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During recent years, biological experiments and increasing evidence have shown
that microRNAs play an important role in the diagnosis and treatment of human
complex diseases. Therefore, to diagnose and treat human complex diseases, it is
necessary to reveal the associations between a specific disease and related miRNAs.
Although current computational models based on machine learning attempt to
determine miRNA-disease associations, the accuracy of these models need to be
improved, and candidate miRNA-disease relations need to be evaluated from a
biological perspective. In this paper, we propose a computational model named
miRdisNET to predict potential miRNA-disease associations. Specifically, miRdisNET
requires two types of data, i.e., miRNA expression profiles and known disease-miRNA
associations as input files. First, we generate subsets of specific diseases by applying
the grouping component. These subsets containmiRNA expressionswith class labels
associated with each specific disease. Then, we assign an importance score to each
group by using a machine learning method for classification. Finally, we apply a
modeling component and obtain outputs. One of the most important outputs of
miRdisNET is the performance of miRNA-disease prediction. Compared with the
existing methods, miRdisNET obtained the highest AUC value of .9998. Another
output of miRdisNET is a list of significant miRNAs for disease under study. The
miRNAs identified by miRdisNET are validated via referring to the gold-standard
databases which hold information on experimentally verified microRNA-disease
associations. miRdisNET has been developed to predict candidate miRNAs for
new diseases, where miRNA-disease relation is not yet known. In addition,
miRdisNET presents candidate disease-disease associations based on shared
miRNA knowledge. The miRdisNET tool and other supplementary files are
publicly available at: https://github.com/malikyousef/miRdisNET.
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1 Introduction

MicroRNAs (miRNAs) are small non-coding single-stranded
ribonucleic acid (RNA) molecules that are typically
22–25 nucleotides in length (Yousef et al., 2022); and they can
(Allmer and Yousef, 2016; Allmer and Yousef, 2022)regulate the
translation of mRNAs to proteins (Kim, 2005). Recent studies have
shown that miRNAs often play important roles in a wide range of
biological processes, such as the development of human diseases (Yu
et al., 2022), cell development (Ambros, 2003), regulation of gene
expression, etc. (Yan et al., 2022). Therefore, dysregulations or
abnormalities of miRNAs, including epigenetic silencing and
expression de-regulation, are important for the development of
many diseases, including lung cancer, breast cancer, and
cardiovascular diseases (Dai et al., 2022). For example, previous
research has shown that abnormal expression of hsa-mir-21 can
affect the proliferation of several kinds of tumor cells, such as
glioblastoma, breast and pancreatic neoplasms (Jin et al., 2022).
Similarly, (Zhong et al., 2022), showed that the downregulation of
miR-143/miR-145 and miR-15a/miR-16-1 could result in colon
cancer and lung cancer, respectively (Zhong et al., 2022).

There are only a few publicly available databases on the miRNA-
disease associations (Barh et al., 2015), such as the miR2Disease (Jiang
et al., 2009), Human MicroRNA Disease Database (HMDD) (Lu et al.,
2008), miRCancer (Xie et al., 2013), OncomiR (Wong et al., 2018),
dbDEMC (Xu et al., 2022) and PhenomiR (Ruepp et al., 2010). These
databases were created to investigate the following two important topics:
i) predicting new miRNA-disease associations, and ii) understanding
the role of miRNAs in diseases (Huang et al., 2019). Therefore, these
datasets are widely used to identify associations between miRNAs and
human complex diseases. Traditional biological experiments to identify
relationships between miRNAs and diseases are laborious, prone to
failure, time-consuming, and costly (Li et al., 2020). To address these
challenges, many researchers have developed computational models for
predicting potential miRNA-disease associations (You et al., 2017).
Accurate prediction of potential miRNA-disease associations
provides valuable information for disease prevention, diagnosis, and
treatment of human diseases (Ji et al., 2021).

In recent years, several computational methods, especially those
that use machine learning algorithms, have been proposed for
predicting associations between miRNA and disease (Chen et al.,
2019). Chen et al. proposed a novel computational method called
RKNNMDA for predicting related miRNAs for diseases (Chen et al.,
2017). For prediction, they use potential miRNA-disease associations
by combining with disease similarity networks, miRNA similarity
networks, and known disease-miRNA associations. They first used the
K-Nearest Neighbors (KNN) algorithm and the SVM ranking
algorithm to obtain the k-nearest neighbors for both miRNAs and
diseases. Secondly, they ranked the k-nearest neighbors according to
their similarity scores to the central miRNA/disease. Finally, they
obtained a ranking of all miRNA-disease associations with weighted
voting. In experiments using the leave-one-out-cross validation
(LOOCV) technique, they obtained an AUC of .8221 (Chen et al.,
2017). Yao et al. proposed a structural model for inferring miRNA-
disease association using random forest algorithm. Their method
called IRFMDA achieved AUC of .9363, .8728, .9398 with 5-fold
cross-validation, local leave-one-out cross-validation and global leave-
one-out cross-validation, respectively (Yao et al., 2019). Liu et al.
presented a method (SMALF) for miRNA-disease association

