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ABSTRACT 

PARTICLE SENSING USING OPTICAL NEURAL 

NETWORKS  
 

Sinan GENÇ 
Ph.D. in Electrical and Computer Engineering 

 
Advisor: Assoc. Prof. Kutay İÇÖZ 

Co-Advisor: Assist. Prof. Talha ERDEM 
 

June 2023 
 

 

Microplastics are tiny plastic particles that are less than 5mm in length. They are 

often found in oceans, rivers, lakes, and even the atmosphere, as a result of plastic 

pollution. The problem with microplastics is that they can have negative impacts on the 

environment and the organisms living in it. Furthermore, microplastics can also release 

toxic chemicals into the environment, which can harm aquatic life and even humans. The 

accumulation of microplastics can also have detrimental effects on the food chain, as 

smaller organisms are consumed by larger organisms. 

To address the problem of microplastics, researchers have developed different 

detection methods. One common method is the use of spectroscopic techniques such as 

Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. These 

techniques can identify the chemical composition of microplastics, which can help 

determine their sources and potential impacts. Another method is the use of microscopy, 

which allows for the visualization and counting of microplastics in samples.  

In this study, we aimed a cost-effective, portable, and simple device to detect and 

classify microplastics in terms of their size and refractive index. In addition, 

concentrations can be determined using calibration curves defined for the experimental 

setup. The main contribution to the literature is identification of two same-sized sphere-

shaped microplastics which are made up form two different material. So, in addition to 

size or shape classification, it will be possible to determine material types with this setup 

using optical scattering patterns which are dependent of refractive index. 

 

Keywords: scattering, optics, sensing, microparticle, machine learning. 
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Mikroplastikler, 5mm'den daha kısa olan küçük plastik parçacıklarıdır. Okyanuslar, 

nehirler, göller ve hatta atmosferde plastik kirliliği sonucu bulunurlar. Mikroplastiklerin 

problemi, çevre ve içinde yaşayan organizmalar üzerinde olumsuz etkilere sahip 

olabilecekleridir. Ayrıca, mikroplastikler, toksik kimyasalların çevreye salınmasına da 

neden olabilir, bu da sucul yaşamı hatta insanları bile zararlı etkileyebilir. Mikroplastik 

birikimi, daha küçük organizmaların daha büyük organizmalar tarafından tüketilmesiyle 

besin zincirinde zararlı etkilere neden olabilir. 

Mikroplastiklerin probleminin çözümü için, araştırmacılar farklı tespit yöntemleri 

geliştirmişlerdir. Yaygın bir yöntem, Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) 

ve Raman spektroskopisi gibi spektroskopik tekniklerin kullanımıdır. Bir diğer yöntem, 

mikroskopi kullanımıdır, bu, örnekteki mikroplastiklerin görselleştirilmesine ve 

sayılmasına olanak tanır. Ayrıca, bazı araştırmacılar, midyeler ve solucanlar gibi 

organizmaları kullanarak çevredeki mikroplastik varlığını tespit etmek için biyolojik 

yöntemler geliştirmişlerdir. 

Bu çalışmada, mikroplastikleri boyutlarına ve kırılma indislerine göre tespit etmek 

ve sınıflandırmak için maliyet etkin, taşınabilir ve basit bir cihaz geliştirmeyi amaçladık. 

Ayrıca, deney kurulumu için tanımlanan kalibrasyon eğrileri kullanılarak 

konsantrasyonlar belirlenebilir. Literatüre katkımız, iki farklı malzemeden oluşan aynı 

boyutta küre şeklindeki mikroplastiklerin tanımlanmasıdır. Böylece, boyut veya şekil 

sınıflandırmasına ek olarak, bu kurulum kullanılarak kırılma indisi bağımlı optik saçılma 

desenleri kullanılarak malzeme tiplerinin belirlenmesi mümkün olacaktır. 

