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Abstract
In the last 50 years, with the growth of cities and increase in the number of vehicles and mobility, traffic has become
troublesome. As a result, traffic flow prediction started to attract attention as an important research area. However, despite
the extensive literature, traffic flow prediction still remains as an open research problem, specifically for long-term traffic
flow prediction. Compared to the models developed for short-term traffic flow prediction, the number of models developed
for long-term traffic flow prediction is very few. Based on this shortcoming, in this study, we focus on long-term traffic flow
prediction and propose a novel deep ensemble model (DEM). In order to build this ensemble model, first, we developed a
convolutional neural network (CNN), a long short-term memory (LSTM) network and a gated recurrent unit (GRU) network
as deep learning models, which formed the base learners. In the next step, we combine the output of these models according
to their individual forecasting success. We use another deep learning model to determine the success of the individual models.
Our proposed model is a flexible ensemble prediction model that can be updated based on traffic data. To evaluate the
performance of the proposed model, we use a publicly available dataset. Experimental results show that the developed DEM
model has a mean square error of 0.06 and a mean absolute error of 0.15 for single-step prediction; it shows that achieves a
mean square error of 0.25 and a mean absolute error of 0.32 for multi-step prediction. We compared our proposed model with
many models in different categories; individual deep learning models (i.e., LSTM, CNN, GRU), selected traditional machine
learning models (i.e., linear regression, decision tree regression, k-nearest-neighbors regression) and other ensemble models
such as random-forest regression. These results also support the claim that ensemble learning models perform better than
individual models.

Keywords Deep learning · Traffic flow prediction · Ensemble learning · Long short-term memory · Convolutional neural
networks · Gated recurrent unit

1 Introduction

Traffic congestion causes many problems that we can exam-
ine under different headings such as economic, environmen-
tal and social. Among them, the most emphasized is the
increase in cost with the lengthening of the travel time. These
two key issues lead to the emergence of other problems.
For example, prolonged travel time causes social and psy-
chological problems, environmental problems such as noise
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pollution and even accidents from time to time. Although
increasing the cost of travel is an economic problem, increas-
ing fuel consumption also leads to environmental problems
such as air pollution [1].

Decision makers who reach information about when and
where traffic congestion may occur with traffic flow fore-
casting can direct drivers to safer roads so that resources can
be used more efficiently. With a more effective planning, it
is possible to use public transportation more efficiently as
well. In this way, the environmental impact caused by traffic
can be reduced. For this reason, traffic flow forecasting is
of key importance in controlling traffic congestion and solv-
ing many problems that may occur, and is an indispensable
component for intelligent transportation systems [2].

That is why, in recent years, many studies in this area have
focused on developing reliable and realistic traffic flow pre-
diction models using the latest technologies [3–5]. However,
most of these studies have presented short-term traffic flow
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prediction models [6]. Few of the proposed forecasting mod-
els are capable of long-term forecasting. However, long-term
forecasting is as important and useful as short-term forecast-
ing [1, 7, 8]. Furthermore, long-term traffic flow forecasting
is of practical importance for decision makers. An accurate
forecast model will facilitate trafficmanagement even during
the rush hours, and will enable effective measures to be taken
by informing in advance of possible negative events.

However, long-term forecasting is a challenging task. This
is due to the stochastic nature of the dynamics that make
up the traffic flow data, which is nonlinear and contains
complex dependencies [9]. It is also not identical in both
temporal and spatial dimensions. Modeling dynamic tem-
poral and spatial dependencies for traffic flow prediction is
very burdensome and arduous. These complex dependencies
increase in number and become more and more complex
in long-term predictions. As the forecast horizon increases,
even in the best models, the prediction quality decreases and
the average error increases [10].

As a result, reliable long-term prediction becomes a dif-
ficult task, and it is almost impossible to model long-term
dependencies of traffic flow with simple and traditional pre-
diction models [8, 11, 12].

In this study, we propose a deep learning-based ensem-
ble framework for long-term traffic flow prediction. While
deep learning (DL) models can learn dynamic and complex
dependencies of traffic data better than traditional learn-
ing algorithms, ensemble learning (EL) provides flexibility
by increasing the generalization ability of the final model.
Because many different predictive models collaborate to
solve the given problem in ensemble learning, it is often
expected that the ensemble model will exceed the predictive
success of a single model.

The most important feature of the proposed EL model
is that we employ three different DL models (i.e., CNN,
LSTM and GRU) as base learners. This increases model
diversity so that a failure of one model can be compensated
by another model. As shown in Fig. 1, the performances of
all three models change as traffic conditions change. From
this figure, it is clear that we cannot achieve the best predic-
tion performance with a single model. Because each model
has strengths and weaknesses, the contribution of the base
models to the final prediction result cannot be equal. In a
successful ensemble model, a base model with high predic-
tive performance is expected to contribute more to the final
result than less successful models. In our ensemble model,
we have developed a meta-learner to provide this. Owing to
this meta-learner, we have dynamically weighted the base
models, that is, we have ensured that each model contribute
in the final prediction result according to its current predic-
tion performance. We leverage this capability of ensemble
learning to improve long-term prediction accuracy. In order
to assess the accuracy, we conducted several experiments, in

Fig. 1 Different performances of base learners

which we compared the proposed model with widely used
prediction models.