prediction (Liu et al., 2021). This method learns latent miRNA and
disease features using a stacked autoencoder from the original
association matrix between miRNA and disease. Using the
XGBoost algorithm and cross-validation technique, they reported
performance of .95 AUC (Liu et al., 2021). Ding et al. utilizes
semantic similarity of diseases, functional similarity of miRNAs
and the miRNA-disease associations to rank disease-miRNA
association pairs. They used the K-nearest neighbor algorithm and
the LOOCV technique for classification. Their procedure called
IIMCMP reached an AUC of .9016 (Ding et al., 2019). Zhou et al.
proposed a novel model in which they extract features using the
Gradient Boosting Decision Tree (GBDT) (Zhou et al., 2020). For
classification, they used the logistic regression (LR) algorithm, and
they achieved an AUC of .9274 with 5-fold cross-validation (Zhou
et al., 2020). To predict the association of miRNA-disease, Liu et al.
presented a computational model called DFELMDA (Liu et al., 2022).
They created a dataset by combining the disease similarity network,
the miRNA similarity network and the verified disease-miRNA
associations. They represent this high-dimensional dataset in
smaller dimensions by using the Deep Auto-Encoder for each
disease-miRNA association. For classification, they used a deep
random forest algorithm. In experiments with 5 and 10-fold cross-
validation, the best models obtained an AUC of .9552 and .9560,
respectively (Liu et al., 2022).

Following the research efforts on the impacts of microRNAs on
different biological processes, various studies have shown that
mutations affecting the function of microRNA may play an
important role in human diseases. Recently, microRNAs have been
found to have a significant effect on various human diseases.
Additionally, developmental studies focus on the use of microRNAs
for the diagnosis and treatment of human diseases (Tüfekci et al., 2014).
microRNAs clinically demonstrate an important relationship between
the innate and adaptive immune systems; and deficiencies or excesses of
miRNA cause many important diseases. For example, Jiang et al.
presented that the relationships between microRNA and disease in
miR2Disease revealed the pathogenic role of microRNA deregulation in
various diseases such as cardiovascular disease, cancer, and metabolic
disease (Jiang et al., 2009). Abnormalities of miRNA in cells also cause
healthy cells to transform into malignant cells in cancer research
(Ardekani and Naeini, 2010) (Ha, 2011). In addition, several studies
have demonstrated the properties of miRNAs as tumor suppressor
genes (Lopez-Rincon et al., 2019). Huang et al. demonstrated that
CD44 is suppressed and leads to breast cancer due to the
upregulation of miR-520c and miR-373 (Huang et al., 2008). Most
of these existing approaches present the identified miRNAs on human
complex diseases and the performance of themachine learningmethods
using similarity networks (disease-disease similarity network, miRNA-
miRNA similarity network, miRNA-disease similarity network).
However, most of these approaches do not give adequate
information on the data preprocessing, CV procedure, and data-
splitting processes that might drastically affect the performance
results and limit the reproducibility of the findings. Additionally, the
existing studies do not present a detailed performance evaluation. In this
paper we present a novel approach named miRdisNET that helps us to
discover microRNA biomarkers that are associated with diseases
utilizing biological knowledge-based Machine Learning (ML).
Compared with traditional ML approaches, biological knowledge
based ML approaches exploit known relations between biological
entities; and incorporate those information into the ML algorithm.
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Incorporating biomedical knowledge into machine learning models can
reveal patterns in noisy data (Cowen et al., 2017) (Yousef et al., 2021)
and aid model interpretation (Yu et al., 2018) (Crawford & Greene,
2020). Along this line, in this paper we have incorporated the knowledge
of known miRNA-disease associations as biological information and
developed a ML method called miRdisNET to solve the classification
problem of predicting patients vs healthy controls using epigenomic
data (miRNA expression profiles). Within our ML approach, the most
informative miRNAs are suggested as potential miRNA biomarkers of
disease under investigation. In this way, promising miRNA-disease
relationships are estimated by extracting meaningful insights from
known disease-miRNA relationships (biological knowledge) and by
using machine learning methods.

Most of the existing studies in this field such as Ding et al. (2019),
Yao et al. (2019), Zhou et al. (2020) have created a set of similarity
matrices (disease semantic similarity, miRNA function similarity) to
predict miRNA-disease relationships. Using these matrices, they
performed prediction with computational methods. Performing
operations on high-dimensional matrices results in high
computational burden; and it is costly in terms of running time.
Our proposed method overcomes computational cost problems such
as computational power and excessive time consumption because it
performs prediction on disease-related miRNAs instead of computing
similarity matrices.

miRdisNET detects microRNAs that are associated with the
disease based on the Grouping, Scoring, and Modeling (G-S-M)
approach. We first construct specific disease groups containing the
related miRNAs. Secondly, each group is scored by the tool to assign a
score of its importance in the two-class classification task. We
implemented internal Monte-Carlo stratified cross-validation to
evaluate the computational prediction performance of miRdisNET.
We also evaluate miRdisNET from a biological point of view. To this
end, the disease-disease associations determined by the miRdisNET
were compared with existing literature. Additionally, miRNAs that are
predicted by miRdisNET as associated with a specific disease is
comparatively evaluated with biological databases.

