof of

Fejer’s inequality, from which (HH) follows immediately. The second proof includes
a discrete version of (HH), which, in our opinion, is of independent interest. As
an application, we give an estimation from below and above of the integral of the

convex function f : [0,∞) → (0,∞) via the series
∞∑
1
f(k) and

∞∑
1
f
(
k − 1

2

)
.

In Section 3, we give some new inequalities arising as a combination of (HH) with
Hardy’s inequality and iterated Hölder’s inequality. For example, as a consequence
we prove that, if f : (0,∞) → (0,∞) is convex and f ∈ Lp(0,∞), ∀p > 1, then

lim
p→∞

∥∥ 1
x

∫ x

0
f
∥∥
p

∥f∥p
= 1.

Moreover, we obtain a reverse Hardy inequality for some family of convex func-
tions on (0,∞).

Section 4 is devoted to the (HH)-type inequalities for the functions whose first
derivatives have an inflection point. As a particular case, we show that if f ′ is
concave on

[
a, a+b

2

]
and convex on

[
a+b
2 , b

]
, then

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx ≤ b− a

12
(f ′(b)− f ′(a)) .

In the last section we prove various inequalities for functions having convex
first or second order derivatives. According to the authors’ knowledge, there are
some inequalities for functions whose absolute values of the derivatives are convex,
see, e.g. [2, 5, 19]. In Theorems 7, 8, and 9 the convexity condition is imposed on
the derivatives themselves, not on their absolute values. One of the interesting
particular results obtained in this section is as follows.

Given f : [a, b] → R, let f ′ be convex. Then∫ b

a+b
2

f(x)dx−
∫ a+b

2

a

f(x)dx ≤ b− a

4
(f(b)− f(a)).

Another new result in this section is the estimation from below and above of the
first moment about the midpoint c = (a+ b)/2 of a function f : [a, b] → R, i.e. the
integral Mf =

∫ b

a

(
x− a+b

2

)
f(x)dx, when f ′ is convex.

2. New Proofs of Fejer’s Inequality and Discrete (HH)

At first, we give an auxiliary inequality that is satisfied by convex functions.

Lemma 1. (cf. [11] and Lemma 1.3 in [15]) Let f be a convex function on [a, b].
Then

f(a) + f(b) ≥ f(a+ b− x) + f(x), (∀x ∈ [a, b]). (1)
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By making use of (1) we give here a short proof of the (HH) ”without pulling
the pen on the paper”. More precisely, we give a short proof of a generalization of
Hermite-Hadamard’s inequality, which is named as the Fejer inequality and asserts
that if f is convex on [a, b] and the function g : [a, b] → [0,∞) is integrable and
symmetric with respect to the midpoint a+b

2 , i.e. g(a+ b− x) = g(x), (∀x ∈ [a, b]),
then

f

(
a+ b

2

)∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ f(a) + f(b)

2

∫ b

a

g(x)dx. (2)

For g = 1, (2) turns into (HH).
To prove this inequality we will use of (1) and the following easily verifiable

equality: ∫ b

a

f(x)g(x)dx =
1

2

∫ b

a

[f(x) + f(a+ b− x)]g(x)dx. (3)

Now, we give a short proof of (2):
We have

f

(
a+ b

2

)∫ b

a

g(x)dx =

∫ b

a

f

(
a+ b

2

)
g(x)dx =

∫ b

a

f

(
x+ a+ b− x

2

)
g(x)dx

≤ 1

2

∫ b

a

[f(x) + f(a+ b− x)]g(x)dx
(3)
=

∫ b

a

f(x)g(x)dx

(3)
=

1

2

∫ b

a

[f(x) + f(a+ b− x)]g(x)dx

(1)

≤ f(a) + f(b)

2

∫ b

a

g(x)dx,

which is nothing but Fejer’s inequality (2).

Remark 1. Although the (HH) has several proofs, as far as we know the first
simple proof was given by Azbetia [3]; (see, also Niculescu and Persson [17], p.
664). Another simple proof and refinement was given by El Farissi [8].

