
European Journal of Operational Research 315 (2024) 454–469

A
0

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Discrete optimisation

A simulation-based approximate dynamic programming approach to
dynamic and stochastic resource-constrained multi-project scheduling
problem
U. Satic a,b,∗, P. Jacko a,c, C. Kirkbride a

a Lancaster University Management School, Bailrigg, Lancaster, LA1 4YX, United Kingdom
b Abdullah Gul University Faculty of Engineering, Kocasinan, Kayseri, 38080, Turkey
c Berry Consultants, Abingdon, Oxfordshire, OX14 5EG, United Kingdom

A R T I C L E I N F O

Keywords:
Project scheduling
Markov decision processes
Approximate dynamic programming
Dynamic resource allocation
Dynamic programming

A B S T R A C T

We consider the dynamic and stochastic resource-constrained multi-project scheduling problem which allows
for the random arrival of projects and stochastic task durations. Completing projects generates rewards, which
are reduced by a tardiness cost in the case of late completion. Multiple types of resource are available, and
projects consume different amounts of these resources when under processing. The problem is modelled as
an infinite-horizon discrete-time Markov decision process and seeks to maximise the expected discounted
long-run profit. We use an approximate dynamic programming algorithm (ADP) with a linear approximation
model which can be used for online decision making. Our approximation model uses project elements that
are easily accessible by a decision-maker, with the model coefficients obtained offline via a combination of
Monte Carlo simulation and least squares estimation. Our numerical study shows that ADP often statistically
significantly outperforms the optimal reactive baseline algorithm (ORBA). In experiments on smaller problems
however, both typically perform suboptimally compared to the optimal scheduler obtained by stochastic
dynamic programming. ADP has an advantage over ORBA and dynamic programming in that ADP can be
applied to larger problems. We also show that ADP generally produces statistically significantly higher profits
than common algorithms used in practice, such as a rule-based algorithm and a reactive genetic algorithm.
1. Introduction

Project management and project scheduling are challenging. En-
gineering services, software development, IT services, construction
and R&D operate in dynamic environments, often processing multi-
ple projects simultaneously. Many unplanned factors may disturb the
project execution plan with new project arrivals and delays in task pro-
cessing. A recent project management survey (Wellingtone PPM, 2018)
showed that only 40% of projects are completed within their planned
time, 46% of projects are completed within their predicted budget, and
36% of projects realise their full benefits. In this paper we consider
the dynamic arrival of new projects and stochastic durations of tasks,
and we propose a comprehensive model and solution approach for the
dynamic and stochastic resource-constrained multi-project scheduling
problem (dynamic and stochastic RCMPSP).

The dynamic and stochastic RCMPSP is a generalisation of the
precedence-constrained scheduling problem, which was shown to be
an NP-hard problem in Garey and Johnson (1979, p. 239). Thus the
dynamic and stochastic RCMPSP is also an NP-hard problem. Dynamic

∗ Corresponding author at: Lancaster University Management School, Bailrigg, Lancaster, LA1 4YX, United Kingdom.
E-mail address: ugur.satic@agu.edu.tr (U. Satic).

refers to random project arrivals from different types of projects and
stochastic refers to uncertain task processing times. Dynamic general-
isations of RCMPSP are the dynamic RCMPSP and the dynamic and
stochastic RCMPSP. A discussion of the RCMPSP and its variants can
be found in Satic et al. (2022).

The non-dynamic (i.e., static) variants of RCMPSP are extensively
studied (Creemers, 2015). However, the dynamic variants of the
RCMPSP where new projects randomly arrive in the system are scarce
in the literature. To the best of our knowledge, there are only three
research papers available for the dynamic RCMPSP which are Pamay
et al. (2014), Parizi et al. (2017), Satic et al. (2020), and there are
only ten research papers available for the dynamic and stochastic
RCMPSP which are Adler et al. (1995), Capa and Ulusoy (2015),
Chen et al. (2019), Choi et al. (2007), Cohen et al. (2005), Fliedner
et al. (2012), Melchiors (2015), Melchiors and Kolisch (2009), Mel-
chiors et al. (2018), Satic et al. (2022). They adopt different solution
approaches, which have their own strengths and weaknesses.
vailable online 10 November 2023
377-2217/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.ejor.2023.10.046
Received 9 August 2021; Accepted 31 October 2023
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/eor
http://www.elsevier.com/locate/eor
mailto:ugur.satic@agu.edu.tr
https://doi.org/10.1016/j.ejor.2023.10.046
https://doi.org/10.1016/j.ejor.2023.10.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.10.046&domain=pdf
http://creativecommons.org/licenses/by/4.0/

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

c
𝐾
u
r
r

t

Adler et al. (1995), Cohen et al. (2005), Melchiors and Kolisch
(2009) took advantage of the well-developed queueing network ap-
proach where interdependent resources process project tasks. This re-
quires consideration of projects of relatively simple structure such
as tasks requiring the allocation of a single unit of a single type of
resource. Capa and Ulusoy (2015), Fliedner et al. (2012), Pamay et al.
(2014) considered a reactive scheduling method which generates a
baseline schedule for current projects and then updates it at each time a
new project arrival disrupts the schedule. This approach can be remark-
ably suboptimal as evidenced in our computational study in Section 5.
Melchiors et al. (2018), Satic et al. (2022) modelled the problem as
a Markov decision process (MDP), using dynamic programming (DP)
to evaluate optimal policies. This solution approach suffers from the
curse of dimensionality and thus can only be used for unrealistically
small problems. Chen et al. (2019) divided the multi-project problem
into states according to the project’s completion conditions and then
searched best priority rules for each state, but priority rules are notably
prone to be suboptimal.

Our methodological approach is similar to Choi et al. (2007), Mel-
chiors (2015), Parizi et al. (2017) in that we also formulate the problem
as an MDP and design a scheduling policy via approximate dynamic
programming (ADP). However, our model is notably more comprehen-
sive and allows for solving problems that are larger and/or have a more
complex structure, which are closer to those appearing in practice.
Choi et al. (2007) considered applications in the agricultural and phar-
maceutical industries; thus, they focused on serial project networks,
stochastic task outcomes (success or failure), a single resource type,
single resource usage per task and no project due dates. Melchiors
(2015, chapter 7) conducted experiments on small problems with two
projects with three tasks with a single unit of resource capacity for each
resource type, tasks require a single unit of resource only, identical
project networks for both projects, rejection, holding and processing
costs, but no project due dates. Parizi et al. (2017) considered deter-
ministic task processing times with rejection, holding and processing
costs. Their numerical study had short simulation durations with heavy
discounting.

ADP is a powerful tool that provides researchers with the ability
to adjust the complexity of the optimisation model to trade-off the
solution complexity of large (realistic) problems at the expense of
a modest suboptimality. An acceptable trade-off can be achieved by
careful mathematical modelling of the problem in hand; this is in con-
trast to general purpose methods such as genetic algorithms and other
heuristics which typically rely only on tuning of algorithm parameters.
Our literature summary shows that ADP has been used in dynamic
variants of the RCMPSP such as Choi et al. (2007), Melchiors (2015),
Parizi et al. (2017). It has also been applied in static variants of the
RCMPSP (Li & Womer, 2015; Li et al., 2023). Outside of applications
in project scheduling, ADP methods have been applied in areas such
as clinical trials (Ahuja & Birge, 2020), vehicle scheduling (He et al.,
2018), capacity allocation (Schütz & Kolisch, 2012), machine schedul-
ing (Ronconi & Powell, 2010) and missile defence systems (Davis et al.,
2017).

We consider new projects arriving at random during the execution
of ongoing projects, project completions generate rewards which are
decreased by tardiness costs if completed after their respective due
dates, processing times of the project tasks are uncertain, multiple types
of resources are available and multiple amounts of resources can be
used by each project type. Thus, our model can help optimise the
use of company resources, reduce project delays, and improve overall
productivity. We model the problem as an infinite-horizon discrete-
time MDP and seek to maximise the expected total discounted long-run
profit.

In this paper we show that ADP is a very useful and advanta-
geous method for the dynamic and stochastic RCMPSP. We use an
ADP algorithm with a linear approximation model to approximate the
455

value function of the Bellman equation. Our approximation model uses
resource consumption and decision rewards as features and can be used
for online decision making after estimating the coefficients of the linear
value function approximation in a simulation-based training phase.

We compare the performance of our ADP algorithm with four solu-
tion approaches from Satic et al. (2022), namely a DP algorithm that
computes the optimal policy; an optimal reactive baseline algorithm
(ORBA) and a genetic algorithm (GA) that both generate schedules to
maximise the total profit of ongoing projects; and a rule-based algo-
rithm (RBA) that uses the longest task first rule to guide the allocation
of remaining resources to tasks.

We run our benchmark tests on the problems of Satic et al. (2022).
In addition, we generate new comparison problems that are larger and
include non-sequential project networks and multiple resource types.
The larger size problems are computationally intractable for DP and
ORBA; thus, we benchmark ADP with GA and RBA on these problems.

We contribute to the literature by (i) a new comprehensive MDP
model which considers the random arrival of new projects, stochastic
task durations, multiple resource types, non-sequential project net-
works, project completion rewards, project due dates and tardiness
costs, (ii) a new approximation function that uses project completion re-
wards, tardiness costs and spent resource amounts for decision making,
and is capable of solving much larger, more complex and much more
general problems than ADPs from existing literature, (iii) an extensive
simulation study illustrating the strengths and weaknesses of different
approaches, (iv) benchmarking with DP and ORBA whenever tractable
and with two other approaches in larger problems, (v) developing an
efficient implementation of the proposed ADP method in the Julia
programming language to solve dynamic and stochastic RCMPSPs.

This paper is organised as follows: In Section 2, we describe the
problem setting, the MDP model and our goal function. In Section 3,
we describe our ADP algorithm and its coefficient training procedure.
In Section 4, we describe the comparator algorithms and discuss the
comparison results in Section 5. In Section 6 we conclude.

2. The dynamic and stochastic RCMPSP model

2.1. Problem setting

A project is a group of tasks which are bound to each other with
predecessor–successor relationships, also called a project network. We
onsider ‘‘finish to start’’ precedence relations between tasks. There are

types of renewable resources and the available integer number of
nits is represented by 𝐵𝑘 > 0 for resource type 𝑘 = 1,… , 𝐾. These
esources need to be allocated to process tasks of random duration from
andomly arriving projects.

We assume that each arriving project can be categorised as one of
he possible project types ( = {1, 2,… , 𝐽}). All projects of type 𝑗 share

features such as: inter-arrival time distribution 𝛬𝑗 , completion reward
𝑟𝑗 , due date 𝐹𝑗 , and tardiness cost 𝑤𝑗 ; set of tasks 𝑗 = {1, 2,… , 𝐼𝑗},
project network with sets 𝑗,𝑖 of predecessors of each task 𝑖, task
resource usages 𝑏𝑘𝑗,𝑖, and task duration distribution 𝛤𝑗,𝑖.

The system always accepts newly arrived projects until the system
capacity for type 𝑗 projects is reached and rejects the remaining newly
arrived projects. We only consider non-preemptive task processing; thus,
task processing cannot be paused from after it began until the end of its
random duration. The duration of a task is not revealed to the decision
maker until it is actually reached.

When all tasks of a project are processed, the project is completed,
and the project completion reward is earned. However, if the project
due date passes before the project is completed, the tardiness cost is

incurred.

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.
Fig. 1. Discrete-time Markov Decision Process.

2.2. Modelling framework

We consider the dynamic and stochastic RCMPSP as an infinite
horizon Discrete-Time Markov Decision Process (DT-MDP) model. A DT-
MDP is 5-tuple consisting of state space , set of actions (𝑠), transition
function 𝑃 (𝑠′|𝑠, 𝑎), the immediate profit 𝑅𝑠,𝑎,𝑠′ and discount factor 𝛼.
The DT-MDP is a discrete decision model where a decision-maker
observes the system state in regular time instants, takes an action in
the observed state to maximise the discounted profit, and the state
randomly changes. This problem can be modelled as a DT-MDP as the
transition probabilities and reward functions can be defined to depend
only on the current state of the system and the action taken in that
state, so the Markov property holds.

The problem is modelled using discrete time periods 𝑡 = 1, 2,….
Each period represents a unit of time (e.g., a week) which would be
appropriate for a particular real-life project scheduling problem. A
decision epoch is the beginning of each period 𝑡 at which the allocation
of available resources to initiate project tasks takes place. The transition
time between the beginning and end of a period allows for completions
of tasks, completions of projects, and arrivals of new projects. At the
end of each period, arriving projects are accepted to the system if there
is capacity to do so; otherwise, they are rejected. This process repeats
for all new states over the infinite horizon. Fig. 1 illustrates this process.

We use terms pre-decision state 𝑠 for a state before the action is
taken, post-decision state 𝑠̂ for a state after the action is taken, and pre-
acceptance state 𝑠∗ for a state immediately before the decision about
accepting or rejecting projects that have arrived during the current
period. We assume that the system transitions from a pre-decision to a
post-decision state, and from a pre-acceptance to a pre-decision state,
are instantaneous. These terms are described in detail below.

Processing task 𝑖 of project 𝑗 requires allocation of 𝑏𝑘𝑗,𝑖 units of
resource 𝑘 in each period for the duration of the task. The unallocated
resources are called free-resources 𝐵free

𝑘 (𝑠), and allocated resources are
added to free resources at the end of the period during which their
assigned task is completed. Allocated resources are removed from
free resources instantaneously when a task starts processing at the
beginning of a period.