2 Material and methods

2.1 Human miRNA-disease association
dataset

We used the Human microRNA Disease Database (HMDD) v3.2
(https://www.cuilab.cn/hmdd) for obtaining disease-miRNA
associations. We downloaded the entire database including

1,206 miRNAs, 894 diseases, and 18,732 experimentally verified
miRNA-disease associations. We have extracted the relevant sets of
miRNAs related to each disease. A few examples of miRNA-disease
associations are shown in Table 1; Table 1 presents sample disease
groups, i.e., Acute Brucellosis, Alopecia, Cataract, Carcinoma
Embryonal and Pancreatic Diseases. For example, Group 1 is
represented by Alopecia, and Group 2 is represented by Acute
Brucellosis disease. Group 1 has 10 associated miRNAs (hsa-miR-
106b, hsa-miR-125b-1, hsa-miR-125b-2, hsa-miR-221, hsa-miR-410,
hsa-miR-203, hsa-miR-575, hsa-miR-602, hsa-miR-106a, hsa-miR-
125b) based on HMDD database. On the other hand, Group
2 includes only two associated miRNAs (hsa-miR-126, hsa-miR-
4753) according to HMDD. This indicates that the association
between these two miRNAs and Acute Brucellosis is experimentally
verified, based on HMDD.

miRCancer database (Xie et al., 2013), which contains miRNA-
cancer associations is used to evaluate and validate the prediction lists
of our miRdisNET tool. miRCancer includes 876 different miRNA-
disease associations between 236 miRNAs and 79 human cancers with
more than 26 thousand published articles in PubMed. miRCancer
provides a web interface for the study of miRNA-cancer associations.
The results obtained by miRCancer are validated in PubMed and in
miRBase.

The Cancer Genome Atlas (TCGA) project provides
comprehensive data including the expression profiles of several
different miRNAs in cancer samples. To test miRdisNET tool, we
downloaded 11 cancer miRNA expression profiles from the TCGA
portal (https://portal.gdc.cancer.gov/). The datasets contained paired
data (tumor samples and matched normal samples) from HiSeq
platform, where miRNA was selected only if 50% of the samples
had normalized expression value > 1. All of the expression profiles
were normalized to RPM (Reads per Million). Further details of the
processing steps can be found in (Mitra et al., 2020)). The details about
the datasets, cancer types, sample sizes, and PubMed accession
numbers are presented in Table 2.

2.2 miRdisNET

In this section, we describe in detail a novel approach called
miRdisNET, which is based on the Grouping-Scoring-Modeling
(G-S-M) approach. In general, G-S-M is a grouping-based feature
selection approach, where the groups are associated with a pre-existing
biological knowledge. This generic approach has been used by several
bioinformatics tools such as miRcorrNet (Yousef and Goy., 2021),
maTE (Yousef et al., 2019), SVM-RNE (Yousef et al., 2009),

TABLE 1 An example grouping procedure based on disease and miRNA relationships using HMDD.

Disease miRNA

Alopecia hsa-mir-106b, hsa-mir-125b-1, hsa-mir-125b-2, hsa-mir-221, hsa-mir-410, hsa-mir-203, hsa-mir-575, hsa-mir-602, hsa-mir-106a, hsa-mir-
125b

Acute Brucellosis hsa-mir-126, hsa-mir-4753

Cataract hsa-mir-184, hsa-mir-125b, hsa-mir-589, hsa-mir-326, hsa-mir-675, hsa-mir-34a, hsa-mir-15a

Carcinoma, Embryonal hsa-mir-372, hsa-mir-373, hsa-mir-29c, hsa-mir-19, hsa-mir-29c, hsa-mir-134, hsa-mir-140, hsa-mir-302b, hsa-mir-27, hsa-mir-34a, hsa-
mir-601

Pancreatic Diseases hsa-let-7b, hsa-mir-495
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Integrating Gene Ontology Based Grouping and Ranking (Yousef
et al., 2021), CogNet (Yousef et al., 2021), SVM-RCE (Yousef et al.,
2007), SVM-RCE-R (Yousef and Bakir-Gungor, 2021), PriPath
(Yousef et al., 2022), miRModuleNet (Yousef et al., 2022),
TextNetTopics (Yousef and Voskergian, 2022), GediNet (Qumsiyeh
et al., 2022). These different G-S-M approaches are also reviewed in
(Yousef et al., 2021).

The general workflow ofmiRdisNET is illustrated in Figure 1. Based on
the idea in the G-S-M approach, in this study the groups of miRdisNET are
extracted from prior biological knowledge about the miRNAs that are
associated with a specific disease (G component). A group is a disease, and
its members are the miRNAs that are associated with this disease. Hence,
from now on we refer to a set of miRNAs that are associated with a disease
as the specific disease group. The aim of the miRdisNET is to score (S
Component) the groups/diseases to detect the top significant groups to be
used for training the classifier (M component).

As illustrated in Figure 1, the miRdisNET is based on three main
components.

1. G Component: Creates the groups and its associated two-class
subdatasets

2. S Component: Computes a score of each group (two-class
subdataset) which measures to what extent it is differentially
expressed.