The inequality given in the following theorem is a discrete version of (HH), and
classical (HH) can be obtained by passing to limit in this inequality.

Theorem 1. If f : [a, b] → R is convex and xk = a+ k b−a
n , (k = 1, 2, · · · , n), then

f

((
1− 1

n

)
a+

(
1 + 1

n

)
b

2

)
≤ 1

n

n∑
k=1

f(xk) ≤
1

2

[
f(a)

(
1− 1

n

)
+ f(b)

(
1 +

1

n

)]
.

(4)

Proof. Let xk = a+ k b−a
n , (k = 1, 2, · · · , n). Then writing xk as

xk =
b− xk

b− a
a+

xk − a

b− a
b
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and using

f(xk) ≤
b− xk

b− a
f(a) +

xk − a

b− a
f(b),

one has
n∑

k=1

f(xk) ≤ f(a)

b− a

n∑
k=1

(b− xk) +
f(b)

b− a

n∑
k=1

(xk − a)

=
1

2
[f(a)(n− 1) + f(b)(n+ 1)],

and therefore,

1

n

n∑
k=1

f(xk) ≤
1

2

[
f(a)

(
1− 1

n

)
+ f(b)

(
1 +

1

n

)]
. (5)

On the other hand, the Jensen inequality yields

1

n

n∑
k=1

f(xk) ≥ f

(
1

n

n∑
k=1

xk

)
= f

((
1− 1

n

)
a+

(
1 + 1

n

)
b

2

)
. (6)

By combining (5) and (6) we obtain (4). □

Corollary 1. After taking limit as n → ∞ in (4) and using the fact that the convex
function is continuous (maybe except the end-points a and b), we obtain (HH).

The following two theorems are the simple consequences of (HH).

Theorem 2 (a ”refinement” of (RHH)). Let f : [a, b] → R be convex. Then

1

b− a

∫ b

a

f(x)dx ≤ 1

b− a

∫ b

a

f(x)

[
ln

(b− a)2

(b− x)(x− a)
− 1

]
dx

≤ f(a) + f(b)

2
(7)

Proof. For any x ∈ (a, b] one has

f

(
a+ x

2

)
≤ 1

x− a

∫ x

a

f(t)dt ≤ f(a) + f(x)

2
.

Integrating over (a, b) we have∫ b

a

f

(
a+ x

2

)
dx ≤

∫ b

a

1

x− a

(∫ x

a

f(t)dt

)
dx ≤

∫ b

a

f(a) + f(x)

2
dx. (8)

After simple calculations, (8) leads to

2

∫ a+b
2

a

f(x)dx ≤
∫ b

a

f(x) ln
b− a

x− a
dx ≤ 1

2

[
f(a)(b− a) +

∫ b

a

f(x)dx

]
. (9)
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Similarly, integrating the inequality

f

(
x+ b

2

)
≤ 1

b− x

∫ b

x

f(t)dt ≤ f(x) + f(b)

2

over (a, b) we get∫ b

a

f

(
x+ b

2

)
dx ≤

∫ b

a

1

b− x

(∫ b

x

f(t)dt

)
dx ≤

∫ b

a

f(x) + f(b)

2
dx

which leads to

2

∫ b

a+b
2

f(x)dx ≤
∫ b

a

f(x) ln
b− a

b− x
dx ≤ 1

2

[
f(b)(b− a) +

∫ b

a

f(x)dx

]
. (10)

After summing up (9) and (10) we obtain (7). □

Theorem 3. Let f : [0,∞) → (0,∞) be a strictly convex function and
∞∑
k=1

f(k) <

∞. Then
∞∑
k=1

f

(
k − 1

2

)
<

∫ ∞

0

f(x)dx <
1

2
f(0) +

∞∑
k=1

f(k). (11)

Proof. For, 0 ≤ a < b < ∞, denote x0 = a and xk = a + k b−a
n , (k = 1, 2, · · · , n).