2.3. Modelling assumptions

A requirement of our discrete model is that project due dates and
task durations are given in whole numbers of periods, and available
resources and task resource usages are given in non-negative whole
units. We also limit the maximum number of projects from each project
type in the system to one to simplify the notation of the presented
model.

To transform the inter-arrival time distribution 𝛬𝑗 to discrete time,
we consider geometrically distributed inter-arrival times. Together with
456
the assumption that at most one project of type 𝑗 can be present in
the system in any given period, we can use 𝜆𝑗 as the probability of
arrival of a single project of type 𝑗 during the transition time. At the
end of every period, the system only accepts a new arrival of a type 𝑗
project if no type 𝑗 project exists in the system, either in processing or
waiting. Otherwise, the system rejects the new arrival and continues its
processing as if there was no arrival.

To transform the task duration distribution 𝛤𝑗,𝑖 to discrete time, we
consider stochastic task durations such that a task may be completed in
some period between minimal possible task duration 𝑡min

𝑗,𝑖 and maximal
possible task duration 𝑡max

𝑗,𝑖 . The probability that a task completes in the
current period is 𝛾𝑗,𝑖(⋅).

See Appendix B for a more detailed discussion of these and other
modelling assumptions.

2.4. Model dynamics

2.4.1. Pre-decision state
For the dynamic and stochastic RCMPSP, a pre-decision state 𝑠

represents the system information available at a decision epoch. The
set of all pre-decision states is called the state space . A pre-decision
state 𝑠 consists of project states 𝑷 𝑗 for all project types 𝑗 ∈  :

𝑠 = {𝑷 1,𝑷 2 … ,𝑷 𝐽 }. (1)

A project state consists of task states 𝑥𝑗,𝑖 of tasks 𝑖 ∈ 𝑗 and the
remaining due date state 𝑑𝑗 :

𝑷 𝑗 = (𝑥𝑗,1, 𝑥𝑗,2,… , 𝑥𝑗,𝐼𝑗 , 𝑑𝑗), (2)

so that the pre-decision state can be seen as1:

𝑠 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1,1, 𝑥1,2, … 𝑥1,𝐼1 , 𝑑1
𝑥2,1, 𝑥2,2, … 𝑥2,𝐼2 , 𝑑2
⋮ ⋮ ⋱ ⋮ ⋮

𝑥𝐽 ,1, 𝑥𝐽 ,2, … 𝑥𝐽 ,𝐼𝐽 , 𝑑𝐽

⎤

⎥

⎥

⎥

⎥

⎦

. (3)

A task state 𝑥𝑗,𝑖 represents the status of the 𝑖th task of project type 𝑗:

𝑥𝑗,𝑖 ∈ {−1, 0, 1, 2… , 𝑡max
𝑗,𝑖 − 1}. (4)

If task 𝑖 is ‘‘pending for processing’’, its state is −1. If task 𝑖 is ‘‘in
processing’’ (i.e., has been in processing for at least 1 period), its
state shows the remaining task processing time to its maximal possible
duration 𝑡max

𝑗,𝑖 . If task 𝑖 is ‘‘completed’’, its state becomes 0.
A due date state 𝑑𝑗 is the remaining due date of a type 𝑗 project

and its value shows the number of remaining periods from the current
decision epoch to the project due date:

𝑑𝑗 ∈ {0, 1, 2,… , 𝐹𝑗}. (5)

In a decision epoch, if a due date state value is zero (𝑑𝑗 = 0) while the
project still has some uncompleted tasks (i.e., 𝑥𝑗,𝑖 = −1 or 𝑥𝑗,𝑖 > 0), a
tardiness cost 𝑤𝑗 is deducted from the project reward 𝑟𝑗 at the project’s
completion.

The absence of a project type 𝑗 is shown by a project state 𝑷 𝑗 where
all task states are 0 (∀𝑖 ∶ 𝑥𝑗,𝑖 = 0). For these cases the due date state of
type 𝑗 project is taken as 0 (𝑑𝑗 = 0):

𝑷 𝑗 = (0, 0,… , 0, 0). (6)

An accepted arrival of a project type 𝑗 at the end of the previous
period is represented by a project state 𝑷 𝑗 where all task states are
−1 (∀𝑖 ∈ 𝐼𝑗 ∶ 𝑥𝑗,𝑖 = −1) and the due date state’s value is 𝐹𝑗 :

𝑷 𝑗 = (−1,−1,… ,−1, 𝐹𝑗). (7)

1 Note that (3) is not a full matrix when project types have different
numbers of tasks.

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

e
t

𝐵

w

2

p
T
p
t
t

𝑎

𝑠

𝑥

An important element of the pre-decision state is also the number
of free resources, 𝐵free

𝑘 (𝑠) ∈ {0, 1,… , 𝐵𝑘}, 𝑘 = 1,… , 𝐾. This is not
xplicitly included as part of the state because it can be calculated from
he other state elements via:

free
𝑘 (𝑠) = 𝐵𝑘 −

𝐽
∑

𝑗=1

𝐼𝑗
∑

𝑖=1
𝑏𝑘𝑗,𝑖𝛶 {𝑥𝑗,𝑖 > 0}, (8)

here 𝛶 {⋅} is an indicator function.

.4.2. Action
An action 𝑎 represents the decision regarding which tasks to begin

rocessing from those tasks whose states are ‘‘pending for processing’’.
he action consists of action elements 𝑎𝑗,𝑖 for each task 𝑖 ∈ 𝑗 of all
roject types (𝑗 ∈ ). An action element takes the value of 1 (𝑎𝑗,𝑖 = 1)
o represent the decision to start processing a qualifying task and takes
he value 0 (𝑎𝑗,𝑖 = 0) otherwise:

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑎1,1, 𝑎1,2, … 𝑎1,𝐼1
𝑎2,1, 𝑎2,2, … 𝑎2,𝐼2
⋮ ⋮ ⋱ ⋮

𝑎𝐽 ,1, 𝑎𝐽 ,2, … 𝑎𝐽 ,𝐼𝐽

⎤

⎥

⎥

⎥

⎥

⎦

. (9)

An action 𝑎 must fulfil three requirements:

(1) The selected tasks for processing must have the task state ‘‘pending
for processing’’:

∀𝑗 ∈  , 𝑖 ∈ 𝑗 ∶ 𝑎𝑗,𝑖 = 1 ⇒ 𝑥𝑗,𝑖 = −1. (10)

(2) There must be enough free resources of each type to allocate for
processing the selected tasks:
𝐽
∑

𝑗=1

𝐼𝑗
∑

𝑖=1
𝑏𝑘𝑗,𝑖𝛶 {𝑎𝑗,𝑖 = 1} ≤ 𝐵free

𝑘 (𝑠), 𝑘 = 1,… , 𝐾. (11)

(3) All predecessor tasks of the selected tasks must be completed:

∀𝑗 ∈  , 𝑖 ∈ 𝑗 ∶ 𝑎𝑗,𝑖 = 1 ⇒ ∀𝑚 ∈ 𝑗,𝑖 ∶ 𝑥𝑗,𝑚 = 0. (12)

Here, 𝑚 represents a predecessor of task 𝑖 (𝑚 ∈ 𝑗 ⧵ 𝑖, 𝑚 ∈ 𝑗,𝑖).
The action where all action elements are zero is also a valid action
and indicates that no task was selected to begin processing in that
period. More than one action may fulfil all three requirements for a
pre-decision state. The set of these actions is named an action set (𝑠).

2.4.3. Post-decision state
A post-decision state 𝑠̂ represents the system information immedi-

ately after a decision epoch and just before the transition time begins.
In other words, a post-decision state is the system information from
the pre-decision state 𝑠 updated by an action 𝑎 but before any task
processing or random event occurs, i.e., 𝑠̂ ∶= 𝑓 (𝑠, 𝑎) where 𝑓 is a
deterministic function defined in (14) for each element of 𝑠 and 𝑎.
A post-decision state consists of the post-decision project states 𝑷̂ 𝑗 . A
post-decision project state consists of post-decision task states 𝑥̂𝑗,𝑖 of
each task 𝑖 ∈ 𝑗 and the same due date states 𝑑𝑗 of the pre-decision
project state 𝑷 𝑗 :

̂ =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̂1,1, 𝑥̂1,2, … 𝑥̂1,𝐼1 , 𝑑1
𝑥̂2,1, 𝑥̂2,2, … 𝑥̂2,𝐼2 , 𝑑2
⋮ ⋮ ⋱ ⋮ ⋮

𝑥̂𝐽 ,1, 𝑥̂𝐽 ,2, … 𝑥̂𝐽 ,𝐼𝐽 , 𝑑𝐽

⎤

⎥

⎥

⎥

⎥

⎦

. (13)

A post-decision task state 𝑥̂𝑗,𝑖 is the updated state of a task from the
preceding pre-decision task state 𝑥𝑗,𝑖. It is only the tasks that have
been selected to start their processing (𝑎𝑗,𝑖 = 1) that change from the
pre-decision state −1 to the post-decision state 𝑡max

𝑗,𝑖 :

̂ 𝑗,𝑖 =

{

𝑡max
𝑗,𝑖 , if 𝑥𝑗,𝑖 = −1 and 𝑎𝑗,𝑖 = 1,

(14)
457

𝑥𝑗,𝑖, otherwise.
2.4.4. Pre-acceptance state
A pre-acceptance state 𝑠∗ represents the system information at the

end of the transition time but immediately before the pre-decision
state 𝑠′ at the following decision epoch. A pre-acceptance state consists
of its project states 𝑷 ∗

𝑗 which consist of pre-acceptance task states
𝑥∗𝑗,𝑖 for each task 𝑖 ∈ 𝑗 and pre-acceptance due date states 𝑑∗𝑗 . A
pre-acceptance state shows the task processing progress after a post-
decision state during the transitional time without new project arrivals.
Eq. (17) shows possible task state transitions from a 𝑥̂𝑗,𝑖 to 𝑥∗𝑗,𝑖 with their
probabilities. As (15) presents, a pre-acceptance due date state is zero
(𝑑∗𝑗 = 0) if project type 𝑗 has just been completed or if the post-decision
due date state is zero. For the other possibilities, a pre-acceptance due
date state is equal to the post-decision due date minus one:

𝑑∗𝑗 =

⎧

⎪

⎨

⎪

⎩

0, if 𝑑𝑗 = 0,
0, if ∃𝑖 ∈ 𝑗 ∶ 𝑥̂𝑗,𝑖 ≥ 0 and ∀𝑖 ∈ 𝑗 ∶ 𝑥∗𝑗,𝑖 = 0,
𝑑𝑗 − 1, otherwise.

(15)

If a type 𝑗 project arrived during the transition time and state 𝑷 ∗
𝑗 is such

that a type 𝑗 project is completed or not present (∀𝑖 ∈ 𝑗 ∶ 𝑥∗𝑗,𝑖 = 0) the
system accepts the new type 𝑗 project. Otherwise, the system rejects
the new arrival. From a pre-acceptance state 𝑠∗ to the following pre-
decision state 𝑠′, the new task state becomes −1 and the due date state
becomes 𝐹𝑗 .

2.4.5. Transition function
The transition function, 𝑠′ = 𝑠𝑀 (𝑠, 𝑎, 𝑐), represents the transformation

of a system from a pre-decision state 𝑠 under action 𝑎 to a pre-
decision state 𝑠′ at the next decision epoch by random events 𝑐 during
the transition time. Random events include new project arrivals, task
completions and project completions. All task completions and project
arrivals are stochastically independent.

A project of each type may arrive in the system during a transition
time according to its type’s arrival probability 𝜆𝑗 and is accepted if no
type 𝑗 project exists in the system.

A task may complete processing according to a conditional prob-
ability 𝛾𝑗,𝑖(𝑥̂𝑗,𝑖), if the task’s processed time following this transition
(𝑡max
𝑗,𝑖 − 𝑥̂𝑗,𝑖 +1) is equal to or greater than its minimal possible duration

𝑡min
𝑗,𝑖 . Formally, we define 𝛾𝑗,𝑖(𝑥̂𝑗,𝑖) = 0 for ∀𝑥̂𝑗,𝑖 > 𝑡max

𝑗,𝑖 − 𝑡min
𝑗,𝑖 + 1, and

require 𝛾𝑗,𝑖(𝑥̂𝑗,𝑖) > 0 for 𝑥̂𝑗,𝑖 = 𝑡max
𝑗,𝑖 − 𝑡min

𝑗,𝑖 + 1, which guarantees that
𝑡min
𝑗,𝑖 is the minimal possible duration. We also require 𝛾𝑗,𝑖(1) = 1, which

guarantees that 𝑡max
𝑗,𝑖 is the maximal possible duration.