3. M Component: Uses the miRNAs expression values from the top
ranked groups to train the model.We have used the Random Forest
classifier as the machine learning algorithm.

Let D represent the miRNA expression data set. D is split into
Dtrain and Dtest. The Dtrain is used for three different processes: i)
assigning an importance score for ranking, ii) training the random
forest classifier, iii) building the model. However, Dtest is only used to
evaluate the performance of the tool.

2.3 Component G (grouping)

Figure 2 illustrates the flow of the grouping component G. The
G component receives two inputs. The two-class miRNA

expression dataset D, where the columns are the miRNAs, and
the rows are the samples. The labels of the samples are indicated in
the column “class” where the value ‘pos’ indicates the sample is
obtained from a cancer patient and ‘neg’ indicates from healthy/
normal sample. The R table is the groups. The name of the group is
the disease name while the set is a set of miRNA names that are
associated with the specific disease.

Component G creates for each group a two-class subdataset that
extracts the miRNA columns from the data D with its class labels.
Thus, each group is represented as a two-class sub dataset that will
serve as an input to the S component for performing the scoring and
ranking.

There are a total of 894 groups which correspond to unique
diseases. Figure 3 represents the distribution of each disease group
in terms of its size (the size of the respective miRNAs related to the
disease). About 75% of the disease groups have 20 miRNAs which are
associated with them, while a few groups have greater than
100 miRNA which are associated with the disease group.

2.4 Component S (scoring)

The second component is the scoring step, where a score is
generated for each disease to assign an importance score to each
disease group containing miRNAs associated with that disease, as
shown in Figure 4. In this component S, the Random Forest
algorithm is used for model training. In component S, machine
learning model with the Monte Carlo cross-validation (MCVV) is
used to assign an importance score for each disease found in each
sub-dataset. In MCCV, the dataset is randomly divided into two
groups: 70% of all known interactions as a training set, and 30% for
the testing set. In order to solve the sample imbalance problem, an
equal distribution among class labels (pos, neg) is achieved by
applying the stratified sampling method. We repeated this
approach five times to avoid overriding and to provide balance
in the training and test datasets.

The main purpose of scoring is to generate the predictive value
obtained by testing the class labels (pos, neg) of miRNAs associated
with specific diseases. There are various performance evaluation

TABLE 2 Details of the TCGA datasets used in miRdisNET.

TCGA cancer types Normal Tumor Pubmed id

Breast Invasive Carcinoma (BRCA) 87 760 PMID: 31878981

Stomach Adenocarcinoma (STAD) 35 370 PMID: 25079317

Kidney Chromophobe (KICH) 25 66 PMID: 25155756

Uterine Corpus Endometrial Carcinoma (UCEC) 23 174 PMID: 23636398

Kidney Renal Papillary Cell Carcinoma (KIRP) 32 291 PMID: 28780132

Lung Adenocarcinoma (LUAD) 20 449 PMID: 25079552

Bladder Urothelial Carcinoma (BLCA) 19 405 PMID: 24476821

Prostate Adenocarcinoma (PRAD) 52 494 PMID: 26544944

Kidney Renal Clear Cell Carcinoma (KIRC) 71 255 PMID: 23792563

Papillary Thyroid Carcinoma (THCA) 59 512 PMID: 25417114

Lung Squamous Cell Carcinoma (LUSC) 38 342 PMID: 22960745
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metrics such as Recall, Accuracy, F1 score, Precession. This
component focuses on mean classification accuracy as a
performance evaluation metric for assigning an importance score
to diseases and ranking them according to that importance.

Importance scores are assigned to diseases based on miRNA
expressions from TCGA and relationships between disease and
miRNA from the HMDD v3.2 dataset. Table 3 shows a sample
output obtained after the scoring step for the BLCA dataset.

FIGURE 1
The general approach of miRdisNET. It consists of three components: G component generates sub-datasets for each specific disease group; S
component performs scoring and then ranking of the specific disease groups; M component creates the classifier, trains and evaluates the performance of
miRdisNET.
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2.5 Component M (modeling)

The third component is represented by M, which contains two
major processes: i) train classifier (usually use random forest
classifier), and ii) create model. The main aim of this component is
to evaluate the cumulative performance of the model and train the
classifier to reveal the top-rankedmiRNAs in an accumulated order. In
each iteration and for each top-ranked group, componentM randomly
selects the training set for training and uses the remaining dataset as
the test dataset to test this trained model.

Component M contributes to the research with its three inherent
processes as following.

• First iteration, building a machine learning model (Random
Forest): only using the miRNA expression values of the top-
scoring disease, where top-scoring disease is determined after
applying the component S.

• Second iteration, accumulated groups: it combines the miRNA
expressions belonging to the highest scoring disease and the
miRNA expressions belonging to the second top-scoring disease.
By this way, new sub data is created to train and test the model.

This accumulative approach is repeated for top 3, top 4, . . . top t
groups, where t is the number of all disease groups.

• Component M is completed after all diseases have been
processed in this manner.

By following this approach, we can find the best feature set that
presents the best performance in terms of combinations of diseases,
i.e., the top one scored disease, top two scored disease, until top
10 scored disease. Architecture of the Component M is shown in
Figure 5.