Since f is strictly convex, we have

f

(
xk−1 + xk

2

)
<

1

xk − xk−1

∫ xk

xk−1

f(x)dx <
f(xk−1) + f(xk)

2
, (k = 1, 2, · · · , n).

Taking into account the formulas

xk − xk−1 =
b− a

n
and

xk−1 + xk

2
= a+

(
k − 1

2

)
b− a

n

and summing the inequalities above we obtain
n∑

k=1

1

n
f

(
a+

(
k − 1

2

)
b− a

n

)
<

1

b− a

∫ b

a

f(x)dx

<
1

n

[
f(a) + f(b)

2
+

n−1∑
k=1

f

(
a+ k

b− a

n

)]
.

Setting now a = 0, b = n we have

n∑
k=1

f

(
k − 1

2

)
<

∫ n

0

f(x)dx <
f(0) + f(n)

2
+

n−1∑
k=1

f(k).

Taking limit as n → ∞ and using lim
n→∞

f(n) = 0 we obtain the desired formula

(11). □
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Remark 2. Since f : [0,∞) → (0,∞) is convex and lim
n→∞

f(n) is finite (actually,

zero), then f is monotonically decreasing and therefore the comparison of the areas
under graphics gives the following well-known inequalities

∞∑
k=1

f(k) <

∫ ∞

0

f(x)dx < f(0) +

∞∑
k=1

f(k). (12)

It is clear that, the inequalities (11) are better than (12).

Example 1. If f(x) = e−x then from (11) we have
√
e

e− 1
< 1 <

1

2
+

1

e− 1
and therefore,

√
e < e− 1 <

1

2
(e+ 1),

whereas the formula (12) gives the rougher estimate 1 < e− 1 < e.

3. Some inequalities arising as a combination of (HH) with the other
inequalities

Theorem 4. Let 1 < p < ∞ and αp > 1. Let further, f : (0,∞) → (0,∞) be
convex and such that∥∥x1−αf(x)

∥∥
p
≡
(∫ ∞

0

(
x1−αf(x)

)p
dx

)1/p

< ∞.

Then

21−α+ 1
p ≤

∥∥x−α
∫ x

0
f
∥∥
p

∥x1−αf(x)∥p
≤ 1

α− 1/p
. (13)

Corollary 2. (a) If α = 1, then

2
1
p ≤

∥∥ 1
x

∫ x

0
f
∥∥
p

∥f∥p
≤ 1

1− 1/p
. (14)

(b) Let, in addition, f ∈ Lp(0,∞), (∀p > 1). Then by taking the limit in (14)
as p → ∞ one has

lim
p→∞

∥∥ 1
x

∫ x

0
f
∥∥
p

∥f∥p
= 1. (15)

Proof of Theorem 4. We will use the classical weighted Hardy inequality, which
asserts that(∫ ∞

0

∣∣∣∣x−α

∫ x

0

f(t)dt

∣∣∣∣p dx)1/p

≤ c

(∫ ∞

0

∣∣x1−αf(x)
∣∣p dx)1/p

, (16)

where c = p
αp−1 , 1 < p < ∞, αp > 1.

Now, by (LHH) we have

f
(x
2

)
<

1

x

∫ x

0

f(t)dt ⇒ x1−αf
(x
2

)
< x−α

∫ x

0

f(t)dt,
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and therefore∫ ∞

0

(
x1−αf

(x
2

))p
dx ≤

∫ ∞

0

(
x−α

∫ x

0

f(t)dt

)p

dx

(16)

≤
(

p

αp− 1

)p ∫ ∞

0

(x1−αf(x))pdx. (17)

Since ∫ ∞

0

(
x1−αf

(x
2

))p
dx = 2p(1−α)+1

∫ ∞

0

(
x1−αf(x)

)p
dx,

we have from (17) the desired result (13) and its consequences (14) and (15). □

Remark 3. The left hand side of (13) shows that under the conditions of Theorem
4 the following reverse Hardy’s inequality is valid:∥∥∥∥x−α

∫ x

0

f

∥∥∥∥
p

≥ 21−α+ 1
p

∥∥x1−αf(x)
∥∥
p
.