The probability of reaching a pre-decision state 𝑠′ from a pre-
decision state 𝑠 under action 𝑎 with the transition function 𝑃 (𝑠′|𝑠, 𝑎) is
the joint probability of task completions 𝑃 (𝑥′𝑗,𝑖|𝑥̂𝑗,𝑖) and project arrivals
𝑃 (𝑷 ′

𝑗 |𝑷̂ 𝑗):

𝑃 (𝑠′|𝑠, 𝑎) =
𝐽
∏

𝑗=1

⎛

⎜

⎜

⎝

𝐼𝑗
∏

𝑖=1
𝑃 (𝑥∗𝑗,𝑖|𝑥̂𝑗,𝑖)

⎞

⎟

⎟

⎠

𝑃 (𝑷 ′
𝑗 |𝑷

∗
𝑗), (16)

𝑃 (𝑥∗𝑗,𝑖|𝑥̂𝑗,𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾𝑗,𝑖(𝑥̂𝑗,𝑖), if 𝑥̂𝑗,𝑖 ≥ 1 and 𝑥∗𝑗,𝑖 = 0,
1 − 𝛾𝑗,𝑖(𝑥̂𝑗,𝑖), if 𝑥̂𝑗,𝑖 ≥ 2 and 𝑥∗𝑗,𝑖 = 𝑥̂𝑗,𝑖 − 1,
1, if 𝑥∗𝑗,𝑖 = 𝑥̂𝑗,𝑖 ≤ 0,
0, otherwise,

(17)

𝑃 (𝑷 ′
𝑗 |𝑷

∗
𝑗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆𝑗 , if ∀𝑖 ∈ 𝑗 ∶ 𝑥′𝑗,𝑖 = −1, 𝑥∗𝑗,𝑖 = 0,
1 − 𝜆𝑗 , if ∀𝑖 ∈ 𝑗 ∶ 𝑥′𝑗,𝑖 = 𝑥∗𝑗,𝑖 = 0,
1, if ∀𝑖 ∈ 𝑗 ∶ 𝑥′𝑗,𝑖 = 𝑥∗𝑗,𝑖 ≠ 0,
0, otherwise.

(18)

Here in (17), the first line represents that the post-decision task state
of task 𝑖 from project type 𝑗 allows for task completion and, with
probability 𝛾𝑗,𝑖(𝑥̂𝑗,𝑖), the task will be completed by the pre-acceptance
state. The second line represents that, with probability 1 − 𝛾𝑗,𝑖(𝑥̂𝑗,𝑖), the
task will not be completed by the pre-acceptance state. The third line

represents that the post-decision task state of task 𝑖 from project type

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

b
t
e
p
t
t
p

2

t
r
c
(

𝑅

H
v
d
i
c
a
v

e

𝑉

H
t
t
t
s

3

t

𝑉

b
c
t
v
l
p
h

a
2
B
a
o
2
s
t
t
f

∑

𝑗 is completed or pending for processing and, with 100% probability,
the task will retain its status in the pre-acceptance state.

In (18), the first line represents that, with 𝜆𝑗 probability, there will
e an arrival of project type 𝑗 during the transition time and the new
ype 𝑗 project will take the place of the previously completed or non-
xisting type 𝑗 project. The second line represents that, with 1 − 𝜆𝑗
robability, there will be no new arrival of project type 𝑗 during the
ransition time. The third line represents that, with 100% probability,
he arrival of projects will not affect the status of ongoing or waiting
rojects of the same type as the new project will be rejected.

.5. Objective function

The immediate profit represents the accrued profit during the state
ransition from 𝑠 under action 𝑎 to 𝑠′, considering project completion
ewards and tardiness costs. The immediate profit 𝑅𝑠,𝑎,𝑠′ is the sum of
ompleted project rewards minus the tardiness cost of late completions
𝑑𝑗 = 0):

𝑠,𝑎,𝑠′

=
𝐽
∑

𝑗=1

{

(

𝑟𝑗 −𝑤𝑗𝛶
{

𝑑𝑗 = 0
})

𝛶
{

∃𝑖 ∈ 𝑗 ∶ 𝑥̂𝑗,𝑖 > 0 and ∀𝑖 ∈ 𝑗 ∶ 𝑥′𝑗,𝑖 ≤ 0
}

}

.

(19)

ere, the first indicator is for late project completion that takes the
alue 1 if a project completes later than its due date (i.e., the project’s
ue date state 𝑑𝑗 = 0) and takes the value 0 otherwise. The second
ndicator is for project completion that takes the value 1 if a project
ompletes (at least one task is in progress in the post-decision state and
ll project tasks are complete at the end of the period) and takes the
alue 0 otherwise.

Our objective function seeks to find the policy that maximises the
xpected total discounted long-run profit:

∗(𝑠1) = max
𝜋∈𝛱

E𝜋

[∞
∑

𝑡=1
𝛼𝑡−1𝑅𝑠𝑡 ,𝑎,𝑠𝑡+1

]

. (20)

ere, 𝑠1 is a given initial state; 𝑅𝑠𝑡 ,𝑎,𝑠𝑡+1 is the immediate profit of state
ransition from pre-decision states 𝑠𝑡 to 𝑠𝑡+1 under the action 𝑎 at the
ime 𝑡; 𝛼 is a discount factor in the interval (0,1); 𝜋 is a policy from
he set of all stationary deterministic policies 𝛱 that prescribe in every
tate 𝑠 an action from the action set (𝑠).

. Approximate dynamic programming (ADP)

In theory, the problem (20) can be solved using the Bellman equa-
ion:
∗(𝑠) = max

𝑎∈(𝑠)

∑

𝑠′∈
𝑃 (𝑠′|𝑠, 𝑎)[𝑅𝑠,𝑎,𝑠′ + 𝛼𝑉 ∗(𝑠′)] ∀𝑠 ∈  , (21)

ut in practice, it suffers from ‘‘the curse of dimensionality’’. ‘‘The
urse of dimensionality’’ means that the number of states and compu-
ational requirements expands exponentially with the number of state
ariables (Sutton & Barto, 2018). Satic et al. (2022) investigated the
imitations of DP and stated that a state space larger than their five
rojects with two tasks problem is computationally intractable for their
ardware.

ADP is a modelling strategy to overcome ‘‘the curse of dimension-
lity’’ problem of DP due to the use of the Bellman equation (Powell,
009). In our ADP algorithm, we estimate the value function of the
ellman Eq. (21) using a linear approximation model (27). A linear
pproximation model is a regression model that fits the value function
f the Bellman equation by estimating a parameter vector 𝜃 (Powell,
011, p 304). The linear approximation model only requires the current
tate and action information, and future state information and storing
he states becomes unnecessary. With the linear approximation model,
he decision making is done in an online fashion; thus, ADP can be used
or larger size problems.
458
Table 1
Considered linear approximation models.

Model : 1 2 3 4 5 6 7 8 9 10 11

Feature 1 PT CRU TRU DR PT PT PT CRU TRU PT PT
Feature 2 – – – – CRU TRU DR DR DR CRU TRU
Feature 3 – – – – – – – – – DR DR

3.1. Linear model selection

We utilise four readily available project features and consider eleven
linear approximation models comprised of different feature combina-
tions. See Table 1 for details of each model’s features. The first feature
is a measure of the processing time to date (PT) of the project:
𝐼𝑗

𝑖=1

{

𝑡max
𝑗,𝑖 − 𝑥̂𝑗,𝑖 + 1

}

𝛶
{

𝑥̂𝑗,𝑖 ≥ 0
}

. (22)

Here, 𝑡max
𝑗,𝑖 − 𝑥̂𝑗,𝑖 represents task 𝑖’s processed time. Since the task’s

processed time is zero when the action is taken (𝑥̂𝑗,𝑖 = 𝑡max
𝑗,𝑖), we use

the task’s processed time after the transition time ends (𝑡max
𝑗,𝑖 − 𝑥̂𝑗,𝑖 + 1)

to differentiate the effect of actions.
The second feature is the current resource usage (CRU) of project 𝑗:

𝐾
∑

𝑘=1

𝐼𝑗
∑

𝑖=1
𝑏𝑘𝑗,𝑖𝛶

{

𝑥̂𝑗,𝑖 > 0
}

. (23)

Here, we consider the post-decision state’s resource allocation because
it gives the best information about resources used by an action. For
example, for single-period tasks, the resource allocation information of
action may disappear after one transition time. Thus, the post-decision
state’s resource allocation gives the most precise information about
resource usage after the action is taken.

The third feature is the total resource used (TRU) by project 𝑗 to
date:

𝐵𝑗 (𝑠) +
𝐾
∑

𝑘=1

𝐼𝑗
∑

𝑖=1
𝑏𝑘𝑗,𝑖𝛶 {𝑥̂𝑗,𝑖 > 0}. (24)

Here, 𝐵𝑗 (𝑠) is the TRU of the previous state with the selected action
𝐵𝑗 (𝑠𝑡) = 𝑇𝑅𝑈𝑗 (𝑠̂𝑡−1) and ∑𝐼𝑗

𝑖=1 𝑏
𝑘
𝑗,𝑖𝛶 {𝑥̂𝑗,𝑖 > 0} represents the amount

of type 𝑘 resource that will be used to process project type 𝑗 under
the latest taken action. This feature reflects the resource usage of a
project and, indirectly, the time that the project has been processed
in the system.

The fourth feature is decision reward (DR), which is the reward
per period of processing, under the assumption the project will be
processed continuously until completion:

𝑅̄𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑟𝑗
ℎ𝑗

if 𝑑𝑗 > ℎ𝑗
𝑟𝑗−𝑤𝑗
ℎ𝑗

, otherwise.
(25)

In (25), the remaining late project horizon ℎ𝑗 is given by:

ℎ𝑗 =
𝐼𝑗
∑

𝑖=1

{

𝑥̂𝑗,𝑖𝛶 {𝑥̂𝑗,𝑖 ≠ −1} + 𝑡max
𝑗,𝑖 𝛶 {𝑥̂𝑗,𝑖 = −1}

}

, (26)

i.e. the sum of remaining task durations assuming all remaining tasks
are completed on the maximum task duration. This is compared to the
remaining duration to the due date, 𝑑𝑗 . When the remaining duration
to the due date exceeds the remaining late project horizon, 𝑅̄𝑗 takes
the value of the project completion reward divided by the remaining
late project horizon. Otherwise, 𝑅̄𝑗 is reward minus tardiness cost
divided by the remaining late project horizon. Using this feature, the
duration to the project’s due date, a worst-case estimate of the remain-
ing processing duration, reward, and tardiness cost become decision

elements.

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

t
o
c
i
p
r
v
1

t

𝑉

Table 2
Counts of when the model is not statistically significantly different from the highest
profit.

Model : 1 2 3 4 5 6 7 8 9 10 11

2p2t 9 10 8 10 10 0 10 10 10 9 8
2p3t 10 2 10 6 2 9 10 2 9 2 9
3p2t 3 1 2 4 2 3 6 3 3 0 5
2p10t 0 3 5 1 3 0 1 5 7 4 0
5p5t 1 0 7 1 1 3 1 0 4 1 0
5p10t 1 1 5 1 1 0 1 1 6 1 1
6p5t 0 3 0 1 2 4 0 1 0 0 3
10p10t2r 0 0 0 0 5 4 0 1 3 1 2
5p30t4r 7 1 7 7 1 0 1 1 1 2 0
2p30t2r 0 1 10 0 1 0 0 1 1 1 0

SUM 31 22 54 31 28 23 30 25 44 21 28

Table 3
Counts of when the model is not statistically significantly different from the lowest
profit.

Model : 1 2 3 4 5 6 7 8 9 10 11

2p2t 0 0 0 0 0 10 0 0 0 0 0
2p3t 1 9 1 1 9 1 1 9 2 9 2
3p2t 2 4 0 0 1 2 2 3 0 3 2
2p10t 0 0 0 0 0 1 7 0 0 0 3
5p5t 0 0 0 0 0 1 0 2 0 0 8
5p10t 5 0 0 0 0 1 4 0 1 0 0
6p5t 1 2 0 1 0 2 1 2 1 1 0
10p10t2r 9 0 0 0 0 1 2 0 0 1 0
5p30t4r 0 0 0 0 0 5 2 1 2 0 2
2p30t2r 1 0 0 1 0 1 8 0 0 0 1

SUM 19 15 1 3 10 25 27 17 6 14 18

All models are evaluated on the one hundred problem scenarios
hat make up the numerical study of Section 5. Note that, for each
f the 10 problem settings #p#t(#r) 10 problems that differ by the
hoice of arrival probability are considered. In the problem setting
dentifier, p and t are the number of projects and tasks and r, if
resent, is the number of types of resource (otherwise there is a single
esource type). Each model has been trained using an appropriate
ersion of Algorithm 1 in Section 3.2 with 100 iterations each having
00 simulations with 1000 periods and a discount factor 𝛼 = 0.999. In

all scenarios, we used common seeds to generate project arrivals and
task completions to create a fair comparison between models, e.g., the
probability that the 𝑛th completion of project 𝑗’s 𝑖th task is consistent
across scenarios.

For our performance comparison in Table 2 and Table 3, we identify
the model(s) with the highest (respectively, lowest) profit in each
problem and compare this with the profits from each model via a Welch
t-test at the 0.1% level of significance. We aggregate the results by
recording the number of times each model was not statistically signif-
icantly different from the model(s) with the highest or lowest profit.
Models 3 and 9 generated the highest profits or were not statistically
significantly different from the highest profits in 54 and 44 of the 100
scenarios respectively. Other models generated the highest profits or
were not statistically significantly different from the highest profits 33
or fewer times. In addition, Models 3 and 9 generated the lowest profits
or were not statistically significantly different from the lowest profits
in 1 and 6 of the 100 scenarios respectively.

Although Model 3 generated the highest profits more times than
Model 9, we cannot claim that Model 3 is better than Model 9. In
additional comparative Welch t-tests of each model to Model 3 in
Tables 4 and 5, Model 3 generated higher*2 results than Model 9 in 37
of 100 scenarios but lower* results than Model 9 in 36 of 100 scenarios.

2 * represents a statistical significance level of 0.05. ** represents a statis-
ical significance level of 0.01. *** represents a statistical significance level of
459
Table 4
Counts of when model has higher* profit from than Model 3.