 

Anahtar kelimeler: saçılma, optik, algılama, mikro-parçacık, makina öğrenmesi.   
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Chapter 1 

Introduction 

1.1 Microplastic Pollution 

Microplastics are tiny pieces of plastic that are less than 5mm in length. They come 

from various sources such as broken-down plastic waste, microbeads from personal care 

products, synthetic fibers from textiles, and through fragmentation of larger plastic debris 

[1–3]. Microplastics pose a significant threat to marine and freshwater ecosystems as they 

are frequently ingested by aquatic life and can accumulate in the food chain, ultimately 

reaching humans [4–9]. As given in Fig.1.1, micrometer-size living beings in the oceans 

have plastics in their body [10,11]. Other life forms which are at higher places in food 

chain, consume them and thus, micro pollutants reach to human body.  

  

Figure 1.1 (a) A zooplankton (2-20 µm), and (b) a water flea (200+ µm) with 
microplastics in their body. 

Plastics from automobile tires, industry, and other resources enhanced the amount 

of those pollutants in addition to this aquatic connection [12–16]. Recent scientific studies 

have demonstrated the presence of these tiny particles in the bodies, blood, milk, and flesh 

of farm animals, as well as in food products including honey, sugar, salt, and seafood. 

Another study indicated that micro/nanosized submerged plastics rise to the surface 

of the water and mix with the air as a result of evaporation [17]. Rains return microplastics 

in the air to the earth, making contact, even breathing them inevitable. The danger of 

breathing in microplastics increases with their smaller size [18]. In Fig. 1.2, a sample 
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cycle to the microplastic pollution is given [19]. Pollutants from daily life activities. reach 

to the water sources, seas, and oceans. Mechanical, biological, or natural process make 

them smaller and complete the cycle with sea food, atmosphere or direct water 

consuming.  

 
Figure 1.2 A sample microplastic pollution cycle example. 

The environmental impacts of microplastics are still not completely understood, but 

they have been linked to health problems in marine life, such as reproductive issues, 

behavioral changes, and death. In addition, microplastics can also have economic impacts 

on fishing and tourism industries as the presence of plastic in water can reduce fish 

populations and lead to beach closures [20]. 

The issue of microplastics has gained attention in recent years due to the increasing 

amount of plastic waste being produced globally [21–24]. Plastic is cheap, versatile, and 

durable, but it is also non-biodegradable, and as a result, it can persist in the environment 

for centuries. the environment is to reduce the use of plastic and increase awareness of 

the issue.  

Recent years have seen an increase in research on microplastic pollution, with numerous 

studies highlighting the extent of the problem. In 2018, a study estimated that 

microplastics were present in more than 90% of bottled water, with an average of 325 

particles per liter [25]. A separate study published in 2020 estimated that up to 14 million 

metric tons of microplastics were deposited in the world's oceans each year, with the 

majority originating from Asia [26]. Additionally, a study published in 2023 found that 

microplastics were present in more than 90% of the freshwater samples collected from 

the Amazon and its tributaries [27]. These findings highlight the urgent need for action to 
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address the root causes of microplastic pollution and to prevent further harm to our 

environment and health.  

 
Figure 1.3 A sample map for microplastics and their detected locations around the 
world. 

As microplastics are so small, it is difficult to remove them from the environment 

once they have been released, and current recycling efforts are not effective in eliminating 

them. In Fig. 1.3, some of microplastics and their locations are presented [28]. Therefore, 

the best way to prevent microplastics from entering Some measures being taken to address 

the problem include the introduction of legislation to ban microbeads in personal care 

products, the promotion of sustainable alternatives, and increased investment in research 

to better understand the impacts of microplastics on the environment and human health. 

1.2 Detection of Microplastics 

Microplastics detection by optical scattering is a technique that uses light scattering 

to identify and quantify microplastic particles in a sample. The technique relies on the 

fact that microplastics are usually small enough to scatter light at a particular angle, 

allowing them to be distinguished from other particles in the sample. 

To perform microplastics detection by optical scattering, a sample is first prepared 

by filtering it through a fine mesh or membrane to remove larger particles. The filtered 

sample is then passed through a laser beam or other light source that is directed at a 

specific angle to the sample. As the light passes through the sample, it interacts with any 
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microplastic particles present, causing them to scatter light at a particular angle. A 

detector is positioned to capture this scattered light, which can then be analyzed to identify 

and quantify the microplastics in the sample. 

One advantage of this technique is that it is non-destructive and non-invasive, 

meaning that the sample can be preserved for further analysis if needed. Additionally, it 

can be performed relatively quickly and requires minimal sample preparation. 