Example 2. a) Let k > 0 and f(x) = e−kx. Then (15) yields

lim
p→∞

(∫ ∞

0

(
1− e−kx

x

)p

dx

)1/p

= k.

b) If f(x) = 1
x+1 , (0 < x < ∞), then from (15) we have

lim
p→∞

(∫ ∞

0

lnp(x+ 1)

xp
dx

)1/p

= 1.

In the next theorem we will make use of a combination of (RHH)

1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2

and the inequality(∫ b

a

(
n∏

k=1

uk(x)

)
dx

)n

≤
n∏

k=1

(∫ b

a

un
k (x)dx

)
, (18)

where u1 ≥ 0, · · · , un ≥ 0.
Recall that the inequality (18) is a special case of the iterated Hölder inequality.
We need also the following

Lemma 2. If u : [a, b] → (0,∞) is convex, then un is convex as well for any n ∈ N.

This Lemma is actually a special case of the following more general proposition:
If u : [a, b] → (0,∞) is convex and f : (0,∞) → (0,∞) is increasing and convex,

then the composition f ◦u : [a, b] → (0,∞) is convex as well. Here, we get f(t) = tn,
(0 < t < ∞). Note that Lemma 2 can also be proved by induction.
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Remark 4. The convexity of the functions u1 ≥ 0, u2 ≥ 0, · · · , un ≥ 0 does not
guarantee the convexity of their product u1u2 · · ·un. Indeed, for example, although
the functions u1(x) = x2, u2(x) = x2, · · · , un−1(x) = x2 and un(x) = (2 − x)2n−2,
(n ≥ 2) are convex on [0, 2], their product u(x) = x2n−2(2 − x)2n−2 is not convex
because of u′′(1) = 4(2n− 2)(1− n) < 0.

Theorem 5. For given n ≥ 2, let the functions u1 ≥ 0, u2 ≥ 0, · · · , un ≥ 0 be
convex on [a, b]. Then

1

b− a

∫ b

a

(
n∏

k=1

uk(x)

)
dx ≤ 1

2

n∏
k=1

(un
k (a) + un

k (b))
1
n . (19)

Proof. Since uk, (k = 1, 2, · · · , n) is convex on [a, b], then un
k is also convex by

Lemma 2. Then the (RHH) yields

1

b− a

∫ b

a

un
k (x)dx ≤ 1

2
[un

k (a) + un
k (b)] , (k = 1, 2, · · · , n).

By multiplying these inequalities we have

1

(b− a)n

n∏
k=1

(∫ b

a

un
k (x)dx

)
≤ 1

2n

n∏
k=1

(un
k (a) + un

k (b)) . (20)

Here, by making use of the inequality (18), we get

1

(b− a)n

(∫ b

a

(
n∏

k=1

uk(x)

)
dx

)n

≤ 1

2n

n∏
k=1

(un
k (a) + un

k (b)) ,

from which the inequality (19) follows. □

Remark 5. For n = 2, the inequality (19) was proved by Amrahov [1]. Another
generalization of Amrahov’s result for the product of two functions was noted by D.
A. Ion [12]:

If u ≥ 0, v ≥ 0 are convex and 1
p + 1

q = 1, (1 < p, q < ∞), then

1

b− a

∫ b

a

u(t)v(t)dt ≤ 1

2
(up(a) + up(b))

1/p
(uq(a) + uq(b))

1/q
.

It should also be mentioned that, in the same paper [12] Ion gives some generaliza-
tion of Amrahov’s result for the product of two functions in Orlicz spaces.