Model : 1 2 4 5 6 7 8 9 10 11

2p2t 1 2 2 2 0 2 2 2 2 2
2p3t 0 0 0 0 0 0 0 0 0 0
3p2t 6 2 9 1 7 7 4 6 3 5
2p10t 0 1 0 1 0 0 2 5 1 0
5p5t 0 0 0 0 2 0 0 2 0 0
5p10t 0 0 0 0 0 0 0 5 0 0
6p5t 3 4 3 8 7 4 5 8 6 7
10p10t2r 0 7 1 9 9 0 8 8 8 8
5p30t4r 2 0 2 0 0 1 2 0 0 0
2p30t2r 0 0 0 0 0 0 0 0 0 0

SUM 12 16 17 21 25 14 23 36 20 22

Table 5
Counts of when model has lower* profit from than Model 3.

Model : 1 2 4 5 6 7 8 9 10 11

2p2t 0 0 3 0 10 0 0 0 1 4
2p3t 0 9 6 9 1 0 9 1 9 1
3p2t 9 3 9 5 10 8 2 3 3 10
2p10t 2 7 1 5 2 2 5 0 6 5
5p5t 8 10 9 9 8 9 10 6 9 9
5p10t 10 9 9 9 10 10 9 5 9 9
6p5t 6 6 5 2 3 5 5 2 4 3
10p10t2r 10 2 9 1 1 10 2 2 2 2
5p30t4r 3 7 4 9 10 7 7 9 7 10
2p30t2r 10 9 10 9 10 10 9 9 9 10

SUM 58 62 65 58 65 61 58 37 59 63

The remaining 27 scenarios were NS differences. Since, Model 3 is not
superior to Model 9, and Model 3 is a simple model with a single
feature, Model 9 will be used in the remainder of the paper.

Model 9 considers relevant features of the dynamic and stochastic
RCMPSP. The approximate value function 𝑉 (𝑠̂) for Model 9 is:

̄ (𝑠̂) =
𝐽
∑

𝑗=1

⎧

⎪

⎨

⎪

⎩

𝜃1𝑗

⎧

⎪

⎨

⎪

⎩

𝐵𝑗 (𝑠) +
𝐾
∑

𝑘=1

𝐼𝑗
∑

𝑖=1
𝑏𝑘𝑗,𝑖𝛶 {𝑥̂𝑗,𝑖 > 0}

⎫

⎪

⎬

⎪

⎭

+ 𝜃2𝑗 𝑅̄𝑗

⎫

⎪

⎬

⎪

⎭

. (27)

Coefficients 𝜃1𝑗 and 𝜃2𝑗 are generated using simulation training as de-
scribed in Section 3.2. As an outcome of the combination of features
and coefficients, the suggested approximation function considers a
project’s due date, reward, tardiness cost, remaining processing time,
processing time to date and resource usage. All state information is
used for decision making directly or indirectly. That creates a balanced
approximation function.

We note that more complex models consider more features of the
problem; thus, they have the potential to make better decisions using
more information. However, their performance suffers from multi-
collinearity during the training phase. For example, Model 11, which
has three features, typically generated the lowest profits in our tests.
Experimenting on a single scenario where Model 11 produces the
lowest profits, we heuristically combined the coefficients and features
from Models 1, 2 and 4 to make a new approximating model that
has the same features as Model 11. The resulting model generated
higher profits than other linear models in the scenario. To sum up,
the multicollinearity issue affected the training of the ADP models, so
simpler linear models generated higher profits in our comparison.

0.001. NS represents the absence of a statistically significant difference at a
level of 0.05.

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

t
p
s
𝜃
s

∀

W
m

𝜏

W

p
i
m

d

s
s

Algorithm 1: : ADP.
procedure ADP algorithm

∀𝑗 ∈  ∶ 𝜃1𝑗 = 𝜃2𝑗 = 0; initial state 𝑠1 = 𝟎. ⊳ initial values
for 𝑖𝑡𝑟 = 1 to 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do ⊳ for each iteration

𝑉𝑠𝑖𝑚 = 0 ⊳ 𝑉𝑠𝑖𝑚 is cumulative simulation profit
for 𝑠𝑖𝑚 = 1 to 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do ⊳ for each simulation

∀𝑗 ∈  ∶ 𝐷1
𝑗 (𝑠𝑖𝑚) =

{

𝐵𝑗 (𝑠1) +
∑𝐾

𝑘=1
∑𝐼𝑗

𝑖=1 𝑏
𝑘
𝑗,𝑖𝛶 {𝑥̂𝑗,𝑖 > 0}

}

∀𝑗 ∈  ∶ 𝐷2
𝑗 (𝑠𝑖𝑚) = 𝑅̄𝑗

for 𝑡 = 1 to 𝑃𝑒𝑟𝑖𝑜𝑑 do ⊳ for each simulation period
find (𝑠𝑡) for 𝑠𝑡 ⊳ (𝑠𝑡) is the action set for 𝑠𝑡

choose 𝑎 ∈ argmax
𝑎′∈(𝑠𝑡)

∑𝐽
𝑗=1

{

𝜃1𝑗

{

𝐵𝑗 (𝑠) +
∑𝐾

𝑘=1
∑𝐼𝑗

𝑖=1 𝑏
𝑘
𝑗,𝑖𝛶 {𝑥̂𝑗,𝑖 > 0}

}

+ 𝜃2𝑗 𝑅̄𝑗

}

compute 𝑠𝑡+1 = 𝑠𝑀 (𝑠𝑡 , 𝑎, 𝑐𝑡) ⊳ state iteration via simulation
𝑉𝑠𝑖𝑚 = 𝑉𝑠𝑖𝑚 + 𝛼𝑡−1𝑅𝑠𝑡 ,𝑎,𝑠𝑡+1 ⊳ 𝑅𝑠𝑡 ,𝑎,𝑠𝑡+1 explained at Section 2.5

end for
𝑠1 = 𝑠𝑃𝑒𝑟𝑖𝑜𝑑+1 ⊳ initial state for the next simulation

end for
choose (𝜃_𝑛𝑒𝑤1

𝑗 , 𝜃_𝑛𝑒𝑤2
𝑗) ∈ argmin

𝜃̂_𝑛𝑒𝑤1
𝑗 ,𝜃̂_𝑛𝑒𝑤2

𝑗

∑𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑠𝑖𝑚=1

{

𝑉𝑠𝑖𝑚 −
∑𝐽

𝑗=1
(

𝜃̂_𝑛𝑒𝑤1
𝑗𝐷

1
𝑗 (𝑠𝑖𝑚) +

𝜃̂_𝑛𝑒𝑤2
𝑗𝐷

2
𝑗 (𝑠𝑖𝑚)

)

}2

𝜏 = 𝜏ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐∕(𝜏ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 + 𝑖𝑡𝑟 − 1) ⊳ harmonic step size
∀𝑗 ∈  ∶ 𝜃_𝑜𝑙𝑑1𝑗 = 𝜃1𝑗 and 𝜃_𝑜𝑙𝑑2𝑗 = 𝜃2𝑗
∀𝑗 ∈  ∶ 𝜃1𝑗 = (1 − 𝜏)𝜃_𝑜𝑙𝑑1𝑗 + 𝜏𝜃_𝑛𝑒𝑤1

𝑗 , 𝜃2𝑗 = (1 − 𝜏)𝜃_𝑜𝑙𝑑2𝑗 + 𝜏𝜃_𝑛𝑒𝑤2
𝑗

end for
return ∀𝑗 ∈  ∶ 𝜃1𝑗 and 𝜃2𝑗

end procedure

3.2. Generation of approximation function coefficients

The ADP algorithm generates coefficients for features in the linear
approximation model (27) using simulation and the least-squares fit-
ting method. A least-squares fitting method minimises the sum of the
squared residuals. The coefficient generation process is summarised in
Algorithm 1.

Here, we train our approximation function with a set amount of
iterations. In the first iteration, we assume the initial pre-decision
state is an empty state with no existing project, and the coefficients
are zero. In each iteration, we run a set amount of simulations, and
from each simulation, we collect features 𝐷1

𝑗 and 𝐷2
𝑗 of the initial pre-

decision states and cumulative simulated profit. After the simulations
are completed, we estimate coefficients (∀𝑗 ∈  ∶ 𝜃1𝑗 , 𝜃

2
𝑗) by minimising

he sum of the squared deviations between the cumulative discounted
rofits and the linear approximation model (27) using a linear least-
quares regression method. We denote the estimated coefficients by
_𝑛𝑒𝑤 and existing coefficients by 𝜃_𝑜𝑙𝑑, and we use them in a dynamic
tep-size function (28) to generate coefficients of the new iteration:

𝑗 ∈  ,∀𝑔 ∈ {1, 2} ∶ 𝜃𝑔𝑗 = (1 − 𝜏)𝜃_𝑜𝑙𝑑𝑔𝑗 + 𝜏𝜃_𝑛𝑒𝑤𝑔
𝑗 . (28)

e generate the dynamic step-size value 𝜏 with the harmonic step-size
ethod:

= 𝜏ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐∕(𝜏ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 + 𝑖𝑡𝑟 − 1). (29)

e set the harmonic step-size value as 𝜏ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = 1.3

We use the terminal pre-decision state of the iteration as the initial
re-decision state in the new iteration. After a specific amount of
terations, the final coefficients are used in the linear approximation
odel for online decision making.

During a simulation, we find the action set (𝑠𝑡) of the current pre-
ecision state 𝑠𝑡 and select the most profitable action using the objective

3 We also considered 𝜏ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = 10 from Powell (2011, p 451) and KESTEN’s
tepsize rule (Powell, 2011, p 436), but we received better results with the
tated settings.
460
Algorithm 2: : Online Decision Making.
procedure Online Decision making

find (𝑠𝑡) for 𝑠𝑡 ⊳ (𝑠𝑡) is the action set for 𝑠𝑡

put set 𝛱∗ = argmax
𝑎′∈(𝑠𝑡)

{

∑

𝑠′𝑡∈
𝑃 (𝑠′𝑡|𝑠𝑡, 𝑎

′)𝑅𝑠𝑡 ,𝑎′ ,𝑠′𝑡
+

𝛼𝑡−1 ∑𝐽
𝑗=1

{

𝜃1𝑗 {𝐵𝑗 (𝑠) +
∑𝐾

𝑘=1
∑𝐼𝑗

𝑖=1 𝑏
𝑘
𝑗,𝑖𝛶 {𝑥̂𝑗,𝑖 > 0}} + 𝜃2𝑗 𝑅̄𝑗

}

}

select an action 𝑎 ∈ 𝛱∗ ⊳ 𝛱∗ is the set of all best action for 𝑠𝑡
return 𝑎

end procedure

function:

choose 𝑎 ∈ arg max
𝑎′∈(𝑠𝑡)

𝐽
∑

𝑗=1

⎧

⎪

⎨

⎪

⎩

𝜃1𝑗 {𝐵𝑗 (𝑠) +
𝐾
∑

𝑘=1

𝐼𝑗
∑

𝑖=1
𝑏𝑘𝑗,𝑖𝛶 {𝑥̂𝑗,𝑖 > 0}} + 𝜃2𝑗 𝑅̄𝑗

⎫

⎪

⎬

⎪

⎭

.

(30)

In the case of multiple actions bringing the highest profit, we select the
action that processes most tasks. If the tie continues, the action that
processes tasks of the higher index is selected, e.g., project type 5 is
prioritised over project type 1.

The post-decision state 𝑠̂ begins with the implementation of the best
action. Then random events 𝑐𝑡 are simulated during the transition time
according to the transition function and the new pre-decision state 𝑠′𝑡+1
is achieved. If any project completes during the transition time, their
profit is added to the cumulative profit with discounting using the
discounting function 𝛼𝑡−1. This simulation process repeats for a specific
amount of periods, and the final pre-decision state is used as an initial
pre-decision state in the next simulation.

3.3. Online decision making

The approximation function evaluated by Algorithm 1 can be used
for online decision making for any pre-decision state. The online
decision-making process is summarised in Algorithm 2. First, all actions
for the pre-decision state are generated, then the expected profits are
calculated using the approximation function for each action. The action
with the highest profit is used for the state, with tie-breaking applied
as described in Section 3.2.

4. Compared algorithms

We used DP, ORBA, GA and RBA for benchmarking with our ADP
algorithm. ORBA and GA are applied to the dynamic problem using
a reactive scheduling method which reschedules the plan when a
new project arrival occurs by rerunning the algorithm. ORBA and GA
generate a task processing order to create an action for a given pre-
decision state. DP generates the optimal policy which we denote 𝜋∗.
RBA directly creates an action for a pre-decision state according to
some predefined rules or criteria.

4.1. Dynamic programming (DP)

DP calculates optimal policies from an MDP model of the problem
by solving the Bellman equation (Sutton & Barto, 2018). We used the
value iteration method. We used DP only for problems from Satic et al.
(2022) for benchmarking.

4.2. Optimal reactive baseline algorithm (ORBA)

ORBA is an exact brute force algorithm that sequentially solves a
static RCMPSP from state 𝑠𝑡 to optimality. The static problem results by

ignoring the possibility of future project arrivals. New project arrivals

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

(
i
𝜎
m
a

Algorithm 3: : Value Iteration.
procedure state value iteration procedure

𝛽 = 0.001 ⊳ 𝛽 is the stopping parameter
∀𝑠 ∈  ∶ 𝑉 𝑜𝑙𝑑 (𝑠) = 0 ⊳ initial state values
repeat

for ∀𝑠 ∈  ∶ do
𝑉 (𝑠) = max

𝑎∈𝐴(𝑠)

∑

𝑠′∈ 𝑃 (𝑠′|𝑠, 𝑎)(𝑅𝑠𝑡 ,𝑎,𝑠𝑡+1 + 𝛼𝑉 𝑜𝑙𝑑 (𝑠′)) ⊳ value
function

end for
𝑊𝑚𝑎𝑥 = max

𝑠∈
|𝑉 (𝑠) − 𝑉 𝑜𝑙𝑑 (𝑠)| ⊳ maximum value change

Update ∀𝑠 ∈  ∶ 𝑉 𝑜𝑙𝑑 (𝑠) = 𝑉 (𝑠)
until 𝑊𝑚𝑎𝑥 ≤ 𝛽(1 − 𝛼)∕(2𝛼)

end procedure

disrupt the current schedule and a new schedule incorporating these
is required. In such a manner, ORBA represents an optimal reactive
scheduling algorithm. Due to the computational requirements of brute
force algorithms, ORBA runs in factorial time and only small-size
dynamic and stochastic RCMPSP problems can be solved within a
reasonable time. Thus, we limit our test problems with ORBA to a
maximum of 10 tasks. The ORBA used here extends that in Satic et al.
(2022) by allowing for multiple resource types.