2.6 Implementation of miRdisNET

miRdisNET tool have been implemented on the open-source
Knime platform (Berthold et al., 2009). This platform can be used
for a wide variety of data types and operations. Figure 6 illustrates how
the workflow is implemented in KNIME. The user can set the
parameters such as the number of iterations, rank function and
number of iterations for MCCV. The user needs to select the
miRNA dataset. The filter nodes remove any rows with missing values.

FIGURE 2
Architecture of G component for miRdisNET. An example showing how to construct disease sub-datasets based on miRNAs associated with a disease.
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3 Results

3.1 Model performance evaluation

To evaluate the predictive performance of miRdisNET, the input
dataset was split into 90% for training, and 10% for testing. In this study,
the class label of the dataset has an unequal distribution. In other words,
the number of cases and controls is not equal. For this reason, we applied
the under-sampling method for the unevenly (imbalanced) distributed
dataset. This method reduces the size of the majority class, leaving all
samples in the minority class, and solves the problem of the imbalanced
dataset. We performed 100-fold Monte Carlo cross-validation (MCCV)
for model training. MCCV has a repeatable structure due to its low

variance, which makes it more effective than traditional cross-validation
methods for miRdisNET. InMCCV, the data is randomly selected to train
the model, and the remaining data issued as a test dataset. To obtain the
criteria for performance evaluation, average values of 100-fold MCCV are
calculated.

Various statistical methods are also used to comprehensively
evaluate the performance of the Random Forest model such as
Sensitivity, Specificity, and Accuracy. Area Under the Curve (AUC)
is also used as one of the performance evaluation criterias of classifiers.
In this study, the performance of miRdisNET is evaluated according to
the AUC measures.

In each iteration, we obtain lists of disease groups and miRNAs
associated with those disease groups. Therefore, a prioritization

FIGURE 3
The distributions of miRNA in each of the groups. Y-axis is the number of miRNAs in a group and X-axis represents the group size which is binned in
10 intervals.

FIGURE 4
Assign an importance score to the associated disease and apply the ranking process.
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approach is applied to assign importance scores to entities in both
the disease and miRNA lists. For this purpose, we incorporated the
algorithm called RobustRankAggreg (Kolde et al., 2012), which is
presented as an R package, to the miRdisNET workflow. The
RobustRankAggreg method assigns a p-value to each entity
(miRNA or disease) in the lists, indicating how well that entity
ranks.

3.2 Comparison with existing models

To evaluate the performance of miRdisNET in discovering
potential miRNA–disease associations, miRdisNET is compared
with several advanced methods such as RKNNMDA, HGIMDA,
ABMDA. RKNNMDA uses disease similarity networks, miRNA
similarity networks, Gaussian interaction profile kernel similarity,
and miRNA-disease relationships to identify potential associations
between miRNA and disease. This tool implements the ranking-based
KNN method by combining similarity matrices and disease-miRNA
associations. They used the disease-miRNA associations obtained
from the HMDD dataset in their study. They obtained an AUC of
.8221 with the leave-one-out cross validation method. HGIMDA, a
computational model is developed by integrating disease semantic
similarity, miRNA functional similarity, Gaussian interaction profile
kernel similarity and verified miRNA-disease associations. They also
used 5,430 disease-miRNA associations obtained from the HMDD
dataset in their study. This tool implemented global and local leave-
one-out cross validation method and obtained an AUC of .8781 and
.8077, respectively. ABMDA tool makes use of adaptive boosting for
predicting the relationship between disease and miRNA. This tool
performs random sampling based on k-means clustering to balance
positive and negative samples. This tool integrates HMDD disease-
miRNA association information and similarity matrices and obtains
AUC of .9170 and .8220 by global and local leave-one-out cross

FIGURE 5
The architecture of Component M: Providing the best performance with the best feature set based on disease combinations.

TABLE 3 An example output of the component S for the BLCA dataset. The first
column represents the name of the disease, the second column is the mean
accuracy, and the third column is the ranking based on the second column.

Disease Score as accuracy Rank

Graft-versus-host disease 0.9636 1

Human immunodeficiency virus infection 0.9636 1

Hypertrophy 0.9636 1

Kaposi sarcoma 0.9636 1

Bladder carcinoma 0.9454 2

Acute promyelocytic leukemia 0.9454 2

Ischemia-reperfusion injury 0.9454 2

Oral squamous cell carcinoma 0.9272 3
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validation, respectively. The AUC score of MCCV, achieved by
miRdisNET by using the accumulated miRNA groups is shown in
Figure 7. We evaluate the performance of miRdisNET using different
cancer data samples presented in Table 2. The proposedmethod shows
the most important group with performance evaluation criteria using
a machine learning method. As shown In Figure 7, the proposed
method called miRdisNET has nearly an average AUC of 97% for all
11 TCGA datasets. The best results were obtained on average %99, %
99, %99, %99 from KIRC, KICH, UCEC and KIRP, respectively.

The reasoning behind the higher AUC score of miRdisNET
compared with other algorithms may be based on the following
properties of the G-S-M approach.

i) miRdisNET considers relevant miRNAs for the grouping
component;

ii) miRdisNET uses effective classifiers for the scoring component
and highlights effective structures;

iii) For the modeling component, important disease groups are
treated cumulatively with effective classifiers and classification
techniques.