There are three main contributions of this study:

• In this study, we proposed a fully DL-based ensemble
learning framework for long-term traffic flow prediction.

• Weused three differentDLmodels as base learners. In the
model we developed, we use LSTM and GRU together.
We have not come across a model in the literature that
uses these two techniques together. Since these two tech-
niques are versions of recurrent neural networks, it is
not preferred to use them together in a prediction model.
However, although these two techniques are similar to
each other, their performances are quite different as seen
in Fig. 1. So where one fails, the other can be quite suc-
cessful. For this reason, we preferred to use these two
techniques together.

• We use deep learning architectures in our model, both
as base learners and the meta-learner. Thanks to a feed
forward neural network (FFNN), which is the most basic
deep learning technique, we decide the weights of the
base learners.We train a feed forward neural network as a
meta-learner in order to obtain the final prediction result.
In this way, we ensured that the base learners dynami-
cally contribute in the final prediction result according to
their prediction success (more successful ones contribute
more, less successful ones contribute less).

The paper is organized as follows: In Sect. 2, we provide
a background section. We explain the related technologies in
Sect. 3. A brief overview of current literature on traffic flow
prediction is provided in Sect. 4. In Sect. 5, we introduce
the details of our deep learning-based ensemble framework.
Then, we present dataset, preprocessing steps, experimental
results and discussion in Sect. 6. Section 7 includes conclu-
sion and future work.
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2 Background

In this section, we will define the traffic flow prediction prob-
lem.

2.1 Traffic Flow Prediction

Traffic flow refers to the number of vehicles passing a certain
road section per unit time. This data is collected automati-
cally, usuallywith the help of sensors. Since vehicles can only
move on the roads prepared for them, accurate estimation of
the traffic flow in a certain area prevents possible congestion
and ensures more efficient use of the roads [1, 2, 4].

2.2 Problem Formulation

Traffic flow forecasting models are often based on a simple
assumption: the future depends on the past. In other words,
data that generated traffic conditions in the past will affect
current and future traffic situation. Therefore, continuity of
data is important. Traffic flowprediction is a time series prob-
lem, and as with all time series problems, past values are
used as target function parameters in the traffic flow esti-
mation problem. In other words, the target/prediction value
at time Tn becomes one of the target function parameters at
time T(n+1). This is for single-step prediction. In multi-step
prediction,more than one value at consecutive time steps par-
ticipates in the process at the same time. To formulate this
problem mathematically, we use the notation f it to define
traffic flow from station i at time t. In order to extract spa-
tial and temporal features of traffic flow here, we construct
spatial-temporal feature matrix as follows:

f st =

⎡
⎢⎢⎢⎢⎢⎢⎣

f 11 f 12 f 13 . . . f 1t
f 21 f 22 f 23 . . . f 2t
. . . . . . .

. . . . . . .

. . . . . . .

f s1 f s2 f s3 . . . f st

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

Here, s denotes the number of stations. We construct this
flow matrix with temporal information horizontally and spa-
tial information vertically. In the next step, we can formulate
the traffic flow prediction problem as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f dt−β

f dt−(β−1)
f dt−(β−2)

.

.

.

f dt−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

θ−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f dt
f dt+1
f dt+2
.

.

.

f dt+(h−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(2)

Here, since we use historical flow data to predict future
flows, the matrix on the left hand side represents historical
flow data and the matrix on the right hand side represents
prediction values. The traffic flow prediction model is repre-
sented by a prediction function, which is represented by θ .
f d denotes traffic flow from station d. β is the looked-back
steps, and h is the prediction horizon.

2.3 The Differences Between Short- and Long-Term
Prediction

In fact, the difference between the short- and long-term fore-
cast goes far beyond the period we determine with only the
prediction horizon. In the literature, long-term forecasting is
categorized as predicting an hour later or a few steps later
(usually five steps or more), while short-term forecasting is
defined as predicting one step or a few minutes later. Here,
we can say that a categorization based on this definition is
not reliable due to the lack of a consensus in terms of the
prediction horizon. However, according to the assessments
made taking into account the time interval of the data, it is
reasonable in our opinion to consider five steps and beyond
as a long-term forecast. However, we believe that it would
be a more correct approach to classify forecast models that
can make reliable forecasts not only for the specified time
horizon but also beyond, as long-term forecast models, with-
out taking into account the prediction horizon of the model.
Therefore, in this study, we test our model with several time
horizons and compare their performance.

3 Related Technologies

In this section, the related technologies used in the proposed
model are described.