Specifically, for a given pre-decision state 𝑠𝑡, ORBA calculates the
profits and makespans of all precedence-feasible task scheduling orders
TSOs) then selects a TSO of maximal profit. A precedence-feasible TSO
s a permutation 𝜎 of tasks such that, for any 𝑚 < 𝑛 with 𝜎(𝑚) = (𝑗, 𝑖) and
(𝑛) = (𝑗, 𝑘), 𝑘 ∉ 𝑗,𝑖. In the case of ties, the candidate schedule with
inimal makespan is selected, and the schedule of the smallest project

nd task indices are selected from any remaining candidate schedules.
The generated TSO is converted to non-idling action 𝑎 for given

pre-decision state 𝑠𝑡 using a serial schedule-generation scheme (SGS).
A non-idling action is one that will always allocate resource to tasks
when it is possible to do so. In an SGS, if there are enough free
resources to process the next task in the TSO, its action becomes one
(𝑎𝑗,𝑖 = 1), and its resource usage is subtracted from the free resources.
The process then repeats for the remaining tasks in order of the TSO
until either no tasks can begin processing or there is insufficient free
resources to process any of the remaining tasks. The TSO is followed
in future periods as long as no new project arrives. If a new project
arrival disturbs the system, the current TSO becomes invalid, and ORBA
generates a new TSO.

4.3. Genetic algorithm (GA)

GA is a heuristic algorithm which searches the solution space using
a set of solutions (population). GA then improves the population many
times (generation) using bio-inspired operators such as crossover and
mutation to find better solutions. We used the genetic algorithm to
benchmark with our ADP algorithm since GA is the most popular
method for RCPSP family. GA is applied to dynamic problems using a
reactive scheduling method. We used GA from Satic et al. (2022) and,
in this paper, we extended it to multiple resource types.

For a given pre-decision state 𝑠𝑡, GA generates the desired pop-
ulation size amount of precedence-feasible TSOs, which are random
permutations of the pending for processing tasks (𝑥𝑗,𝑖 = −1). The
algorithm evaluates profits and makespans of the TSOs and then ranks
them using these values. These were evaluated via simulation under
an assumption that there will be no new project arrivals and all tasks
complete at 𝑡max. TSOs with higher profits get a higher rank. In the
case of ties, TSOs with smaller makespans get a higher rank. If the
tie continues, TSOs ranked according to their creation time (earliest
to latest). This first set of TSOs is called the first generation, and the
461
highest ranked TSO is called the best TSO. After the first generation is
generated, GA begins iterations.

At each iteration, GA creates an empty set of TSOs and fills this new
set with TSOs to the desired population size amount using elitist selec-
tion, crossover and mutation operators. The elitist selection operator
copies the desired amount of highest ranked TSOs from the previous
generation of TSOs to the new empty set of TSOs (new generation).
Crossover and mutation operators fill the rest of the new generation.

The crossover operator randomly selects two TSOs from the previ-
ous generation and randomly selects a task inside of the first TSO. The
crossover operator copies tasks, from the earliest task to be processed
up to the randomly selected task of the first (selected) TSO, to (make)
a new TSO without changing the order of these tasks. Then, the
crossover operator re-orders the remaining tasks of the first (selected)
TSO according to order of these tasks in the second (selected) TSO,
then adds them to the new TSO (to after the randomly selected task).
The new TSO is always a precedence-feasible TSO since it is created
according to the order of tasks in both selected precedence-feasible
TSOs.

The new TSO may be adjusted by the mutation operator with a
desired probability. Under the mutation operation, a task is selected
at random and the location of this task in the TSO is randomly re-
assigned. The new location cannot be later than the task’s previous
order and cannot be sooner than its latest to be processed predecessor
task. Thus the mutation operator also ensures that the newly generated
TSO is a precedence-feasible TSOs. Then the new TSO is added to
the new generation. When the size of the new generation reaches
the population size amount, the TSOs are then ranked as in the first
generation. GA iterates the generations until the desired number of
generations is reached. The best TSO of the final generation is used
for decision making.

The TSO is converted to an action in the same way as for ORBA.
Similar to ORBA, GA’s TSO can be used for future pre-decision states
as long as a new project arrival does not disturb the system.

Since the reactive scheduling method reruns GA for each time an ar-
rival disturbs the processing plan, the computational time requirement
increases with the problem size.

4.4. Rule-based algorithm (RBA)

Rule-Based Algorithm (RBA) is a priority-based heuristic algorithm
which uses the longest task first priority rule. We considered RBA in
benchmarking to show the performance of a simple heuristic algorithm.
Due to the simplicity of the algorithm, it runs very fast for all problem
sizes.

For a given pre-decision state 𝑠𝑡, RBA creates a precedence-feasible
TSO where the tasks with the longest task processing durations have
priority over other tasks. Then the TSO is converted to an action as
same as in ORBA.

5. Computational results

We simulate the dynamic project scheduling environment with
random new project arrivals and stochastic task durations, and we
compare the expected total discounted long-run profit performance
of DP, ADP, ORBA, GA and RBA. Algorithm 4 shows the simulation
procedure we used in our comparisons. The statistical significance of
ADP (Model 9) against other methods are shown in the tables at three
levels (0.001, 0.01, 0.05). The experiments are coded in JuliaPro 1.3.1.2
on a desktop computer with Intel i5-11400F CPU with 2.60 GHz clock
speed and 32 GB of RAM.

We used 100 problem scenarios in our comparison which are a
combination of 10 project settings and 10 project arrival probabilities.
These arrival probabilities 𝜆𝑗 are 0.01 and from 0.1 to 0.9 with in-
crements of 0.1. Since we consider a dynamic environment 𝜆𝑗 = 0 is

not used in this comparison instead 𝜆𝑗 = 0.01 is used to represent the

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

t

s
w
o
o
n
G
i

t
𝑡
T
s
c
i

𝛾

5

d
D
s
a
n
r

s
o
b
s
o

(
t
s

r
p
i
i
a

r
N

g

Algorithm 4: : Simulation.
procedure Profit simulation

for 𝑠𝑖𝑚 = 1 to 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do ⊳ for each simulation
𝑉𝑠𝑖𝑚 = 0, 𝑠1 = 𝟎 ⊳ 𝑉𝑠𝑖𝑚 is cumulative simulation profit, 𝑠1 the initial

empty pre-decision state
for 𝑡 = 1 to 𝑃𝑒𝑟𝑖𝑜𝑑 do ⊳ for each simulation period

𝑠𝑡+1 = 𝑠𝑀 (𝑠𝑡, 𝑎, 𝑐𝑡) ⊳ 𝑎 ∈ 𝜋(𝑠𝑡), 𝜋(𝑠𝑡) is the policy of selected
solution method

𝑉𝑠𝑖𝑚 = 𝑉𝑠𝑖𝑚 + 𝛼𝑡−1𝑅𝑠𝑡 ,𝑎,𝑠𝑡+1
end for

end for
𝑉 = 1

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

∑𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑠𝑖𝑚=1 𝑉𝑠𝑖𝑚

return 𝑉
end procedure

nearly-static case. Also, 𝜆𝑗 = 1 is not used because it causes a non-
ergodic MDP where some feasible states cannot be reachable from any
states (for example a state where all projects are completed but no new
project has arrived). Of the 100 scenarios, 30 represent smaller sized
problems on which we are able to compare all solution algorithms. For
the 70 larger sized problems it is only possible to evaluate ADP, GA
and RBA.

In Algorithm 4, we run 100 simulations for 1000 simulation periods
and a discount rate of 𝛼 = 0.999. (For the small instances we use
10 000 simulations for DP, ADP, RBA and ORBA.) If a period repre-
sents a day, this period would represent approximately three years of
processing time. Simulations start from the empty pre-decision state
(𝑠1 = 𝟎). In each simulation period an action is generated with the
policy being investigated (𝜋). Then the following pre-decision state is
generated given the action taken and the transition function. The profit
is generated, recorded and included within 𝑉𝑠𝑖𝑚. The discounted profits
of completed projects during the transition time are added to 𝑉𝑠𝑖𝑚. After
the end of the simulations, the average discounted long-run profit 𝑉 of
he investigated solution method is calculated.

ADP (Algorithm 1) is trained for 100 iterations each having 100
imulations with 1000 periods. GA is trained for 100 generations, each
ith 100 solutions. The elitest selection operator transfers the best 10%
f solutions to the next generation. A new TSO created by the crossover
perator is handled by the mutation operator with a 50% chance. We
ote that, while ADP requires training once prior to the simulations,
A requires multiple training occurrences during the simulations. GA

s required to generate a new schedule each time a new project arrives.
In this study, we assume that the number of tasks of different project

ypes is equal. Project tasks have a completion duration range 𝑡max −
min + 1 = 3 and have uniformly distributed completion probabilities.
he shortest maximum task duration in our study is 𝑡max = 2, for
uch tasks the completion duration range is 2 and have an arbitrary
ompletion probability distribution. The completion probabilities used
n this computational study are:

𝑗,𝑖(𝑥̂𝑗,𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑥̂𝑗,𝑖

, if 𝑡max
𝑗,𝑖 ≥ 3, 1 ≤ 𝑥̂𝑗,𝑖 ≤ 3

1
3 , if 𝑡max

𝑗,𝑖 = 2, 𝑥̂𝑗,𝑖 = 2
1, if 𝑡max

𝑗,𝑖 = 2, 𝑥̂𝑗,𝑖 = 1
0, otherwise.

(31)

.1. Optimality gaps for small instances

We used project settings from Satic et al. (2022). The problems’
ata is available in their paper and at https://github.com/ugursatic/
SRCMPSP. These problems are arbitrarily created to be small and

olvable by DP. In these problems, order strength, resource factor
nd the number of resources are set to 1.00. In other words, project
etworks are serial, and all tasks use the same amount of resources. The
esource strength of the first and third problems is 0.00, which means
462

f

ome tasks require the allocation of all resources. The resource strength
f the second problem is 0.50. Here, the initial task of each project can
e processed in parallel with any task of the other projects. Using these
mall-size problems we are able to compare ADP’s performance with
ptimal policies of DP, scheduling orders of ORBA, GA and RBA.

Tables 6–8 illustrate the expected total discounted long-run profits
which are averages of simulations) of policy generation methods (ver-
ical) at different arrival probabilities (horizontal). The colour of cells
hows the statistical significance of compared algorithms against ADP.

The simulation results of two project types, two tasks and one
esource type problems are shown in Table 6. ADP produces higher***
rofits than ORBA, GA and RBA, except for 𝜆𝑗 = 0.01. Recall that GA
s evaluated on fewer simulations. Hence, at 𝜆𝑗 = 0.01, RBA’s profit
s lower*** than ADP’s while GA’s profit is NS with a similar profit
chieved.

The simulation results of two project types, three tasks and one
esource type problems are shown in Table 7. Algorithms’ profits are
S different from each other at 𝜆𝑗 = 0.01. From 𝜆𝑗 = 0.1 to 𝜆𝑗 = 0.8,

ADP has higher** profits than ORBA, GA and RBA.
The simulation results of three project types, two tasks and one

resource type problems are shown at Table 8. ADP has higher*** profits
than RBA except for 𝜆𝑗 = 0.01. At 𝜆𝑗 = 0.1, 0.2, 0.8, 0.9, ADP has higher*
profits than ORBA, GA and RBA.

We see the same result as in Satic et al. (2022) in that the reactive
scheduling methods ORBA and GA have close to optimal profits at
𝜆𝑗 = 0.01 where the results are NS different from each other. However,
their results usually diverge from optimum as 𝜆𝑗 increases.

In summary, our comparison of project settings from Satic et al.
(2022) shows that ADP cannot match the optimal policy of DP. DP’s
advantage over the other policies is that it is able to better identify
opportunities to defer the use of resources to start processing a project
task to more profitable projects in later periods. ADP generated higher*
profits than ORBA, GA and RBA respectively in 22, 21 and 27 of 30
problem scenarios. ADP generated NS different profits than ORBA, GA
and RBA respectively in 2, 3 and 2 of 30 problem scenarios. ADP
generated lower* profits than ORBA, GA and RBA respectively in 6,
6 and 1 of 30 problem scenarios. Thus, we showed that our linear ADP
model performs better than ORBA, GA and RBA in up to 90% of the
scenarios from Satic et al. (2022).

5.2. Test problem generation

The problems of Satic et al. (2022) were the only dynamic and
stochastic RCMPSPs in the literature that have a reward after comple-
tion, a tardiness cost after a given due date, arrival probability of new
projects during a transition time, randomly early, normal and late task
completions. However, Satic et al. (2022) only considered small-size
problems where the project network is sequential (serial, 𝑂𝑆𝑗 = 1).
Thus we generate larger size test problems using ProGen/Max and
MPSPLIB problems.