4. (RHH)-type inequality for the functions whose derivatives have
an inflection point

Theorem 6. Given c ∈ [a, b] and f : [a, b] → R, let the derivative f ′ be concave on
[a, c] and convex on [c, b]. Then[

c− a

b− a
f(a) +

b− c

b− a
f(b)

]
− 1

b− a

∫ b

a

f(x)dx
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≤ 1

3

[
(b− c)2

b− a
f ′(b)− (c− a)2

b− a
f ′(a) +

(
a+ b

2
− c

)
f ′(c)

]
. (21)

Corollary 3. In case of c = a+b
2 we have

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx ≤ b− a

12
(f ′(b)− f ′(a))

Proof of Theorem 6. Integration by parts yields

c− a

b− a
f(a) +

b− c

b− a
f(b)− 1

b− a

∫ b

a

f(x)dx =
1

b− a

∫ b

a

(x− c)f ′(x)dx

=
1

b− a

∫ c

a

(x− c)f ′(x)dx+
1

b− a

∫ b

c

(x− c)f ′(x)dx

≡ A+B.

By changing variables as x = (1−λ)a+λc, (0 < λ < 1) in A and x = (1−λ)c+λb
in B and applying Jensen’s inequality, we have

A ≡ 1

b− a

∫ c

a

(x− c)f ′(x)dx =
(a− c)2

b− a

∫ 1

0

(λ− 1)f ′((1− λ)a+ λc)dλ

≤ (a− c)2

b− a

∫ 1

0

(λ− 1) [(1− λ)f ′(a) + λf ′(c)] dλ

= − (a− c)2

6 (b− a)
[2f ′(a) + f ′(c)] ; (22)

B ≡ 1

b− a

∫ b

c

(x− c)f ′(x)dx =
(b− c)2

(b− a)

∫ 1

0

λf ′((1− λ)c+ λb)dλ

≤ (b− c)2

(b− a)

∫ 1

0

(
λ(1− λ)f ′(c) + λ2f ′(b)

)
dλ

=
(b− c)2

6(b− a)
[f ′(c) + 2f ′(b)]. (23)

It follows from (22) and (23) that

A+B ≤ 1

3
f ′(b)

(b− c)2

b− a
− 1

3
f ′(a)

(a− c)2

b− a
+

1

6
f ′(c)(a+ b− 2c),

which completes the proof. □

Remark 6. A simple calculation shows that the equality in (21) holds for the
functions f(x) = k(x− c)2 +m, (k,m ∈ R).
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Remark 7. In the ”critical” cases c = a or c = b, i.e. in the cases when f ′ is
convex or concave on [a, b] we have from (21)

f(b)− 1

b− a

∫ b

a

f(x)dx ≤ b− a

6
[f ′(a) + 2f ′(b)]

and

f(a)− 1

b− a

∫ b

a

f(x)dx ≤ −b− a

6
[2f ′(a) + f ′(b)],

respectively.

5. Various inequalities for functions having convex first or second
order derivatives

The first moment of a function f about the center point c = (a + b)/2 is

defined by Mf =
∫ b

a

(
x− a+b

2

)
f(x)dx. In the following theorem we obtain some

estimation from above and below for Mf , when f ′ is convex.

Theorem 7. Suppose that the derivative f ′ of the function f : [a, b] → R is convex.
Then the first moment of f about the center point c = (a+b)/2 satisfies the following
inequality

A ≤
∫ b

a

(
x− a+ b

2

)
f(x)dx ≤ B, (24)

where

A =
(a− b)2

8
(f(b)− f(a))− (b− a)3

48
(f ′(a) + f ′(b))

and

B =
(b− a)3

24
(f ′(a) + f ′(b)).

Proof. Integration by parts leads to∫ b

a

(x− a)(b− x)f ′(x)dx =

∫ b

a

(x− a)(b− x)df(x)

= 2

∫ b

a

(
x− a+ b

2

)
f(x)dx.

Hence, ∫ b

a

(
x− a+ b

2

)
f(x)dx =

1

2

∫ b

a

(x− a)(b− x)f ′(x)dx

(set x = (1− t)a+ tb, (x− a)(b− x) = (b− a)2t(1− t), 0 ≤ t ≤ 1)

=
1

2
(b− a)3

∫ 1

0

t(1− t)f ′((1− t)a+ tb)dt

≤ 1

2
(b− a)3

∫ 1

0

t(1− t)[f ′(a)(1− t) + f ′(b)t]dt
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=
(b− a)3

24
(f ′(a) + f ′(b)).