However, microplastics detection by optical scattering does have some limitations. 

For example, it may not be able to detect very small microplastics or those that are 

transparent or translucent. In addition, other particles in the sample may also scatter light, 

which can make it difficult to distinguish microplastics from other particles. Therefore, it 

is often used in combination with other analytical techniques, such as microscopy or 

spectroscopy, to provide a more complete picture of the microplastics present in a sample. 

There are several optical techniques that can be used to detect microplastics in various 

environmental samples, such as sediment, soil, and air. Some of the most common optical 

techniques used for microplastic detection are:  

Fluorescence microscopy: This technique involves labeling microplastics with a 

fluorescent dye and then visualizing them under a microscope with a UV light source. 

The microplastics appear as bright fluorescent particles against a dark background, 

making them easy to detect and quantify. 

Fourier-transform infrared (FTIR) spectroscopy: FTIR spectroscopy is a technique 

that measures the absorption or transmission of infrared light by a sample. Different types 

of plastic have unique infrared spectra, which can be used to identify and quantify 

microplastics. 

Hyperspectral imaging: Hyperspectral imaging involves collecting images at 

multiple wavelengths across the electromagnetic spectrum, allowing for the identification 

and characterization of microplastics based on their spectral signatures. 

Digital holographic microscopy: Digital holographic microscopy is a technique that 

involves recording interference patterns generated by a laser beam that has passed through 

a sample. This technique can be used to detect and characterize microplastics based on 

their 3D morphology and optical properties. 

Within the framework of this thesis, optical techniques can be used to determine 

microplastics in liquids, such as water, by either visualizing the microplastics directly or 

indirectly detecting them through their interaction with light. Some of the most commonly 

used optical techniques for determining microplastics in liquids are: 
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Microscopy: Microscopy techniques, such as brightfield, darkfield, and phase 

contrast microscopy, can be used to directly visualize microplastics in liquid samples. 

Fluorescence microscopy can also be used if the microplastics are labeled with a 

fluorescent dye. 

Flow cytometry: Flow cytometry is a technique that can be used to quantify and 

size particles in a liquid sample. Microplastics can be labeled with a fluorescent dye and 

then analyzed by flow cytometry to determine their concentration and size distribution. 

Infrared spectroscopy: Infrared spectroscopy can be used to identify and quantify 

microplastics in liquid samples by measuring their characteristic absorption or 

transmission of infrared light. 

Raman spectroscopy: Raman spectroscopy is a non-destructive technique that 

involves shining a laser on a sample and measuring the scattered light. Each type of plastic 

has a unique Raman spectrum, which can be used to identify and quantify different types 

of microplastics. 

Surface plasmon resonance imaging: Surface plasmon resonance imaging can be 

used to detect and quantify microplastics in liquid samples based on their interaction with 

a metallic surface. The presence of microplastics in the liquid sample causes changes in 

the refractive index of the surrounding medium, which can be detected by surface 

plasmon resonance imaging. 

Overall, optical techniques provide powerful tools for detecting and characterizing 

microplastics in various environmental samples and can be used to generate important 

data for monitoring and mitigating microplastic pollution. 

1.3 Contributions and Structure of Thesis  

In literature, there are studies to distinguish particles at different size regardless of 

the material. It is easier to classify particles at different size. However, if the particles are 

exactly same in every aspect but the materials they made of, that situation would be tricky. 

In this thesis, in addition to the particle size, concentration and incident wavelength, the 

materials of particles are also examined and classification by random forest algorithm is 

presented. Distinguishing the particle will open a new window to classify microplastic 

pollution in terms of their danger level and track their path starting from the source. Thus, 

it will be possible to take precautions at the beginning. As it was stated before, it is 

difficult to eliminate those particles once they already distributed to the environment.  
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In first experiments, as presented in Fig 1.4 by unprofessional photos by mobile, it 

was clearly observed that a low-cost setup is able to show different scattering patterns for 

particles at different size, refractive index, concentration, and incident wavelength.  

   
Figure 1.4 Mobile phone shooting to show different patterns meaning that proposed 
low-cost setup would provide information for classification. 