3.1 Recurrent Neural Network (RNN)

Thismodel is oneof themost importantDL techniques partic-
ularly developed for time series problems. RNN has a simple
feedback loop in order to learn dependencies among the dif-
ferent time intervals. However, the basic RNN architecture
is insufficient to capture complex relationships in long time
intervals, so two different versions have been proposed. The
first of these versions is long short-termmemory (LSTM) and
the other is gated recurrent network (GRU). LSTM has three
different gates (input, output, forget) while GRU has two
different gates (update and reset) and by the agency of these
gates, they remove unnecessary information from the model
that comes from the past states, and allowing the model to
focus on only useful information. In this way, the model can
learn long-term dependencies with ease. Figure2 presents
the general structure of the RNN, LSTM and GRU.
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Fig. 2 Structure of a RNN (on the left), LSTM (in themiddle) andGRU
(on the right)

3.2 Convolutional Neural Network (CNN)

Since CNN was not developed for time series problems, it
was not used for time series prediction for a long time. How-
ever, with the increase in the amount of data, the increase in
computational load and the inability to parallelize the RNN
algorithm efficiently led to new searches. CNN is promising
for time series problems as it can be parallelized and pro-
duces faster results. In recent years, successful CNN-based
time series forecasting models have been developed. Due to
its architecture, CNN is used to reveal the relationships of dif-
ferent time series, especially in problems that need learning
temporal dependencies and spatial dependencies together. A
simple CNNmodel includes convolution layers, pooling lay-
ers, fully connected layers (FC) and an output layer. Filters
are used in the convolution and pooling layers and the results
are combined in the FC layer. In thisway, learning is provided
at each convolution layer.

3.3 Deep Ensemble Learning

Ensemble learning models combine several base or individ-
ual models with different strategies in order to provide better
generalization and improve final prediction performance [13,
14]. Moreover, today, deep learning models with complex
and layered architecture outperform traditional prediction
models. Deep ensemble learning models, on the other hand,
aim to build a more successful prediction model by com-
bining the peculiar advantages of these two models. There
are many models developed for traffic flow prediction in
the literature, but few of them are ensemble learning-based.
However, ensemble learning-based models provide higher
accuracy andgeneralizability because they are constructedby
combining either individual models developed with different
combinations of the samemethod or individualmodels devel-
oped using different methods. Combiningmultiple models in
thisway for trafficflow forecasting can increase thefinal fore-
casting accuracy while preventing overfitting. Because each

individual model deals with one aspect of the final model, as
a result, the final model provides a more general represen-
tation and achieves a higher predictive accuracy compared
to individual models. To this end, we focus on ensemble
learning approaches in this study and propose a novel deep
ensemble model for traffic flow prediction. The formula for
an ensemble model is as follows:

FPM(t) =
K∑

k=1

Wkαk(t). (3)

where FPM is final prediction model, αk is the kth individual
model, Wk is the weight of the kth individual model, and K
is the number of individual models.

According to this formula, the ensemble learning model
gives weight to each individual model. The most common
approach in the literature, for this purpose, is to give equal
weight to each model. One issue of this approach is that each
model conduces equally to the final prediction, without con-
sidering the prediction performance of single models. When
we give a fixed weight to each single model, we limit the
performance of the ensemble model due to a reduction in its
generalization ability. Therefore to improve the prediction
accuracy, we propose a flexible and robust deep ensemble
model in this study. The proposed model assigns the weights
based on the individual model performance and traffic situa-
tion change.

4 RelatedWork

The importance of traffic flow prediction in transportation
engineering is increasing, and accordingly, we can say that
there is a very large literature in this field. Most studies pro-
pose a model to predict traffic flow. We will examine these
proposed models under two topics by following the tradi-
tion in the literature: parametric models and nonparametric
models [3, 12, 15–19]. We summarize the related literature
in Table 1.

4.1 Parametric Models

Models in this class can be explained by traffic flow theories
of transportation engineering, statistics and probability. In a
parametric model, traffic flow is represented as a function
of random variables (e.g., accident, instantaneous decisions
of drivers), time-dependent variables (e.g., time of day, day
of the week or season) and auxiliary variables (e.g., weather,
public holidays, sports or concert events). That is, traffic flow
is defined as the total number of vehicles passing through
a certain road segment at a certain time period under the
influence of many dependent or independent variables, each
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Table 1 Summary of the related literature

References Horizon Input data Data size Method/technologies
used

Evaluation metrics

[9] 24h Highways agency
network traffic
flow data

15min resolution
from 1 Jul 2018 to
28 Jan 2020

Wavelet
decomposition,
convolutional
neural
network-long and
short- term
memory neural
network

Root mean square
error (RMSE)
mean absolute
error (MAE), R
square

[7] Up to 24h Caltrans
performance
measurement
system (PeMS)
dataset

5min interval. Data
size not mentioned

LSTM
encoder–decoder

RMSE and
symmetric mean
absolute
percentage error
(SMAPE)

[1] 24h Dataset obtained
from the
DRIVENET

Between February 1,
2015 to March 31,
2016

Deep neural network
(DNN)

Absolute percentage
error (APE), mean
absolute
percentage error
(MAPE)

[8] Up to 4h GPS-data taken from
the GAIA

The data contains
trips from October
to November 2016

Graph CNN-LSTM
neural network

RMSE, MSE, MAE
and MAPE

[12] Up to 1h Urban corridor of 30
road segments with
24 intersections
along Victoria
Street (Melbourne)

One-year data of the
year 2016

Convolutional GRU
with attention
network

Weighted mean
absolute
percentage error
(WMAPE),
RMSE, MAE

[16] Single step
(unspecified)

PeMS The 5-min traffic
flow data of
District 5 named
Central Coast in
2013

Ensemble learning,
CNN

MAE, RMSE, mean
relative error
(MRE) and the
standard deviations
MAE, MRE and
RMSE