ProGen/Max is an RCMPSP generation software which is developed
by Schwindt (1998) which extends its predecessor ProGen (Kolisch
et al., 1995) with an option to consider the minimum and maximum
time lags between the start of activities.

We used ProGen/Max to generate RCPSPs with different activity-on-
node networks, order strength (denoted 𝑂𝑆𝑗), task durations, resource
usage, and resource availability. We combined these RCPSPs prob-
lems and added stochastic task completion, project arrival probability,
project completion reward, late completion cost, and due date. We add
reasonable completion rewards and tardiness costs to each project. We
used the generated task durations as expected task durations 𝑡𝑗,𝑖 and
added one minimal possible (𝑡min

𝑗,𝑖 = 𝑡𝑗,𝑖 − 1) and one maximal possible
(𝑡max
𝑗,𝑖 = 𝑡𝑗,𝑖 + 1) duration options. We tested all problems with ten dif-

ferent 𝜆𝑗 options which are 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. We
enerated the due date of the project via (32), where 𝜌 is an arbitrary

actor, which we set to 1.5. We adjusted the resource availability using

https://github.com/ugursatic/DSRCMPSP
https://github.com/ugursatic/DSRCMPSP
https://github.com/ugursatic/DSRCMPSP

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

𝐵

w
p
(
&

n
a
l
P
t
s
n

l
l
a
t

Table 6
Two project types and two tasks problem.
𝜆𝑗 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DP 77 503 759 907 1000 1063 1109 1143 1169 1190
ADP 75 481 710 835 911 960 995 1020 1038 1051
ORBA 73 466 669 768 817 840 846 844 837 829
GA 72 452 636 708 745 752 754 735 735 724
RBA 72 413 529 551 542 525 507 491 480 473
Table 7
Two project and three tasks problem.
𝜆𝑗 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DP 115 590 798 905 970 1013 1044 1066 1083 1097
ADP 115 584 786 889 949 988 1015 1034 1048 983
ORBA 115 575 768 862 915 947 966 979 988 995
GA 114 573 772 857 911 952 965 987 984 999
RBA 115 573 762 854 905 937 954 968 975 983
Table 8
Three project and two tasks problem.
𝜆𝑗 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DP 199 878 1044 1122 1197 1263 1325 1378 1427 1468
ADP 181 746 857 936 1012 1089 1163 1229 1342 1373
ORBA 182 728 854 950 1042 1129 1207 1273 1325 1366
GA 186 727 848 947 1040 1128 1209 1277 1327 1367
RBA 183 736 815 862 921 986 1050 1114 1173 1228

Significantly lower results than ADP p<0.05, p<0.01, p<0.001
Significantly better results than ADP p<0.05, p<0.01, p<0.001
(33) because the combination of resource availabilities of multiple
single project problems makes the multi-project problem resource-rich:

𝐹𝑗 ≈

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(1 − 𝑂𝑆𝑗) max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐽

∑𝐾
𝑘=1

(

∑𝐼𝑗
𝑖=1(𝑡𝑗,𝑖𝑏

𝑘
𝑗,𝑖)

𝐵𝑘

)

𝐾
,max{𝑡𝑗,1, 𝑡𝑗,2,… , 𝑡𝑗,𝐼𝑗 }

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

(𝑂𝑆𝑗) max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐼𝑗
∑

𝑖=1
𝑡𝑗,𝑖, 𝐽

∑𝐾
𝑘=1

(

∑𝐼𝑗
𝑖=1(𝑡𝑗,𝑖𝑏

𝑘
𝑗,𝑖)

𝐵𝑘

)

𝐾

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜌,

(32)

𝑘 ≈
𝐽
∑

𝑗=1

(

𝐵𝑗
𝑘

(50 − 4𝐽
100

))

. (33)

The MPSPLIB (http://www.mpsplib.com/) is a RCMPSP library
hich contains the problem set of Homberger (2007). These RCMPSP
roblems are made by combining single project problems of PSPLIB
http://www.om-db.wi.tum.de/psplib) which is RCPSP library (Kolisch

Sprecher, 1996). PSPLIB problems are generated with ProGen.
The MPSPLIB contains 140 instances that differ by project type

umber, project number, task number, global resource type number
nd arrival times. Global resources are shared among all projects, and
ocal resources are only used for a single project. Compared to our
roGen/Max generated problems, MPSPLIB problems have predefined
ardiness costs and due dates. However, these due dates (𝐵𝑒𝑠𝑡𝑗) are the
hortest completion time found for single project problems, which we
eed to modify to use in the dynamic multi-project setting.

From the MPSPLIB, we only considered 30 tasks per project prob-
ems for algorithm benchmarking. We combined the given global and
ocal resources for each resource type. Then we reduced the resource
mount using (33). We use the predefined tardiness costs and twice
he tardiness cost as completion rewards to each project. We use
463
the stochastic task completion and arrival probabilities as same as
ProGen/Max generated problems. We generated the due date of the
project as:

𝐹𝑗 ≈ 𝐵𝑒𝑠𝑡𝑗 + 𝐽

∑𝐾
𝑘=1

∑𝐼𝑗
𝑖=1(𝑡𝑗,𝑖𝑏

𝑘
𝑗,𝑖)

𝐵𝑘

𝐾
. (34)

5.3. Performance analysis for larger instances

We created five project settings with ProGen/Max and two project
settings with MPSPLIB problems. The parameters of these problems are
shown in Appendix A. Our ProGen/Max problems are not resource-rich,
and their resource strengths are between 0.007 and 0.176. Maximum
task durations of these problems range between 2 and 21 according to
a uniform distribution. More detailed information (e.g., task duration,
project network, resource usages) about these problems and more
detailed test results are available at https://github.com/ugursatic/
DSRCMPSP. The size of these problems exceeds the computational
limits of DP and ORBA on our hardware, so we only compared ADP,
GA and RBA.

In a number of the larger scale problems, there can be relatively
small increases in profit as the arrival probability increases. We have
included the full range of results for completeness and to appraise
potential differences in performance at different arrival probabilities.
A broader discussion on the effect of arrival probabilities is provided
in Appendix C.

In five project types, five tasks and four resource types problems,
shorter projects are more profitable than longer ones. Thus, RBA with
longer tasks first rule is disadvantaged, and we expect that ADP out-
performs RBA. Table 9 shows that ADP produces better*** results than
GA and RBA in all 𝜆𝑗 values.

In two project types, ten tasks and two resource types problems,
project type 1 is more profitable based on its reward/project horizon4

ratio. Also, tasks of project type 1 are longer than project type 2. Thus

4 The project horizon is the sum of its maximal task durations.

http://www.mpsplib.com/
http://www.om-db.wi.tum.de/psplib
https://github.com/ugursatic/DSRCMPSP
https://github.com/ugursatic/DSRCMPSP
https://github.com/ugursatic/DSRCMPSP

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

a

t
T
𝜆

o
c
p
G

t
w
t
p

t
i
r
o
t
t
h
0
e

t
n
g
t
t
o
t

Table 9
Five project types, five tasks and four resource types problem.
𝜆𝑗 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 937 1492 1453 1495 1475 1494 1369 1473 1295 1485
GA 869 1128 1143 1141 1158 1146 1143 1148 1148 1145
RBA 698 601 576 562 558 549 527 538 517 507
Table 10
Two project types, ten tasks and two resource types problem.
𝜆𝑗 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 292 424 490 502 519 754 756 759 759 760
GA 304 448 454 455 457 457 457 458 459 455
RBA 290 420 423 427 437 445 453 454 464 467
Table 11
Five project types, ten tasks and two resource types problem.
𝜆𝑗 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 530 2463 2489 2464 2442 2508 2436 2457 2513 2509
GA 1757 2324 2330 2337 2336 2339 2346 2341 2339 2342
RBA 1769 2341 2356 2377 2376 2378 2389 2377 2392 2389
Table 12
Six project types, five tasks and two resource types problem.
𝜆𝑗 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 1113 1632 824 1408 1660 1443 1740 1538 1310 1560
GA 1226 1308 1313 1312 1307 1301 1301 1299 1318 1311
RBA 1210 1145 1107 1106 1127 1084 1100 1098 1095 1086
s

s
p
t
e
m
i
t

p
t
u
s
o
t
c
o
s

s
t
8
t

this problem is advantageous for the longest task first priority rule of
RBA. However, Table 10 shows that ADP usually produces higher***
profits than alternatives except for low project arrival rates 𝜆𝑗 = 0.01
nd 𝜆𝑗 = 0.1.

In five project types, ten tasks and two resource types problems,
he tardiness costs are set to approximately 10% of the project rewards.
able 11 shows that ADP’s profits are higher*** than GA and RBA from
𝑗 = 0.1 to 𝜆𝑗 = 0.9.

Six project types, five tasks and two resource types problems consist
f six copies of the same project with different reward and tardiness
ost combinations. In Table 12 ADP produces higher*** profits for most
roject arrival probabilities except for 𝜆𝑗 = 0.01 and 𝜆𝑗 = 0.2. ADP’s and
A’s profits are NS different at 𝜆𝑗 = 0.8.

The ten project types, ten tasks and two resource types problems are
he largest problems we generate with ProGen/Max. In this problem,
e arbitrarily assigned rewards and tardiness costs. Table 13 shows

hat ADP has higher*** profits than GA and RBA at all project arrival
robabilities.

Two project types, thirty tasks and four resource types problem is
he smallest MPSPLIB problem in our comparison. The problem name
s mp_j30_a2_nr2_set in MPSPLIB, and it has one global and three local
esources. The resource strength of type one resource is 0.207. But
ther resource strength values are 0.01, 0 and 0. These values represent
hat at least one large task cannot be processed in parallel with different
asks and might create a bottleneck. Table 14 shows that ADP leads to
igher*** profits than GA at most arrival probabilities except for 𝜆𝑗 =
.1. ADP’s profits are higher*** than RBA at most arrival probabilities
xcept for 𝜆𝑗 = 0.1 and 𝜆𝑗 = 0.3.

Five project types, thirty tasks and four resource types problem is
he largest problem we have used in our comparison. The problem
ame is mp_j30_a5_nr4_set in MPSPLIB. The original problem has three
lobal and one local resource type. We used the given due dates in
he problem without changing them. The resource strengths of resource
ypes one, two and three are high (0.449–0.687) and the order strengths
f these projects are low. In other words, many tasks can be processed
ogether, and free-resource availability may allow it easily. Table 15
464

d

hows that ADP produces higher*** results than RBA in 𝜆𝑗 = 0.1 and
𝜆𝑗 = 0.5.

In summary, our comparison of larger size problems shows that
ADP’s profit was higher* than GA in 53 of 70 problem scenarios; GA’s
profit was higher* for 13 problem scenarios, and there was NS dif-
ference in the remaining 4 problem scenarios. ADP generated higher*
profits than RBA in 55 problem scenarios; RBA’s profit was higher*
than ADP only in 12 problem scenarios, and results between ADP and
RBA are NS different in 3 problem scenarios. These results show that
the overall performance of ADP is better* in the majority of larger-size
problems than GA and RBA.

6. Conclusion

Paper summary. In this paper, we modelled the dynamic and
tochastic RCMPSP as an infinite-horizon discrete-time MDP where
rojects have identical arrival probabilities at each transition time, and
asks have random durations. Our objective function maximises the
xpected total discounted long-run profit. We used a linear approxi-
ation model to design a practical scheduling policy and showed that

t performs near-optimally in small problems and compares favourably
o existing heuristics in large problems.

The motivation of this study is to create a more comprehensive
roject scheduling model by considering the uncertainties of stochastic
ask durations, random new project arrivals, multiple types of resource
sages and bigger and complex project networks. For this purpose, we
uggest a linear approximation model which generates decisions based
n resource consumption and decision rewards. Our linear approxima-
ion model generated the best profits after the exact methods in our
omparisons and contributed to the literature by extending the work
f Satic et al. (2022) which only considered small-sized projects with
equential networks and single resource type.

This study provides an efficient ADP algorithm for dynamic and
tochastic RCMPSP, which generates profits that are significantly higher
han or equal to the profits of ORBA, GA and RBA in respectively
0%, 81% and 87% of our comparisons. DP produces better* results
han ADP for small-size problems. However, it suffers from the curse of

imensionality and is not suitable for larger problems. ADP is a viable

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.
Table 13
Ten project types, ten tasks and two resource types problem.
𝜆𝑗 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 650 592 576 960 928 865 889 894 932 884
GA 522 536 546 544 539 542 546 540 540 548
RBA 552 550 555 554 553 556 549 552 554 555
Table 14
Two project types, thirty tasks and four resource types problem.
𝜆𝑗 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 176 184 221 206 224 212 213 214 214 214
GA 168 197 195 192 193 192 192 190 189 193
RBA 161 200 208 209 207 209 210 209 209 210
Table 15
Five project types, thirty tasks and four resource types problem.
𝜆𝑗 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 721 1515 864 1143 904 1748 913 1104 1591 1595
GA 719 1546 1665 1706 1727 1740 1741 1748 1755 1754
RBA 717 1493 1573 1589 1609 1614 1617 1627 1623 1627
Table A.16
Two project types and two tasks problem.
Project attributes

Number of project types 2
Project type no 1 2
Completion reward 3 10
Due date 8 5
Tardiness cost 1 9
Order strength 1.00 1.00

Resource attributes

Resource factor 1.00
Number of resource types 1
Resource type no 1
Resource amounts 3
Resource strength 0.00

solution method for more practical, larger scale problems that cannot
be tackled by DP.