This proved the right hand side of (24).
Further, again using integration by parts we have∫ b

a

(
x− a+ b

2

)2

f ′(x)dx =
(b− a)2

4
(f(b)− f(a))− 2

∫ b

a

(
x− a+ b

2

)
f(x)dx,

and therefore,∫ b

a

(
x− a+ b

2

)
f(x)dx =

(b− a)2

8
(f(b)− f(a))− 1

2

∫ b

a

(
x− a+ b

2

)2

f ′(x)dx.

(25)

Furhermore, setting x = (1 − t)a + tb,
(
x− a+b

2

)2
= (b − a)2

(
t− 1

2

)2
and dx =

(b− a)dt, (0 ≤ t ≤ 1), we get∫ b

a

(
x− a+ b

2

)2

f ′(x)dx = (b− a)3
∫ 1

0

(
t− 1

2

)2

f ′((1− t)a+ tb)dt

≤ (b− a)3
∫ 1

0

(
t− 1

2

)2

[(1− t)f ′(a) + tf ′(b)]dt

= (b− a)3

[
f ′(a)

∫ 1

0

(
t− 1

2

)2

(1− t)dt+ f ′(b)

∫ 1

0

t

(
t− 1

2

)2

dt

]

=
(b− a)3

24
(f ′(a) + f ′(b)).

Taking into account this in (25) we obtain the left hand side of inequality (24).
The proof is complete. □

A straightforward calculation shows that the equality in both sides of (24) is
attained for f(x) = k(x2− (a+ b)x)+n, where k and n are arbitrary real numbers.

Theorem 8. Given f : [a, b] → R, let f ′′ be convex. Then the following inequality
holds

A ≤ f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx ≤ B, (26)

where

A =
b− a

8
(f ′(b)− f ′(a))− (b− a)2

48
(f ′′(a) + f ′′(b))

and

B =
(b− a)2

24
(f ′′(a) + f ′′(b)).

Proof. Integration by parts twice gives∫ b

a

(x− a)(b− x)f ′′(x)dx = (b− a)(f(a) + f(b))− 2

∫ b

a

f(x)dx.
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Hence,

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx =
1

2(b− a)

∫ b

a

(x− a)(b− x)f ′′(x)dx

(Set x = (1− t)a+ tb, 0 ≤ t ≤ 1)

=
(b− a)2

2

∫ 1

0

t(1− t)f ′′((1− t)a+ tb)dt

≤ (b− a)2

2

∫ 1

0

t(1− t)[(1− t)f ′′(a) + tf ′′(b)]dt

=
(b− a)2

24
(f ′′(a) + f ′′(b)).

The right hand side of (26) is proved.
Straightforward calculations show that, integration by parts twice yields∫ b

a

(
x− a+ b

2

)2

f ′′(x)dx

=

(
b− a

2

)2

(f ′(b)− f ′(a))− 2(b− a)

[
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

]
.

Hence,

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

=
b− a

8
(f ′(b)− f ′(a))− 1

2(b− a)

∫ b

a

(
x− a+ b

2

)2

f ′′(x)dx. (27)

Setting x = (1− t)a+ tb, (0 ≤ t ≤ 1) and using the convexity of f ′′, we have∫ b

a

(
x− a+ b

2

)2

f ′′(x)dx = (b− a)3
∫ 1

0

(
t− 1

2

)2

f ′′((1− t)a+ tb)dt

≤ (b− a)3

[
f ′′(a)

∫ 1

0

(
t− 1

2

)2

(1− t)dt+ f ′′(b)

∫ 1

0

(
t− 1

2

)2

tdt

]

=
(b− a)3

24
(f ′′(a) + f ′′(b)).

By making use of this in (27) we obtain the left hand side of inequality (26).
The proof is complete. □

It is easy to verify that the equality in both sides of (24) is attained for the
functions f(x) = k(2x3 − 3(a+ b)x2) +mx+ n, with arbitrary real numbers k, m
and n.
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Remark 8. In the literature there are results of the type (24) and (26) under the
condition of the convexity of |f ′| or |f ′′| (see, e.g. [2, 5, 19]). As far as we know,
the conditions and assertions of the theorems 7 and 8 completely differ from those
known in the literature.