[17] Up to three-step Data from the
Portland-
Vancouver
Metropolitan
region

During a 4-month
period from March
4 to June 28, 2019

Ensemble learning,
ensemble
empirical mode
decomposition,
DBN (deep belief
networks)

RMSE, MAPE

[22] 1-h Princes highway,
Victoria Road,
Canterbury Road,
and M1 in Sydney

Hourly traffic count
from November
2017 to November
2018

Ensemble learning,
ARIMA

RMSE, MAPE

[30] 5h Data from Hangzhou
Integrated
Transportation
Research Center
and PeMSD10

From 16th October,
2013 to 3rd
October, 2014 and
from 1st January,
2018 to 31st
March, 2018
(15min resolution)

Graph convolutional
network, recurrent
neural network

RMSE and MAPE

[33] 1h (12 steps) PeMSD4 and
PeMSD8

From January to
February in 2018
and from July to
August in 2016
(5-min interval)

Encoder–decoder,
attention network,
LSTM

RMSE, MAE,
MAPE, median
absolute error
(MdAE), mean
absolute scaled
error (MASE)
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Table 1 continued

References Horizon Input data Data size Method/technologies
used

Evaluation metrics

[38] 1h (4 steps) Arterial sensors in
Arcadia, CA in
2015

15-min interval data Ensemble learning,
ARMAX, partial
least squares,
support vector
regression, kernel
ridge regression,
Gaussian process
regression

MAE and StdAE
(standard
deviation)

[39] Up to 30 min PeMS (“freeway
segment located in
San Diego”)

From September 1,
2019 to September
30, 2019, and the
sampling time
interval is 5 min

Ensemble empirical
mode
decomposition,
wavelet, LSTM

RMSE, MAE,
MAPE

[47] Up to 30 min Data of Yuanda
Road, Furong
District, Changsha
City

From September to
October in 2013,
excluding weekend
data for a total of
40 days, time
interval is 5 min

Optimized
variational mode
decomposition
(OVMD) and
combined long
short-term memory
network (LSTM)

RMSE, MAE

of which is dynamic in itself. Modeling with parametric
approaches is relatively easy, but these models are suitable
for uncomplicated small-sized datasets [20].

The most widely used parametric approaches in the liter-
ature are ARIMA, Kalman filtering and linear regression.

ARIMA is a time series modeling approach that explores
the temporal relationship between data points of a time series.
There are many traffic flow forecasting models developed
using ARIMA and its advanced versions i.e., ARIMAX,
SARIMA, SARIMAX in the literature [21, 22].

Kalman filtering is a widely used traffic flow prediction
method. Its main idea is to predict future traffic flow using
historical traffic flowdatawith a recursive or iterative process
[23].

Linear regression is a pretty simple parametric approach.
Thismethod describes the traffic flow as a linear combination
of the independent variables [24].

4.2 Nonparametric Models

Models in this category are more advanced than parametric
models, and their performance varies according to the quality
and size of the dataset. Thesemodels can achieve satisfactory
prediction successwith big data, but this requires quite a lot of
computational capacity. K-nearest neighbor (KNN), support
vector machine (SVM) and neural networks (NN) are the
approaches we can count in this category.

KNN can be used for classification or regression. In this
model, common patterns are tried to be extracted from his-
torical traffic flow data. By using the best match with these

defined patterns, future traffic patterns are tried to be pre-
dicted [25].

Another parametric model used in traffic flow predic-
tion is SVM [15]. Although the estimation accuracy can
be increased by using different “kernels,” the computational
load of model training is quite high, especially compared to
KNN and NN. Therefore, it is not practical for large datasets.
Indeed, KNNand SVMare not popularmodels developed for
trafficflowforecast. Themost popularmodels in this category
are the NN-based models. And the reasons why NN-based
models are so popular can be listed as follows: (1) they are
suitable for big data, (2) they have fast convergence, and (3)
they can achieve high prediction accuracy. A wide variety of
NNmodels have been proposed for traffic flow prediction [1,
7, 12, 18].

4.2.1 Deep Learning-Based Models

Although deep learning models are also nonparametric mod-
els, we wanted to examine these studies separately since they
have been very popular in this field in recent years and have
a fairly wide literature. The simplest DL models that can be
found in the literature in this field are multilayer-perceptron
(MLP)-basedmodels developed usingmultiple hidden layers
[26]. However, the most widely used DL technique in solv-
ing the traffic flow prediction problem is recurrent neural
networks (RNN). Especially, GRU and LSTM techniques,
which are variants of RNN, are the most common meth-
ods since they are successful in capturing dependencies at
different times. For example, [27] developed a two-layer
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LSTM-based model. It used a fully connected layer as the
extraction layer in the first layer, and the LSTM layer as
the prediction layer in the second layer. The proposed other
LSTM-based models are in [6]. A GRU-based model is pro-
posed in [28]. In this study, weather data was used in addition
to traffic data. Apart from RNN, CNN-based models also
have been proposed for short-term traffic flow forecasting
problems [29–31]. CNN-based models are especially pre-
ferred because they can produce results faster than other
neural networks [32].