In this thesis, the theory of scattering, derivations and proposed system is given in 

Chapter 2. Then, in Chapter 3, experimental setup, samples, image processing and 

machine learning steps are explained. Chapter 4 includes the effect of parameters i.e., 

concentration, particle size, particle refractive index, and incident wavelength on 

scattering. Machine learning integration and results are given in Chapter 5. At the end, 

thesis finishes with Chapter 6, conclusions, prospects, societal and sustainable 

contributions.  
 

 

 



7 
 

Chapter 2 

Background 

2.1 Derivation of Mie Theory 

Mie scattering theory is a theoretical framework that describes the scattering of 

electromagnetic radiation by particles that are comparable in size to the wavelength of the 

radiation. This type of scattering is named after the German physicist Gustav Mie, who 

first developed the theory in 1908. The Mie theory is an extension of Rayleigh scattering 

theory, which is valid for particles much smaller than the wavelength of the radiation. 

Mie scattering theory is particularly relevant in the study of atmospheric and oceanic 

optics, as well as in the field of materials science. 

Mie scattering is a theoretical model that describes the scattering of light by 

spherical particles, such as dust, water droplets, and biological cells. While Mie scattering 

is a powerful tool for understanding light scattering in many physical and biological 

systems, there are several limitations to the model that should be considered: 

Size and shape: Mie scattering is only applicable to spherical particles with a 

uniform refractive index. If the particles are not spherical, or if their refractive index is 

not uniform, Mie scattering may not accurately describe the scattering behavior. 

Size parameter: Mie scattering is most accurate for particles whose size is much 

larger than the wavelength of light being scattered. For particles that are smaller than the 

wavelength of light, or larger than several wavelengths, Mie scattering may not be a good 

approximation. 

Homogeneity: Mie scattering assumes that the medium in which the particles are 

suspended is homogeneous and isotropic. If the medium is not homogeneous, or if there 

are gradients in the refractive index or density, Mie scattering may not provide an accurate 

description of the scattering behavior. 

Multiple scattering: Mie scattering assumes that the scattered light only undergoes 

a single scattering event. In reality, light can undergo multiple scattering events, which 

can cause deviations from the Mie scattering predictions. 
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In Mie scattering theory, the scattered light is not uniformly distributed in all 

directions, as is the case in Rayleigh scattering. Instead, the scattered light is concentrated 

in a number of specific directions, known as Mie resonances. These resonances are 

determined by the size and refractive index of the scattering particle, as well as the 

wavelength of the incident radiation. Mie scattering theory provides a mathematical 

framework for calculating the intensity and polarization of the scattered light as a function 

of these parameters. The theory has applications in a wide range of fields, including 

meteorology, remote sensing, and the design of optical devices. 

 

 
Figure 2.1 Variable-thickness plate as starting point of derivations. 

The derivation of Mie scattering equations start from a variable-thickness plate 
concept as given in Fig. 2.1. 

 (2.1) 

For spheres 

 (2.2) 

Free-space propagation (Fourier transform in far-field) 

 (2.3) 

2D intensity matrix (image) 

 (2.4) 

As presented in Eq. 4,  2D Fourier transformation makes hand calculations 

difficult to deal with. Thus, solvers needed to obtain scattering patterns as theoretical 

results.  
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In Mie Theory, differential scattering cross-sections (i1, i2) are defined as given in 

Eq. (5) and Eq. (6) for vertically and horizontally polarized incident and scattered light. 

 (2.5) 

 (2.6) 

where 𝜏! and 𝜋! express Legendre polynomials in Eq. (7) and Eq. (8),  

𝜋!(𝑐𝑜𝑠𝜃) =
𝑃!
(#)(𝑐𝑜𝑠𝜃)
𝑠𝑖𝑛𝜃  (2.7) 

𝜏!(𝑐𝑜𝑠𝜃) =
𝑑𝑃!

(#)(𝑐𝑜𝑠𝜃)
𝑑𝜃  (2.8) 

and where parameters 𝑎! and 𝑏! are defined as given in Eq. (9) and Eq. (10). 