Therefore, with the developed classification techniques, the
miRdisNET tool is applied to structures that are important for the
disease and higher performance metrics as compared with other
algorithms, are obtained.

One of the methods to evaluate the model performance is to
compare the performances of miRdisNET models as a function of k
parameters. k parameters are the number of groups (disease) in
miRdisNET. Table 4 shows the performance obtained with 100-fold
MCCV for the aggregated top-ranked 10 groups for the BLCA dataset.

FIGURE 7
Average of AUC over the top 10 significant groups for all the 11 TCGA datasets.

FIGURE 6
miRdisNET workflow in KNIME.
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For group 1, we obtained a 95% AUC using an average of 6.76 miRNAs.
For group 2, performance metrics for the top-ranked two groups are
shown, combining the miRNAs from the first top-ranked group and
those from the second top-ranked group. We obtained a 96% AUC
using an average of 10.36 miRNAs. In this way, miRdisNET provides
cumulative performance results for the top 10 groups.

miRdisNET provides a list of miRNAs to which it has assigned an
importance score (p-value) for disease groups using its
RobustRankAggreg tool. Each disease group is assigned an
importance score, while miRNAs associated with the disease group
are assigned the same score as the group. A part of the reported
miRNA list associated with disease groups obtained with the
RobustRankAggreg tool is shown in Figure 8.

miRdisNET assigns importance scores to miRNAs for the disease
under investigation. These top ranking miRNAs can be potential
biomarkers for disease under study. Table 5 displays the top six
identified miRNAs for the BLCA dataset, and the scores of each
miRNA where the score indicates the significance of the miRNA for
bladder cancer. Due to inherent nature of cancers, some miRNAs are
commonly identified as importantmiRNAs for different cancer types. For

example, miRdisNET identified hsa-let-7c, hsa-mir-128 and hsa-mir-
107 as the top three significant miRNAs in BLCA dataset. The top three
related miRNAs to UCEC dataset are found as hsa-let-7c, hsa-mir-
128 and hsa-mir-107. The top three related miRNAs to THCA dataset
are hsa-let-7c, hsa-mir-451 and hsa-mir-128. The top three related
miRNAs to STAD dataset are hsa-mir-320a, hsa-mir-1 and hsa-mir-
107. hsa-let-7c and hsa-mir-128 are commonly identified miRNAs for
BLCA, UCEC, THCA cancer types. On the other hand, hsa-mir-320a,
hsa-mir-1 are uniquely identified for STAD (Stomach Adenocarcinoma).

Similarly, miRdisNET assigns importance scores to disease groups.
Table 5 shows the identified top six disease groups for BLCA dataset,
and the scores of each disease where the score indicates the level of
association of the identified disease group with the disease under study.
For example, the top three related diseases to BLCA are Graft Versus
Host Disease, Human immunodeficiency virus infection and
Hypertrophy. The top three related diseases to BRCA are lung
adenocarcinoma, glioblastoma and melanoma. The top three related
diseases to KICH are hepatocellular carcinoma, cervical neoplasms and
lung neoplasms. The top three related diseases to KIRP are colon
carcinoma, breast neoplasms and colorectal carcinoma. The top

TABLE 4 A sample average table of 100-fold MCCV performances from miRdisNET for the top 10 ranked groups for the BLCA dataset cumulatively.

#Groups #miRNAs Accuracy Sensitivity Specificity AUC

10 18.41 .92 .92 .93 .97

9 17.99 .93 .92 .93 .97

8 17.44 .92 .90 .93 .97

7 16.74 .92 .90 .93 .97

6 16.22 .91 .89 .93 .97

5 15.29 .91 .89 .93 .97

4 14.1 .91 .88 .93 .96

3 12.76 .91 .88 .92 .96

2 10.36 .90 .87 .92 .96

1 6.76 .90 .85 .92 .95

FIGURE 8
The top ranked 10 groups by RobustRankAggr for the dataset BLCA. The name of the disease/group is shown at the y-axis and the bars denote the set of
associated miRNAs.
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three related diseases to LUAD are endometrial adenocarcinoma, acute
myocardial infarction and acute kidney failure.

4 Discussion

4.1 Biological interpretation of results

In this section, we assess the relevance of our findings from a
biological point of view Firstly, we investigate the biological relevance
of the disease-disease associations predicted by miRdisNET. Also, we
validate the miRNA-disease associations determined by miRdisNET
using an independent database and previous studies in literature.