Also, this study gives insights to project managers to determine
more suitable methods for their environment by providing a perfor-
mance comparison of ADP, DP, ORBA, GA and RBA methods in various
project settings and various arrival probabilities. We suggest using
DP for problems that are within the computational limitations of DP.
However, we suggest using ADP methods for larger problems.

Future research direction. In real life, there are more dynamic and
stochastic elements in dynamic project scheduling environments than
those (stochastic task durations, uncertain new project arrivals, finish to
start project networks, multiple resource types and usage) considered in
this paper. Future work might consider other elements of the dynamic
project scheduling environment, such as stochastic resource availability
or multiple modes of task processing.

Acknowledgements

We acknowledge Mahshid Salemi Parizi for making their code avail-
able. The first author acknowledges the Ministry of National Education
of The Republic of Turkey for providing a PhD scholarship. We thank
the two anonymous reviewers for their careful and detailed reviews of
the paper.

Appendix A. Problem attributes

See Tables A.16–A.25.
465
Table A.17
Two project types and three tasks problem.
Project attributes

Number of project types 2
Project type no 1 2
Completion reward 12 6
Due date 10 15
Tardiness cost 8 5
Order strength 1.00 1.00

Resource attributes

Resource factor 1.00
Number of resource types 1
Resource type no 1
Resource amounts 3
Resource strength 0.50

Table A.18
Three project types and two tasks problem.
Project attributes

Number of project types 3
Project type no 1 2 3
Completion reward 8 5 20
Due date 10 8 10
Tardiness cost 5 3 19
Order strength 1.00 1.00 1.00

Resource attributes

Resource factor 1.00
Number of resource types 1
Resource type no 1
Resource amounts 3
Resource strength 0.00

Appendix B. Modelling assumptions and model generality

Models are always simplifications of reality, but may still be useful
for making decisions if they capture the key problem features and are
solvable within a practical time amount.

Project due dates and task durations are given in whole numbers
of periods, and available resources and task resource usages are given
in non-negative whole units. If a task would in practice last for a
fractional number of periods, we round it up to an integer assuming
that the resource employed on that task cannot be re-allocated to a new
task until the beginning of the next period (for the remainder of the
period during which a task is completed, the resource may be allowed
to take a vacation or be allocated to other tasks which are shorter
than one period or are preemptive; these are however not included in

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

b
t
t
T
p
p
p
m
p

s
s

Table A.19
Five project types, five tasks and four resource types problem.

Project attributes

Number of project types 5
Project type no 1 2 3 4 5
Completion reward 63 50 19 48 46
Due date 54 105 232 96 139
Tardiness cost 21 25 15 25 25
Order strength 0.80 0.70 0.50 0.50 0.40

Resource attributes

Resource factor 0.80
Number of resource types 4.00
Resource type no 1 2 3.00 4.00
Resource amounts 18 19 15 18
Resource strength 0.12 0.1 0.08 0.13

Table A.20
Two project types, ten tasks and two resource types problem.
Project attributes

Number of project types 2
Project type no 1 2
Completion reward 10 72
Due date 125 129
Tardiness cost 5 15
Order strength 0.51 0.51

Resource attributes

Resource factor 0.75
Number of resource types 2
Resource type no 1 2
Resource amounts 12 16
Resource strength 0.10 0.18

Table A.21
Five project types, ten tasks and two resource types problem.

Project attributes

Number of project types 5
Project type no 1 2 3 4 5
Completion reward 99 83 85 98 92
Due date 131 138 166 135 180
Tardiness cost 10 8 9 10 9
Order strength 0.36 0.36 0.36 0.69 0.67

Resource attributes

Resource factor 0.70
Number of resource types 2
Resource type no 1 2
Resource amounts 19 20
Resource strength 0.11 0.13

Table A.22
Six project types, five tasks and two resource types problem.

Project attributes

Number of project types 6
Project type no 1 2 3 4 5 6
Completion reward 99 75 50 30 10 80
Due date 177 177 177 177 177 177
Tardiness cost 25 25 25 25 5 60
Order strength 0.50 0.50 0.50 0.50 0.50 0.50

Resource attributes

Resource factor 1.00
Number of resource types 2
Resource type no 1 2
Resource amounts 24 18
Resource strength 0.15 0.11

the considered system). Analogously, if a task would in practice use
a fractional number of resource units, we round it up to an integer
assuming that each resource unit employed on that task cannot be split
between several tasks (the remainder of the fractional resource unit
466

s

may be allowed to take a vacation or be allocated to other tasks which
require less than one resource unit; these are however not included in
the considered system).

Geometrically distributed inter-arrival times are the discrete time
analogue of exponentially distributed inter-arrival times in a continu-
ous time setting that are commonly deployed to model random arrivals.
The benefit of the memoryless property of this distribution means that
the probability of a project arrival is constant and independent of the
system state. Other discrete probability distributions can be used with
some additional effort. For example, assume that the project arrival
probability distribution is defined by the number of periods since the
last project arrival of the same type. In that case, by expanding the state
to include this information, we can evaluate the conditional probability
of an arrival in the next period given the number of periods since the
last arrival.

The technical assumptions of our model such as the existence of
project types and the limit of 1 project of each type in the system are
features that provide structure for our model which is then exploited
to find a solution efficiently. The model is however still useful even
in situations that do not strictly fit these technical assumptions, as
we describe below. The model could be extended in a straightforward
manner allowing for more than 1 project of each type, at an expense of
a more complicated notation (required additional indexing by project
number) and dynamics, which would potentially lead to an efficient
algorithm to solve it, but this modification was omitted in this paper
as we believe the current model captures the key problem features.

Our model (and algorithm) can be directly used to allow for any
fixed number of projects instead of just one project of each type. For
instance, if a company considers 2 real project types and is willing to
accept in parallel up to three projects of the first real project type and
up to five projects of the second real project type, then our model with
8 model project types (limiting each model project type to one project)
can be employed, by defining each of the first three model project
types identically to the first real project type and each of the remaining
five model project types identically to the second real project type. So,
our model will treat projects of the same type as different types. The
arrival probabilities of each model project type can be approximately
obtained by dividing the arrival probability of the real project type by
the number of projects acceptable in parallel.

Actually, one of our examples uses this modelling trick. In our ‘‘Six
project types, five tasks and two resource types’’ problem, all projects
are copies of each other so there is actually only one type of project but
its capacity in the system becomes six. Although in that problem we
assigned different rewards, duration and tardiness costs, these project
variables could have been identical. So, multiple projects of the same
type can be accommodated in our model.

The number of projects of each type in the system is naturally
limited by the amount of resources and the ratio between the due
date and the minimum project duration. Suppose that a company is
managing one resource and the due dates are tight enough not allowing
to complete two projects one after the other by the earlier due date
(i.e., the above ratio is strictly lower than 2). Then it would unlikely
e a good idea to have three or more projects of the same type in
he system at any given time, because every project beyond the first
wo (in the order of completion) would surely incur the tardiness cost.
herefore, perhaps except in some rare situations in which processing a
roject incurring the tardiness cost is still better than processing other
rojects, it would be wise for the company to limit the number of
rojects of each type to two, which would then allow them to use our
odel to optimise the scheduling of the projects to achieve the highest
ossible profit.

Another limitation arising in practice, in some sectors such as
oftware development, production, construction and R&D, is where
ome types of resources are shared among all types of projects but

ome resources are specific to one project type. For example, imagine a

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.
Table A.23
Ten project types, ten tasks and two resource types problem.
Project attributes

Number of project types 10
Project type no 1 2 3 4 5 6 7 8 9 10
Completion reward 36 37 93 69 38 62 12 80 52 62
Due date 429 354 654 771 447 288 448 1124 288 708
Tardiness cost 29 14 70 24 18 21 2 50 40 29
Order strength 0.36 0.58 0.89 1.00 0.51 0.53 0.51 0.53 0.69 0.67

Resource attributes

Resource factor 0.70
Number of resource types 2
Resource type no 1 2
Resource amounts 11 11
Resource strength 0.01 0.01
Table A.24
Two project types, thirty tasks and four resource types problem.

Project attributes

Number of project types 2
Project type no 1 2
Completion reward 40 19
Due date 137 74
Tardiness cost 20 9
Order strength 0.33 0.57

Resource attributes

Resource factor 0.50
Number of resource types 4
Resource type no 1 2 3 4
Resource amounts 21 11 10 10
Resource strength 0.20 0.01 0 0

Table A.25
Five project types, thirty tasks and four resource types problem.

Project attributes

Number of project types 5
Project type no 1 2 3 4 5
Completion reward 48 2 22 32 56
Due date 62 82 72 89 72
Tardiness cost 24 1 11 16 28
Order strength 0.45 0.44 0.39 0.50 0.44

Resource attributes

Resource factor 0.25
Number of resource types 4
Resource type no 1 2 3.00 4.00
Resource amounts 58 78 102 19
Resource strength 0.45 0.65 0.69 0.13

software development company that has two types of projects: mobile
app development and web app development. Each type of project
requires a different set of programming skills and testing environments.
If these special resources are limited to only one, only one project from
each type can be processed in the system at once, while different project
types can be processed in parallel. In these environments, the system
cannot process multiple projects of the same type at once and therefore
it makes sense not to accept more than one project of each type in the
system.

Classifying projects into types may often be possible in practice,
even for companies that deal with bespoke projects. Our model can be
employed at a chosen level of detail, but there is a trade-off. A higher
level of detail would possibly lead to more different types of projects,
i.e., to a larger problem which may be harder to solve although the
arrival probabilities would be smaller (or zero in the most extreme
case of the highest level with all projects bespoke). On the other hand,
a lower level of detail would allow for grouping projects according
467
to their key characteristics (such as the number of tasks, durations
of tasks and required resources) into project types while potentially
heterogeneous project rewards and tardiness costs can be replaced by
their corresponding average values.

Appendix C. The effect of arrival probabilities

A common feature of the algorithms’ performance in Section 5 is
that accrued profit is relatively consistent for scenarios with higher
arrival probabilities. This is particularly true in the larger instances.
Fig. C.2 highlights this phenomenon for four of the project scenarios
by considering relative measures of profit generation and resource
consumption for ADP Model 3. $/Max is the expected total discounted
long-run profit achieved for the given arrival probability expressed as a
percentage of the maximal profit achieved across all tested arrival prob-
abilities. R𝑘_usage, 𝑘 = 1,… , 𝐾 is the average usage of type 𝑘 resource
expressed as a percentage of total type 𝑘 resource available. Profits
increase in line with the increase in arrival probability, but the increase
typically arrests as the resource usage plateaus. This indicates there is
little additional profit gain as resources approach their consumption
limits or capabilities for processing tasks in parallel.

We argue that there is value in investigating the algorithmic per-
formance across the test range of arrival probabilities used. In order
to achieve these profits, policies deployed by the algorithms should
respond to the differing arrival rates. For example, take a problem with
two identical project types that differ only by one project’s net profits
(on-time and tardy) exceeding the other project’s. Under low arrival
probabilities, the system will experience periods where no, or only one
project, is available for processing. A sensible use of resources will be
to progress both projects towards on-time completions. At high arrival
probabilities, the availability of both project types for processing is
more common. A sensible policy will focus on processing the higher
return project and deploys resource to the other project when it is
viable to do, for example, in parallel or if it is the only project in the
system at that time.

All policies we consider do this to some extent, as seen in Section 5,
with strongly performing policies better able to take advantage. DP will
do this optimally, at the expense of evaluating the policy. ADP can
learn to do this through appropriate training, by taking into account
the downstream profit implications of their actions. Reactive baseline
algorithms, by assuming no future arrivals, have a limited view of the
future profit implications of their actions. But good policies in this
class would aim to maximise the net profit from clearing the existing
projects from the system and, hence, would prioritise the higher value
project. Rule-based algorithm performance depends on how the rule is
applied. If the two projects were in an identical state and there was
sufficient resource to process a single task from one of these projects,
then the longest task rule would randomly decide on which project to
action. This could unnecessarily delay one or both project completions

resulting in lower net profits.

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.
Fig. C.2. Relative profit performance and resource consumption for ADP Model 3 in four problem scenarios.
Table C.26
Performance analysis of DP policies design for problem given arrival probabilities applied in problems for different arrival
probabilities.

𝜆𝑗 DP 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

1% 199.3 199.3 199.3 199.4 199.2 198.9 198.3 198.0 198.0 197.8 197.6
10% 878.3 877.4 878.3 875.8 862.4 844.2 815.6 803.9 801.6 796.0 785.3
20% 1043.9 1036.1 1039.6 1043.9 1033.7 1016.0 986.0 973.0 968.4 963.3 953.1
30% 1122.0 1085.0 1093.0 1110.7 1122.0 1117.8 1099.1 1090.3 1086.2 1081.7 1074.1
40% 1196.6 1114.1 1124.3 1155.4 1189.2 1196.6 1189.7 1186.4 1182.2 1178.6 1170.9
50% 1263.5 1141.4 1153.5 1195.6 1245.9 1260.8 1263.5 1263.1 1259.2 1255.7 1250.7
60% 1324.7 1171.5 1184.1 1234.7 1294.5 1314.5 1320.8 1324.7 1323.4 1321.9 1316.0
70% 1377.6 1205.3 1217.4 1272.3 1334.5 1360.4 1370.3 1375.5 1377.6 1376.2 1373.2
80% 1426.8 1247.8 1254.0 1309.8 1369.4 1401.2 1413.5 1419.4 1425.0 1426.8 1422.1
90% 1467.9 1302.5 1295.0 1347.7 1396.6 1440.4 1451.9 1455.9 1464.5 1468.3 1467.9
We expand the discussion by considering the robustness of policies
to deviations in the arrival probabilities that they were designed for.
We focus on optimal DP policies for the three projects, two tasks and
one resource problem. In Table C.26 we present the expected total
discounted long-run profit of the optimal policy for each 𝜆𝑗 , 𝑗 ∈  ,
applied to all arrival probability scenarios. In each instance, we ran
10,000 simulations. The first two columns show the optimal profit
(DP) for the problem scenario with arrival rate 𝜆𝑗 . The remaining
columns show the profit performance of the DP policy optimised for the
arrival probability in the column header applied to the problem with
arrival probability given in the 𝜆𝑗 -row. Naturally, the diagonal of these
columns is exactly the optimal profit in column DP. Away from the
diagonal, we see the value in a policy being able to adapt to different
conditions. As we move along a row, away from the optimal profit, the
performance of policies designed for different arrival rates deteriorates.
For low and high arrival probability there can be a close level of
performance for policies designed for the adjacent arrival probabilities.