4.2.2 Hybrid and Ensemble Models

Understanding that it is not possible to model the complex-
ity of traffic data with simple and traditional methods, many
researchers have turned to hybridmodels, especially in recent
years. While in early studies we can see the combination of
several parametric models, in recent studies, many of the
hybrid models were built by combining two or more non-
parametric methods [7, 8, 11, 33, 34]. Especially LSTM and
CNN are used together in recently developed hybrid mod-
els [30, 35, 36]. There are also hybrid models developed by
using parametric and nonparametric methods together [11,
37].

On the other hand, EL-based models emerge as a new
trend [38–43]. There are only a limited number of EL-based
prediction models in the literature [16, 17, 22, 44–46]. How-
ever, none of these studies focus on long-term forecasting.
And this is a research gap that we want to fill in this study.

5 Methodology

5.1 The ProposedModel

The proposed model is a deep ensemble model which is
capable of properly fusing the prediction results of multiple
deep learning models. Our model learns the strengths and
weaknesses of individual models and weights the predictions
of single models according to their prediction performance.
In addition, our model is flexible and performs well under
different traffic conditions since our model receives actual
data as well as prediction results from each model to obtain
the final result.

Figure 3 demonstrates the details of our deep ensemble
traffic flow prediction framework. Our proposed model con-
sists of three stages. The first stage is the preprocessing and
dataset preparation. We will explain this stage in detail in
the next section. The second stage is base model selection.
At this stage, we adjust the configurations of the three base
models, namely LSTM, GRU and CNN. For this, we run
models LSTM, GRU and CNN multiple times with different
time lags, numbers of hidden layers and neurons. We opti-

mize the internal parameters of each base model and select
the best models with the highest accuracy. After selecting
the base models, in the third stage, we decide how much
each base model will contribute to the final model according
to their performance. That is we develop a meta-learner to
dynamically weight each base learner. For this, we first form
new training, validation and test sets using each base model,
then by using these new datasets we build a feed forward
neural network-based (FFNN) model with deep architecture
and the outputs of this final model (i.e., FFNN) or meta-
learner are the weights of each base model. Thus, the weight
of each base model is determined automatically and dynam-
ically. Meanwhile, in order to capture the traffic condition
changes, we use raw input data as well during the construc-
tion of the final model. Consequently, we separate the base
models weighting step from the base models selection and
tuning step so that the ensemble model can be dynamic and
can change with the traffic conditions.

As we mentioned in Sect. 3.3, an ensemble model can be
built in two different approaches: It can be built by combining
either individual models developed with different combina-
tions of the same method or individual models developed
using different methods. The novelty of our model is that it
combines these two approaches. Moreover, the base learners
and meta-learner we use in our model all have deep architec-
ture, and we do not use a fixed weight for each base learner,
we introduce a meta-learner with the ability of dynamically
weighting the base learners according to their predictive suc-
cess.

6 Experiments

6.1 Dataset and Preprocessing

We conducted this study with a publicly available and a real-
world dataset.1 The dataset contains a total of 274 stations.
The data was collected from January 1st, 2015 to Decem-
ber 31st, 2015, which contains both weekends and weekdays
and aggregated 1h intervals. Although the dataset contains
274 stations, some stations only have data for 3–4 months,
for instance, station 116820 has data only for the 2nd, 9th,
11th and 12th months. That is, for some stations there are
too many missing values, and this disrupts the continuity of
the dataset. However, this is not desirable for time series and
can significantly reduce the forecasting quality. Therefore,
both because our computational resources are limited and
because we want our model to produce more reliable pre-
dictive results, we have selected 100 stations with as few

1 Source: www.transportation.gov/data, and it is available at: https://
cloud.google.com/bigquery/public-data.
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Fig. 3 General structure of the proposed model

missing values as possible and we tested all prediction mod-
els by using these 100 stations. Figure4 shows the first 45
stations we have selected and Fig. 5 shows the locations of
the selected stations.

We filled the missing values of the stations used in the
experiments by averaging the data of the previous and the
next hour. Thus, the total number of data samples is 100 ∗
365. We chose this method to fill the missing data because
data that is closer together, whether spatially or temporally,
is more related to each other than data that are far apart. This
idea is based on Tobler’s first law. Tobler’s first law says that
things that are close together are more related to each other
[22]. Inspired by this, we used this method to fill the missing
data.

While choosing the stations we will use in our experi-
ments, we also took into account the road type to which the
station belongs, in addition to the amount of data because we
wanted to show how robust and generalizable our model is
for different road types. The road types we use are shown in
Table 2.

We separated the dataset into three: We organized 65% of
the dataset (about the first eight months) as the training set,

the last two months as the validation set, and the remaining
part as the test set. Andwe performedZ-Score normalization.