4.2 Validation of miRdisNET’s findings on
disease-disease association

Recently, many researchers have focused on revealing the
relationships between diseases. Discovering such associations plays an
important role for developing treatments for diseases, drug repurposing
studies, revealing the molecular mechanisms of diseases, and preventing
new diseases (Xiang et al., 2022). miRdisNET provides multiple files as
an output. One of the outputs of miRdisNET is a list of significant
disease groups as associated with the disease under study. Using the
RobustRankAggreg method for 11 different cancer types, miRdisNET
assigned p-values to diseases that are potentially linked with the disease
under investigation. This assigned p-value of the disease represents the
importance of that disease with respect to the disease under study. Thus,

via analyzing miRNA expression profiles for a specific disease and via
analyzing miRNA-disease associations, miRdisNET reveals the hidden
relationships between the disease under investigation and other potential
diseases. In other words, miRdisNET detects other diseases associated
with the query disease. To examine the validity of the identified disease-
disease associations, here we refer to the most popular databases,
i.e., DisGeNET (Piñero et al., 2017) and MalaCards (Rappaport et al.,
2017). DisGeNET contains information on genes and variants about
human diseases and it presents the number of shared genes and shared
variants between disease pairs. DisGeNET has been widely used for
disease analyses, including disease-variants, disease-disease and gene-
disease associations. One other popular human disease database is
MalaCards. MalaCards contains inter-disease interactions, disease-
variants annotations, etc. MalaCards was used to obtain the
associated diseases of the BLCA and UCEC diseases; and DisGeNET
was used for the remaining cancer types.

Supplementary Table S1 illustrates for each dataset, its top-5 detected
diseases by DisGeNET API or by MalaCards; and the top-5 ranked
diseases by miRdisNET. For eight datasets, the top five diseases detected
by miRdisNET in Supplementary Table S1. are not found by DisGeNET
or MalaCards. This situation shows that the tool has discovered new
biological information that a biology researcher needs to consider. For
example, the five diseases obtained bymiRdisNET for the BLCA (Bladder
Urothelial Carcinoma) dataset are Graft-versus-host disease, Human
immunodeficiency virus infection, Hypertrophy, Kaposi sarcoma and
Carcinoma bladder. Whereas the five diseases obtained by DisGeNET
are Tarsal-carpal coalition syndrome, Carcinoma transitional cell,
Urothelial carcinoma, Ovarian carcinoma and Pterygium. While
Carcinoma Bladder is identified in top five predictions of miRdisNET

TABLE 5 An example of the first six ranking groups with an accuracy of miRNA groups in BLCA and an example of the first six ranking groups with accuracy of disease
groups in BLCA.

miRNA groups Disease groups

Rank miRNA Score/Accuracy Rank Disease Score/Accuracy

1 hsa-let-7c .96 1 graft-versus-host disease .96

1 hsa-mir-128 .96 1 human immunodeficiency virus infection .96

1 hsa-mir-107 .96 1 hypertrophy .96

2 hsa-let-7c .95 2 carcinoma, bladder .95

2 hsa-mir-429 .95 2 leukemia, promyelocytic, acute .95

2 hsa-mir-320a .95 2 ischemia-reperfusion injury .95

3 hsa-let-7c .93 3 squamous cell carcinoma, oral .93

3 hsa-mir-429 .93 4 eosinophilic esophagitis .93

3 hsa-mir-210 .93 4 head and neck neoplasms .93

4 hsa-let-7c .93 4 kidney injury .93

4 hsa-mir-210 .93 5 kidney neoplasms .91

4 hsa-mir-375 .93 6 carcinoma, renal cell .91

5 hsa-mir-210 .91 6 carcinoma, renal cell, chromophobe .91

6 osteosarcoma .91 6 osteosarcoma .91

6 hsa-mir-451a .91

6 hsa-let-7c .91
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for Bladder Urothelial Carcinoma, this disease is not identified by
DisGeNET in top five list.

Once we extend the limit of top five predictions of miRdisNET, we
realized that we detect further commonalities between the disease-
disease associations predicted by miRdisNET versus disease-disease
associations in DisGeNET or MalaCards. For example, for the LUSC
(Lung Squamous Cell Carcinoma), DisGeNET reports
Adenocarcinoma of Lung, Lung Neoplasms, Carcinoma, squamous
cell of head and neck, Cholangiocarcinoma, Small Cell Carcinoma of
Lung as the top five associated diseases.miRdisNET also identifies these
diseases in 43,17, 21, 71, 114th rankings respectively. In
Supplementary Table S1, the values in parentheses next to the
disease names in the DisGeNET or MalaCard lines indicates the
ranking of the disease in miRdisNET predictions.

Similarly, for THCA (Papillary Thyroid Carcinoma), DisGeNET
reports that “thyroid neoplasm” and “thyroid carcinoma” are associated
with THCA in top 5. Although miRdisNET also identifies these diseases,
the order of importance of these diseases was different. While DisGeNET
determined the order of importance of thyroid neoplasm as 2, miRdisNET
reported it at the 41st ranking. In this way, we detect a total of 25 common
disease-disease associations between miRdisNET predictions and
DisGeNET/MalaCard (shown with ranking numbers and p-values in
parentheses in Supplementary Table S1). In addition, three of these
diseases are commonly identified in the top five lists of miRdisNET
predictions and DisGeNET/MalaCard entries. These three diseases
(Pancreatic carcinoma for KIRC dataset, Gastric neoplasms for STAD
dataset, Astrocytoma for UCEC dataset) are shown in bold in
Supplementary Table S1. This situation demonstrates that miRdisNET
is effective in revealing disease-disease associations.