In summary, our investigations highlight the effect of project arrival
probabilities on profitable project selection. Comparing policy perfor-
mance across a broad range of arrival probabilities is useful to establish
the overall effectiveness of the algorithms considered.

References

Adler, P. S., Mandelbaum, A., Nguyen, V., & Schwerer, E. (1995). From project
to process management: An empirically-based framework for analyzing product
468
development time. Management Science, 41(3), 458–484. http://dx.doi.org/10.1287/
mnsc.41.3.458.

Ahuja, V., & Birge, J. R. (2020). An approximation approach for response adaptive
clinical trial design. INFORMS Journal on Computing, 32(4), 877–894. http://dx.
doi.org/10.1287/ijoc.2020.0969.

Capa, C., & Ulusoy, G. (2015). Proactive project scheduling in an R&D department a bi-
objective genetic algorithm. In 2015 International conference on industrial engineering
and operations management (IEOM), Vol. 1 (pp. 1–6). http://dx.doi.org/10.1109/
IEOM.2015.7093733.

Chen, H., Ding, G., Zhang, J., & Qin, S. (2019). Research on priority rules for the
stochastic resource constrained multi-project scheduling problem with new project
arrival. Computers & Industrial Engineering, 137, Article 106060. http://dx.doi.org/
10.1016/j.cie.2019.106060.

Choi, J., Realff, M. J., & Lee, J. H. (2007). A Q-learning-based method applied
to stochastic resource constrained project scheduling with new project arrivals.
International Journal of Robust and Nonlinear Control, 17(13), 1214–1231. http:
//dx.doi.org/10.1002/rnc.1164.

Cohen, I., Golany, B., & Shtub, A. (2005). Managing stochastic, finite capacity,
multi-project systems through the cross-entropy methodology. Annals of Operations
Research, 134(1), 183–199. http://dx.doi.org/10.1007/s10479-005-5730-1.

Creemers, S. (2015). Minimizing the expected makespan of a project with stochastic
activity durations under resource constraints. Journal of Scheduling, 18(3), 263–273.
http://dx.doi.org/10.1007/s1095.

Davis, M. T., Robbins, M. J., & Lunday, B. J. (2017). Approximate dynamic program-
ming for missile defense interceptor fire control. European Journal of Operational
Research, 259(3), 873–886. http://dx.doi.org/10.1016/j.ejor.2016.11.023.

Fliedner, T., Gutjahr, W., Kolisch, R., & Melchiors, P. (2012). Solving the dynamic
stochastic resource-constrained multi-project scheduling problem with SRCPSP-
methods. In Proceedings of the 13th international conference on project management
and scheduling, Leuven, Belgium: KU Leuven (pp. 148–151).

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory
of NP-completeness. New York, NY: W. H. Freeman & Co..

http://dx.doi.org/10.1287/mnsc.41.3.458
http://dx.doi.org/10.1287/mnsc.41.3.458
http://dx.doi.org/10.1287/mnsc.41.3.458
http://dx.doi.org/10.1287/ijoc.2020.0969
http://dx.doi.org/10.1287/ijoc.2020.0969
http://dx.doi.org/10.1287/ijoc.2020.0969
http://dx.doi.org/10.1109/IEOM.2015.7093733
http://dx.doi.org/10.1109/IEOM.2015.7093733
http://dx.doi.org/10.1109/IEOM.2015.7093733
http://dx.doi.org/10.1016/j.cie.2019.106060
http://dx.doi.org/10.1016/j.cie.2019.106060
http://dx.doi.org/10.1016/j.cie.2019.106060
http://dx.doi.org/10.1002/rnc.1164
http://dx.doi.org/10.1002/rnc.1164
http://dx.doi.org/10.1002/rnc.1164
http://dx.doi.org/10.1007/s10479-005-5730-1
http://dx.doi.org/10.1007/s1095
http://dx.doi.org/10.1016/j.ejor.2016.11.023
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb9
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb9
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb9
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb9
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb9
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb9
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb9
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb10
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb10
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb10

European Journal of Operational Research 315 (2024) 454–469U. Satic et al.

H

K

K

L

M

M

M

P

P

P

W

He, F., Yang, J., & Li, M. (2018). Vehicle scheduling under stochastic trip times:
An approximate dynamic programming approach. Transportation Research Part C
(Emerging Technologies), 96, 144–159. http://dx.doi.org/10.1016/j.trc.2018.09.010.

omberger, J. (2007). A multi-agent system for the decentralized resource-constrained
multi-project scheduling problem. International Transactions in Operational Research,
14(6), 565–589. http://dx.doi.org/10.1111/j.1475-3995.2007.00614.x.

olisch, R., & Sprecher, A. (1996). PSPLIB: A project scheduling problem library.
European Journal of Operational Research, 96(1), 205–216. http://dx.doi.org/10.
1016/S0377-2217(96)00170-1.

olisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and generation of
a general class of resource-constrained project scheduling problems. Management
Science, 41(10), 1693–1703. http://dx.doi.org/10.1287/mnsc.41.10.1693.

Li, H., & Womer, N. K. (2015). Solving stochastic resource-constrained project schedul-
ing problems by closed-loop approximate dynamic programming. European Journal
of Operational Research, 246(1), 20–33. http://dx.doi.org/10.1016/j.ejor.2015.04.
015.

i, H., Zhang, X., Sun, J., & Dong, X. (2023). Dynamic resource levelling in projects
under uncertainty. International Journal of Production Research, 61(1), 198–218.
http://dx.doi.org/10.1080/00207543.2020.1788737.

elchiors, P. (2015). Lecture notes in economics and mathematical systems, Dynamic and
stochastic multi-project planning. Cham, Switzerland: Springer, http://dx.doi.org/10.
1007/978-3-319-04540-5.

elchiors, P., & Kolisch, R. (2009). Scheduling of multiple R&D projects in a dynamic
and stochastic environment. In Operations research proceedings 2008 (pp. 135–140).
Heidelberg: Springer, http://dx.doi.org/10.1007/978-3-642-00142-0_22.

elchiors, P., Leus, R., Creemers, S., & Kolisch, R. (2018). Dynamic order acceptance
and capacity planning in a stochastic multi-project environment with a bottleneck
resource. International Journal of Production Research, 56(1–2), 459–475. http://dx.
doi.org/10.1080/00207543.2018.1431417.

amay, M. B., Bülbül, K., & Ulusoy, G. (2014). Dynamic resource constrained multi-
project scheduling problem with weighted earliness/tardiness costs. In P. S. Pulat,
S. C. Sarin, & R. Uzsoy (Eds.), International series in operations research & management
science: vol. 200, Essays in production, project planning and scheduling (pp. 219–247).
Springer US, http://dx.doi.org/10.1007/978-1-4614-9056-2_10.
469
arizi, M. S., Gocgun, Y., & Ghate, A. (2017). Approximate policy iteration for dynamic
resource-constrained project scheduling. Operations Research Letters, 45(5), 442–447.
http://dx.doi.org/10.1016/j.orl.2017.06.002.

owell, W. B. (2009). What you should know about approximate dynamic program-
ming. Naval Research Logistics, 56(3), 239–249. http://dx.doi.org/10.1002/nav.
20347.

Powell, W. B. (2011). Approximate dynamic programming: Solving the curses of dimension-
ality. Hoboken, NJ: John Wiley, http://dx.doi.org/10.1002/9781118029176.

Ronconi, D. P., & Powell, W. B. (2010). Minimizing total tardiness in a stochastic single
machine scheduling problem using approximate dynamic programming. Journal of
Scheduling, 13, 597–607. http://dx.doi.org/10.1007/s10951-009-0160-6.

Satic, U., Jacko, P., & Kirkbride, C. (2020). Performance evaluation of scheduling
policies for the DRCMPSP. In M. Gribaudo, E. Sopin, & I. Kochetkova (Eds.),
Analytical and stochastic modelling techniques and applications, Vol. 12023 (pp. 100–
114). Cham: Springer International Publishing, http://dx.doi.org/10.1007/978-3-
030-62885-7_8.

Satic, U., Jacko, P., & Kirkbride, C. (2022). Performance evaluation of scheduling
policies for the dynamic and stochastic resource-constrained multi-project schedul-
ing problem. International Journal of Production Research, 60(4), 1411–1423. http:
//dx.doi.org/10.1080/00207543.2020.1857450.

Schütz, H.-J., & Kolisch, R. (2012). Approximate dynamic programming for capacity
allocation in the service industry. European Journal of Operational Research, 218(1),
239–250. http://dx.doi.org/10.1016/j.ejor.2011.09.007.

Schwindt, C. (1998). Generation of resource constrained project scheduling problems subject
to temporal constraints: Report WIOR-543, Kaiserstrasse 12, D-76128 Karlsruhe,
Germany: Universitat Karlsruhe.

Sutton, R. S., & Barto, A. G. (2018). Adaptive computation and machine learning,
Reinforcement learning: An introduction (second ed.). Cambridge, MA, USA: MIT
Press.

ellingtone PPM (2018). The state of project management annual survey 2018.
http://www.wellingtone.co.uk/wp-content/uploads/2018/05/The-State-of-Project-
Management-Survey-2018-FINAL.pdf, Accessed October 31, 2023.

http://dx.doi.org/10.1016/j.trc.2018.09.010
http://dx.doi.org/10.1111/j.1475-3995.2007.00614.x
http://dx.doi.org/10.1016/S0377-2217(96)00170-1
http://dx.doi.org/10.1016/S0377-2217(96)00170-1
http://dx.doi.org/10.1016/S0377-2217(96)00170-1
http://dx.doi.org/10.1287/mnsc.41.10.1693
http://dx.doi.org/10.1016/j.ejor.2015.04.015
http://dx.doi.org/10.1016/j.ejor.2015.04.015
http://dx.doi.org/10.1016/j.ejor.2015.04.015
http://dx.doi.org/10.1080/00207543.2020.1788737
http://dx.doi.org/10.1007/978-3-319-04540-5
http://dx.doi.org/10.1007/978-3-319-04540-5
http://dx.doi.org/10.1007/978-3-319-04540-5
http://dx.doi.org/10.1007/978-3-642-00142-0_22
http://dx.doi.org/10.1080/00207543.2018.1431417
http://dx.doi.org/10.1080/00207543.2018.1431417
http://dx.doi.org/10.1080/00207543.2018.1431417
http://dx.doi.org/10.1007/978-1-4614-9056-2_10
http://dx.doi.org/10.1016/j.orl.2017.06.002
http://dx.doi.org/10.1002/nav.20347
http://dx.doi.org/10.1002/nav.20347
http://dx.doi.org/10.1002/nav.20347
http://dx.doi.org/10.1002/9781118029176
http://dx.doi.org/10.1007/s10951-009-0160-6
http://dx.doi.org/10.1007/978-3-030-62885-7_8
http://dx.doi.org/10.1007/978-3-030-62885-7_8
http://dx.doi.org/10.1007/978-3-030-62885-7_8
http://dx.doi.org/10.1080/00207543.2020.1857450
http://dx.doi.org/10.1080/00207543.2020.1857450
http://dx.doi.org/10.1080/00207543.2020.1857450
http://dx.doi.org/10.1016/j.ejor.2011.09.007
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb28
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb28
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb28
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb28
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb28
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb29
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb29
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb29
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb29
http://refhub.elsevier.com/S0377-2217(23)00821-4/sb29
http://www.wellingtone.co.uk/wp-content/uploads/2018/05/The-State-of-Project-Management-Survey-2018-FINAL.pdf
http://www.wellingtone.co.uk/wp-content/uploads/2018/05/The-State-of-Project-Management-Survey-2018-FINAL.pdf
http://www.wellingtone.co.uk/wp-content/uploads/2018/05/The-State-of-Project-Management-Survey-2018-FINAL.pdf

	A simulation-based approximate dynamic programming approach to dynamic and stochastic resource-constrained multi-project scheduling problem
	Introduction
	The Dynamic and Stochastic RCMPSP model
	Problem setting
	Modelling framework
	Modelling assumptions
	Model dynamics
	Pre-decision state
	Action
	Post-decision state
	Pre-acceptance state
	Transition function

	Objective function

	Approximate dynamic programming (ADP)
	Linear model selection
	Generation of approximation function coefficients
	Online decision making

	Compared Algorithms
	Dynamic programming (DP)
	Optimal reactive baseline algorithm (ORBA)
	Genetic algorithm (GA)
	Rule-based algorithm (RBA)

	Computational Results
	Optimality gaps for small instances
	Test problem generation
	Performance analysis for larger instances

	Conclusion
	Acknowledgements
	Appendix A. Problem attributes
	Appendix B. Modelling Assumptions and Model Generality
	Appendix C. The effect of arrival probabilities
	References