6.2 Constructing Traffic FlowMatrix

We tried to find the optimum time lag by running each deep
learning model (base learner) many times with different time
lags, i.e., the current traffic flow depends on how many steps
in the past traffic flow. Thus, we have obtained an optimum
time lag for each base learner. If we show the time-lag value
with W ; we set W hours as the time lag and added W new
features, each of which indicates hourly traffic volumes in
a W -h period. In this way, prediction models try to predict
the traffic volume in the (W + 1)th hour by using previous
W hours of data. We tested the proposed model for multiple
horizon values: The prediction horizon h is specified as 1
for single-step prediction, and 2, 3, 4, 5, 9, 12, 24 for multi-
step prediction (i.e., long-term prediction). That is, we used
W hours historical data to predict the following h hour(s)
traffic flow value. Accordingly, we constructed the traffic
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Fig. 4 Dataset (the first 45 stations)

flow matrix as input (X) and output (Y ) matrix as follows:

Xs1
h =

⎡
⎢⎢⎣

f s1t f s1(t+1) . . . f s1t(W−1)
f s1(t+d) f s1(t+d+1) . . . f s1t(W−1)+d

: : . . . :
: : . . . :

⎤
⎥⎥⎦ (4)

Y s1
h =

⎡
⎢⎣

f s1t(W−1)+1 f s1t(W−1)+2 . . f s1t(W−1)+h
f s1t(W−1)+2 f s1t(W−1)+3 . . f s1t(W−1)+h+1

: : . . :
: : . . :

⎤
⎥⎦ (5)

In Eqs. 4 and 5, f s1t indicates the traffic flow of station
1 at time t . h represents prediction horizon, W denotes time
lag (or time-window size), and d is the stride value.

6.3 Experiments Settings

TensorFlow2 and Keras,3 which are open-source libraries
of Python, were used to build the proposed deep ensemble

2 www.tensorflow.org.
3 www.keras.io.

Fig. 5 Road network used for experiments

model and other deep learning models. We used the scikit-
learn4 as themachine learning library to implement the linear
regression (LR), KNN, DT, RF models.

4 www.scikit-learn.org.
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Table 2 Road types

Urban: principal arterial—other

Urban: principal arterial—other freeways or expressways

Urban: principal arterial—interstate

Urban: minor arterial

Rural: principal arterial—other

Rural: minor arterial

Rural: principal arterial—interstate

Rural: major collector

We made a lot of trials to determine the best time lag. As
a result of these trials, we found that the best time lag is 24h
for all models.

We optimized the hyper-parameters of each model sepa-
rately. For deep learning models, the number of hidden neu-
rons, activation function, dropout rate and learning rate were
optimized by using ‘Bayesian Search’ algorithm. Table 3
shows the hyper-parameter values that we obtained as a result
of optimization for each deep learning model.We used ‘Ran-
dom Search’ algorithm for optimizing hyper-parameters of
LR, KNN, DT, RF models. The Adam algorithm is used to
optimize the loss function of all deep learning models and
the ensemble model. The maximum number of epochs is set
to 100; however due to early stopping, there was no model
that reached 100 epochs.

6.4 ComparisonMetrics

Weuse fourmetrics tomeasure the performance of the devel-
oped models, mean absolute error (MAE), mean squared
error (MSE), mean squared logarithmic error (MSLE) and
R-squared score which are the most frequently used metrics
for traffic forecasting.

MAE, MSE, MSLE, R2 are defined as:

MSE = 1

T

T∑
n=1

(tn − pn)
2. (6)

MAE = 1

T

T∑
n=1

|tn − pn|. (7)

R2 = 1 −
∑T

n=1(tn − pn)2∑T
n=1(tn − v)2

. (8)

MSLE = 1

T

T∑
n=1

(log(1 + tn) − log(1 + pn))
2. (9)

where t , p and T indicate the actual value, prediction value
and the total number of samples, respectively.Andv indicates
that mean value of the actual traffic flow data.

Table 3 Optimum
hyper-parameter settings

Model Parameter Value

LSTM hyper-parameters (base learner) Number of layers 4

Number of units 512,512,32,32

Activations relu, relu, relu,tanh

Dropout rate 0.0

Learning rate 0.0001

GRU hyper-parameters (base learner) Number of layers 4

Number of units 512, 512, 32, 96

Activations tanh,relu,relu,relu

Dropout rate 0.5

Learning rate 0.0001

CNN hyper-parameters (base learner) Number of hidden layers 3

Number of units 512, 96, 128

Filter size 64

Activations tanh, relu, tanh, relu

Dropout rate 0.0

Learning rate 0.0001

Meta-Learner hyper-parameters Number of layers 4

Number of units 352, 512, 96, 416

Activations tanh, tanh, tanh, tanh

Dropout rate 0.2

Learning rate 0.0001
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Table 4 Comparison of prediction performances of the proposed ensemble model and other competitive models for eight time horizons