4.3 Validation of miRdisNET’s findings on
disease-miRNA association

Another output ofmiRdisNET is the list of significantmiRNA groups
predicted to be associated with disease groups. These miRNAs are ranked
according to the p-value determined by the RobustRankAggreg method.
Significant disease-miRNA groups obtained after applying miRdisNET
were compared with other independent external datasets and with
miRNA-disease relationships found in the literature. We utilized
widely used miRNA-disease association databases (HMDD and
miRCancer (Xie et al., 2013)) and some articles to comprehensively
evaluate the results from a biological perspective. There are biological
databases that report the functions of miRNAs and develop predictions
based on experimental results or computational predictions. Although
there are several databases that contain predicted associations between
microRNAs and cancers using computational methods, there are only a
few experimental results. However, the predictions obtained in studies
evaluating miRNA function need to be verified experimentally. Even
though numerous experiments have been performed to study the
expression of microRNA in cancer cells, the results of the experiments
are not consistent in the literature. miRCancer is a database that contains
verified miRNA data based on PubMed. There are seven unique miRNAs
(miR-133a, miR-218, miR-588, miR-218, miR-372, miR-448 and miR-
223) in miRCancer related to LUSC. For LUSC patients, Yang et al. (Yang
et al., 2010) reported the significance of nine miRNAs (miR-30d, miR-
185, miR-30a, miR-193a-3p, miR-125a, miR-101, let-7i, miR-126, and
miR-15a) by using real-time polymerase chain reaction (qRT-PCR) in
their studies. In another study, Petkova et al. (Petkova et al., 2022)

validated 10 miRNAs (miR-144-3p, miR-4689-3p, miR-7-5p, miR-744-
3p, miR-650, miR-375, miR-140-3p, miR-195-5p, miR-95-5p and miR-
21-3p) related to LUSC.

We have evaluated the biological relevance of the top-10 disease-
miRNA associations for LUSC dataset that were identified using
miRdisNET. Supplementary Table S2 presents the validated miRNA
and disease groups, based on the above mentioned external databases
and support from literature. In Supplementary Table S2, we show how
many of the miRNAs obtained by miRdisNET are included in external
databases or in scientific literature. For example, for LUSC dataset,
39 miRNAs associated with “aortic stenosis” disease were detected using
themiRdisNETmethod.When the obtainedmiRNAswere comparedwith
the literature, five miRNAs (hsa-miR-30a, hsa-miR-133a, hsa-miR-193a,
hsamiR-21, hsa-miR-195) were previously reported as associated
with LUSC.

4.4 Potential limitations, possible solutions

A potential challenge for the miRdisNET approach is that miRNA
expression data within a subset of diseases can be noisy; and this
situation can adversely affect the performance of the machine
learning models generated using these data. This problem does not
occur in other studies in literature where each miRNA is considered
separately. This is a disadvantage for our proposed method, but
miRdisNET overcomes this challenge by using the t-test method. A
t-test is applied to the training dataset to detect miRNAs that are
expressed as noisy data. The top 1,000 differentially expressed miRNAs
are used to create training datasets, which are then used as input for the
G component. In this way, miRdisNET studies and investigates the
expression of miRNAs with low noise. This is an effective way to address
the noisy data problem faced by miRdisNET.

Another potential limitation of miRdisNET is that high-
dimensional data may influence performance metrics of the
generated model. In some diseases, the number of experimentally
validated miRNAs is very high. These disease groups with a large
number of miRNAs may reflect a higher success rate. miRdisNET is a
realistic and effective tool that solves this problem by evaluating the
same number of miRNAs for each disease subset.

The number of samples labeled as positive and negative within the
disease groups influences the performance of the developed tool. An
imbalance between the number of positively labeled samples and the
number of negatively labeled samples prevents realistic results from
being obtained. For example, an excessive number of positively labeled
samples may cause the evaluation criteria to focus on the positive
samples. Therefore, miRdisNET overcomes this problem by balancing
the number of positive and negative samples. In this way, miRdisNET
provides more realistic and effective results for researchers.

5 Conclusion

Understanding how miRNAs function on the cellular level provide
valuable information for the diagnosis and treatment of human complex
diseases. Precise identification of disease-miRNA relationships could
accelerate diagnosis, prognosis, and drug development studies.
Computational methods are playing an increasingly important role in
predicting the potential relationship between disease andmiRNA.Machine
learningmethods are widely used in studies to predict associations between
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miRNAs and diseases. In this article, we proposed a novel computational
method named miRdisNET based on the G-S-M approach to identify
associations between miRNAs and diseases. In this study, we developed a
novel approach to explore miRNA-disease associations, detect biomarkers
of disease-associated miRNAs, and identify disease-disease associations.
The novelty of miRdisNET is that it evaluates the performance of the
model, reveals miRNA-disease associations and examines disease-disease
associations. miRdisNET outperforms state-of-the-art methods with its
model performance evaluation. It also identifies the relationships between
miRNAs and diseases, and as well as disease-disease associations. In
addition, it increases knowledge of disease associations, which can
further improve approaches to disease diagnosis, prognosis, and
treatment. The strength of miRdisNET is that it achieves high success
based on reliable machine learning methods, predicts possible disease-
miRNA associations, and reveals important groups (disease and miRNA)
and explores associations between diseases.
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