In the following theorem we give some estimations for the mean value of a func-
tion f whose first derivative is convex.

Theorem 9. Let f : [a, b] → R be differentiable and its derivative f ′ be convex.
Then

(a)

N ≤ 1

b− a

∫ b

a

f(x)dx ≤ M, (28)

where

N =
1

3
(f(a) + 2f(b))− 1

6
f ′(b)(b− a)

and

M =
1

3
(f(b) + 2f(a)) +

1

6
f ′(a)(b− a);

(b)

N ≤ 1

b− a

∫ b

a

f(x)dx ≤ M, (29)

where

N = f(a) + 2f

(
a+ b

2

)
− 4

b− a

∫ a+b
2

a

f(x)dx

and

M = f(b) + 2f

(
a+ b

2

)
− 4

b− a

∫ b

a+b
2

f(x)dx.

Corollary 4. ∫ b

a+b
2

f(x)dx−
∫ a+b

2

a

f(x)dx ≤ 1

4
(b− a)(f(b)− f(a)). (30)

Proof of Theorem 9. Since f ′ is convex, (HH) leads to

f ′
(
a+ x

2

)
≤ 1

x− a
(f(x)− f(a)) ≤ f ′(a) + f ′(x)

2
; (31)

f ′
(
x+ b

2

)
≤ 1

b− x
(f(b)− f(x)) ≤ f ′(x) + f ′(b)

2
. (32)

Multiplying the inequalities (31) by (x− a) and integrating over [a, b], after simple
calculations we obtain

2(b− a)f

(
a+ b

2

)
− 4

∫ a+b
2

a

f(x)dx ≤
∫ b

a

f(x)dx− f(a)(b− a)
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≤ 1

4
f ′(a)(b− a)2 +

1

2
(b− a)f(b)− 1

2

∫ b

a

f(x)dx.

The above inequalities can be written as two seperate inequalities:

1

b− a

∫ b

a

f(x)dx ≤ 1

3
(2f(a) + f(b)) +

1

6
f ′(a)(b− a) (33)

and
1

b− a

∫ b

a

f(x)dx+
4

b− a

∫ a+b
2

a

f(x)dx ≥ f(a) + 2f

(
a+ b

2

)
. (34)

In a similar way, multiplying inequalities (32) by (b−x) and integrating over [a, b],
after some calculations we have the following two inequalities:

1

b− a

∫ b

a

f(x)dx ≥ 1

3
(f(a) + 2f(b))− 1

6
f ′(b)(b− a) (35)

and
1

b− a

∫ b

a

f(x)dx+
4

b− a

∫ b

a+b
2

f(x)dx ≤ f(b) + 2f

(
a+ b

2

)
. (36)

Now, the inequalities (33) and (35) yields (28) and the inequalities (34) and (36)
yields (29). The Corollary follows by subtracting (34) from (36).

The proof is complete. □

Example 3. For f(x) = lnx, 0 < a < x < b < ∞, the inequality (30) yields

a
3a+b

4(a+b) · b
a+3b

4(a+b) ≤ a+ b

2
. (37)

Since α + β = 1 for α = 3a+b
4(a+b) and β = a+3b

4(a+b) , then by the generalized AM-GM

inequality we have

aα · bβ < α · a+ β · b = 3a+ b

4(a+ b)
· a+

a+ 3b

4(a+ b)
· b. (38)

A simple calculation shows that

a+ b

2
<

3a+ b

4(a+ b)
· a+

a+ 3b

4(a+ b)
· b,

and therefore, the inequality (37) is better than (38).

Remark 9. In our opinion, most of the results in this article can also be examined
for non-classical convexity types (abstract convexity, s-convexity, p-convexity, m-
convexity, etc.). Necessary information about the mentioned convexity types can be
found, for example, in [4,5, 7,13,14,20]
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