Prediction horizon (h) Metrics LR DT KNN RF LSTM GRU CNN Ensl Ens2

1 MSE 0.1007 0.1162 0.0882 0.0840 0.0676 0.0687 0.0676 0.0641 0.0613

MAE 0.2079 0.2065 0.1728 0.1740 0.1656 0.1657 0.1675 0.1590 0.1553

2 MSE 0.1501 0.1702 0.1218 0.1245 0.1139 0.1095 0.0989 0.0899 0.0862

MAE 0.2510 0.2484 0.2057 0.2075 0.2252 0.2166 0.2039 0.1889 0.1840

3 MSE 0.1918 0.2196 0.1460 0.1640 0.1499 0.1195 0.1271 0.1141 0.1119

MAE 0.2801 0.2794 0.2226 0.2333 0.2401 0.2168 0.2296 0.2102 0.2065

4 MSE 0.2161 0.2911 0.1705 0.1877 0.2330 0.1506 0.1406 0.1464 0.1313

MAE 0.2994 0.3188 0.2488 0.2566 0.3412 0.2560 0.2449 0.2408 0.2302

5 MSE 0.2395 0.2940 0.1780 0.2174 0.1517 0.1514 0.1881 0.1408 0.1388

MAE 0.3136 0.3117 0.2463 0.2611 0.2455 0.2438 0.2911 0.2329 0.2300

9 MSE 0.2817 0.4037 0.2164 0.3058 0.2090 0.2213 0.2066 0.1893 0.1904

MAE 0.3391 0.3622 0.2767 0.3097 0.3017 0.3071 0.2923 0.2767 0.2752

12 MSE 0.2938 0.5464 0.2418 0.4308 0.2160 0.3016 0.2117 0.2165 0.2079

MAE 0.3472 0.4100 0.2999 0.3530 0.3021 0.3725 0.2938 0.2911 0.2847

24 MSE 0.3256 0.4957 0.3019 0.3874 0.2598 0.2682 0.2754 0.2548 0.2539

MAE 0.3648 0.4569 0.3452 0.3914 0.3224 0.3396 0.3467 0.3186 0.3180

Bold text is used to highlight the result of the most successful model for each prediction horizon

Table 5 Comparison of
prediction performances of the
proposed ensemble models and
base models for eight time
horizons

Prediction horizon (h) Metrics LSTM GRU CNN Ensl Ens2

1 MSLE 0.0140 0.0142 0.0139 0.0134 0.0125

R2 0.9248 0.9213 0.9258 0.9301 0.9366

2 MSLE 0.0229 0.0222 0.0196 0.0183 0.0172

R2 0.8722 0.8715 0.8860 0.9028 0.9050

3 MSLE 0.0250 0.0221 0.0243 0.0213 0.0208

R2 0.8245 0.8605 0.8583 0.8730 0.8737

4 MSLE 0.0400 0.0280 0.0267 0.0266 0.0240

R2 0.6247 0.8321 0.8349 0.8422 0.8543

5 MSLE 0.0277 0.0273 0.0332 0.0253 0.0248

R2 0.8181 0.8281 0.7876 0.8311 0.8367

9 MSLE 0.0383 0.0384 0.0360 0.0332 0.0331

R2 0.7254 0.7469 0.7506 0.7653 0.7562

12 MSLE 0.0376 0.0560 0.0361 0.0369 0.0352

R2 0.7255 0.5598 0.7101 0.7274 0.7338

24 MSLE 0.0440 0.0456 0.0468 0.0435 0.0426

R2 0.6563 0.6297 0.5832 0.6637 0.6724

6.5 Results and Discussions

In order to assess the performance of our ensemble model
(i.e., Ens2 in Tables 4, 5), we compare the proposed model
with base models, i.e., LSTM, GRU and CNN. Besides these
models, we also compare our model with some selected tra-
ditional machine learning models including LR, KNN, DT,
RF. We use raw input connection in meta-learner so that our
ensemble model can be dynamic and capture the traffic con-
ditions well. We construct an alternative model, which has

the same architecture as the proposed ensemblemodel except
the raw input connection (i.e., Ens1 in Tables 4, 5). We also
compared the prediction performance of this model with the
model we propose.

The 3-day forecasting performance of the base models
and the ensemble models are shown in Fig. 6a, b. Figure6a
shows single-step prediction (i.e., prediction horizon = 1) and
Fig. 6b shows multi-step predictions (i.e., prediction horizon
= 24). The forecasting graphs belonging to the same period
(month/day/hour) were selected to compare the performance
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Fig. 6 Comparison of the prediction results: a TimeHorizon = 1 (single-step prediction). b TimeHorizon = 24 (multi-step prediction)

of the top and bottom forecasting horizons. Based on these
figures, the predictive success of the proposed deep ensem-
ble model has increased considerably for both time horizons
compared to singlemodels. In the samefigure, the histograms
in Fig. 7a–e show forecasting performances for time horizon
= 1 for different days of the week and different times of the
day. To obtain these histograms, for each model, first, the
difference between the each forecasting point and its ground
truth was taken separately. Then, for each forecasting point,
the model with the smallest of this difference was awarded
a score, and in the end, the models’ scores were added up.
These histograms show the total score of each model. The
highest score in all five histograms belongs to the proposed
ensemble model. In fact, these histograms show that the pro-
posed model is decisively ahead of the other models.

Table 4 showsMSE andMAE results we have obtained as
a result of our experiments for eight time horizons. As can be
seen in the table, our model (i.e., Ens2) is the most successful
model in all time horizons except time horizon = 9, in which
Ens1model was themost successful. These results prove that
the ensemble models perform better, especially in long-term
traffic flow prediction.

In addition to these main results, we can list the other
results we achieved when we carefully examine the table as
follows:

• Traditional machine learning models are not sufficient
for long-term prediction.

• Among the traditional machine learning-based (ML-
based) models we have compared, the best performance
belongs toKNN.However, the performance of tree-based
models is quite low. The prediction performance of ran-
dom forest (RF), which is a tree-based ensemble model,
is quite far behind KNN.

• Among the deep learning (DL) models, CNN has shown
the best performance in many horizons. This result is
interesting because CNN was not originally developed
for time series problems. But before we can gener-
alize this result, we need to do more experiments.
For the dataset we used in this study, CNN performs
quite successfully. In other words, we can say that we
have developed a prediction model compatible with the
dataset. Nevertheless, we cannot make a general conclu-
sion that CNN is the most successful DL technique for
time series problems. However, we can say that CNN is
promising for such problems.

• According to the results of our experiments, although
CNN is more successful DL model than others, the per-
formance of the other DL models is roughly competitive
with CNN.
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Fig. 7 Comparison of the prediction results: a prediction results on weekdays. b Prediction results on weekends. c Prediction results on rush hours.
d Prediction results on off-peak hours. e Overall performance (TimeHorizon = 1)

• These results indicate that DL-based models offer the
opportunity to develop more successful prediction mod-
els because they can better capture long-term dependen-
cies.

• Based on our observations during our experiments, we
can also make a comparison between DL-based models
in terms of computation times. CNNalso performs best in
termsof computation timeamongDL-basedmodels. This
is probably due to the fact that CNN can be parallelized
more efficiently than GRU and LSTM. However, LSTM
was the model with the worst performance in terms of
computation time.

• When Fig. 6a, b is compared, it is seen that the pro-
posed model is relatively more successful in sharp ups
and downs.

• When the histograms in Fig. 7 are examined, it is seen that
the prediction performance of the proposedmodel is quite

good both on weekdays and during peak hours. However,
the performance of CNN among the single models is the
lowest for these two categories.

• When we examine the histograms in Fig. 7, we see that
the most successful single model is GRU. GRU outper-
forms even our alternative ensemble model (Ens1) for all
categories.

• In Table 5, we compare ensemble models with base mod-
els using MSLE and R2 metrics. We chose these two
metrics because the first metric measures relative error
rather than actual error. That is, it gives approximately
equal weight to small and large differences between
actual and predicted values. The second metric is used
to compare the quality of models with each other, rather
than to decide the overall quality of a model. This metric
takes a value between 0 and 1, and the model is consid-
ered good as the value gets closer to 1. However, it is very
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Fig. 8 Residual plots: a CNN, b GRU, c LSTM, d Ens1 and e Ens2

difficult to obtain values close to 1 for difficult problems
such as traffic flow prediction. Therefore, each prediction
problem should be evaluated on its own.

• When we examine both metrics values in Table 5, we see
that the model we recommend is the best model for all
prediction horizons except 9h. This shows us the results
in Table 5 are consistent with the results in Table 4.

• The results show that we can achieve a significant per-
formance improvement when we combine ensemble
learning architecture and deep learning techniques.

• In general, as prediction horizon increases, the prediction
performance of all the models we compare, including the
model we propose, decreases, which proves that the long-
term prediction is more difficult.

• Although the prediction performance of our proposed
model decreases as the prediction horizon increases, this
decrease is small compared to the other models we com-
pared. For example, when the forecast horizon is 4h, the
MSE of our model is 0.1313, and this value increases to
0.1388when the forecast horizon is 5h. In contrast, when
the forecast horizon is 4h, the MSE of CNN is 0.1406.
However, when the forecast horizon increases to 5h, this
value increases to 0.1881.

• Figure 8 shows the residual plots of our proposed model
and themodels we compared. The residual plot shows the
difference between actual values and predicted values.
The performance of the model is directly proportional
to the closeness of the points forming the graph to the
starting point. When these graphs are examined in detail,
the superiority of our proposed model over other models
is clearly seen.

7 Conclusion and FutureWork

Long-term traffic flow forecasting is vital for traffic man-
agement issues such as congestion control and better route
selection. This importance will become more evident in the
future with the development of related technologies. There-
fore, it is critical to try to improve long-term traffic flow
forecasting performance. That is why, this study proposed
a novel ensemble model for long-term traffic flow predic-
tion. The proposed model is a deep ensemble model built by
properly combining three different deep learning techniques
as basemodels.We designed our model that can dynamically
produce the weights of the base models based on both each

123



Arabian Journal for Science and Engineering

base model’s performance and traffic condition. Experimen-
tal results show that the proposed approach outperforms all
the models compared. In future research, we plan to investi-
gate the effectiveness of our model with using different base
models and datasets. We will also implement a 1D-CNN fol-
lowed by a recurrent neural network (such as LSTMorGRU)
as base learner and investigate the effect of including this net-
work into our ensemble model. In addition, the fact that the
CNN-based prediction model we developed was quite suc-
cessful compared to otherDLmodelsmotivated us to conduct
more research in this area. As a future work, we plan to make
more experiments to compare the forecasting performance of
CNN using different time series datasets. More than that, we
will try to understand why CNN is performing better. We
also plan to address the issue of interpretability of DL-based
models. Although deep learning algorithms provide high pre-
diction performance, the interpretability ofDL-basedmodels
is very low. This is also true for our model. Therefore, as a
future study, we plan to analyze the outputs of the base learn-
ers of our model separately. Thus, we will try to discover the
critical hours that affect the outcome for eachmodel. It would
also be beneficial to try to understand the temporal and spa-
tial components to which our ensemble model gives more
weight.
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