𝑎! =
Ψ!(𝛼)Ψ!" (𝑚𝛼) − 𝑚Ψ!(𝑚𝛼)Ψ!" (𝛼)
𝜉(𝛼)Ψ!" (𝑚𝛼) − 𝑚Ψ!(𝑚𝛼)𝜉!" (𝛼)

 (2.9) 

𝑏! =
𝑚Ψ!(𝛼)Ψ!% (𝑚𝛼) − Ψ!(𝑚𝛼)Ψ!% (𝛼)
𝑚𝜉(𝛼)Ψ!% (𝑚𝛼) − Ψ!(𝑚𝛼)𝜉!% (𝛼)

 (2.10) 

Size parameter, 𝛼, is defined by 

𝛼 =
2𝜋𝑎𝑚&

𝜆&
 (2.11) 

where 𝑚# is the refractive index of the medium, 𝜆# is incident wavelength respect to 

vacuum and 𝑚 is the refractive index of the particle itself. The Ricatti-Bessel functions, 

Ψ, and 𝜉 are defined by the half-integer-order Bessel function of the first kind, where 

Ψ!(𝑧) = 8
𝜋𝑧
2 9

#
' 𝐽!(#/'(𝑧) (2.12) 

𝜉!(𝑧) = 8
𝜋𝑧
2 9

#
'𝐻!(#/'(𝑧) = Ψ!(𝑧) + 𝑖X!(𝑧) (2.13) 

𝐻!$%/'(𝑧) is the half-integer-order Hankel function of the second kind and X!(𝑧) 

is defined by half-integer-order Bessel function of second kind (𝑌!$%/'(𝑧)),  

X!(𝑧) = −8
𝜋𝑧
2 9

#
' 𝑌!(#/'(𝑧) (2.14) 

After all those steps, differential scattering cross sections (i1, i2) are calculated and 

average of them represents the randomly polarized (unpolarized) incident and scattered 

light cross section.  
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Overall, while Mie scattering is a useful tool for understanding light scattering by 

spherical particles, its limitations should be considered when applying the model to real-

world systems. 

2.2 How to Measure Scattering? 

Scattering theory is a fundamental concept in physics that describes the behavior of 

waves and particles when they interact with a potential or obstacle. It is a branch of 

quantum mechanics that plays a crucial role in understanding the properties of matter and 

energy at the atomic and subatomic level. Scattering theory provides a mathematical 

framework to calculate the probability of a particle being scattered in a particular 

direction, as well as the phase shift of the scattered wave. It has applications in a variety 

of fields, including nuclear physics, solid-state physics, astrophysics, and even in medical 

imaging. In this context, understanding scattering theory is essential for anyone interested 

in exploring the behavior of waves and particles at the quantum level. 

There are several types of scattering, each characterized by the nature of the incident 

wave and the target or scatterer involved. The most common types of scattering include: 

Rayleigh Scattering: This type of scattering occurs when electromagnetic radiation, 

such as visible light or radio waves, interacts with particles that are much smaller than the 

wavelength of the radiation. Rayleigh scattering is responsible for the blue color of the 

sky, as well as the reddening of the sun at sunset. 

Mie Scattering: Mie scattering occurs when electromagnetic radiation interacts with 

particles that are comparable in size to the wavelength of the radiation. This type of 

scattering is responsible for the white color of clouds, as well as the colors of certain 

gemstones. 

Figure 2.2 Optical scattering intensity levels at different angles dependent on 
particle size. 
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As presented in Fig. 2.2, when particle size gets bigger, forward scattering gets 

dominant [29]. Scattered light around zero-degree gets closer to the zero degree and make 

a brighter and smaller spot on the screen. 

Compton Scattering: Compton scattering occurs when high-energy photons, such 

as X-rays or gamma rays, collide with charged particles, such as electrons. During this 

process, the photon loses energy and changes direction. 

Rutherford Scattering: Rutherford scattering occurs when charged particles, such as alpha 

particles, interact with the nucleus of an atom. During this process, the trajectory of the 

charged particle is deflected due to the electrostatic repulsion between the two charged 

particles. 

Elastic Scattering: Elastic scattering occurs when the energy and momentum of the 

incident particle are conserved during the scattering process. This type of scattering is 

characterized by a change in direction of the incident particle, without any change in its 

energy or wavelength. 

Inelastic Scattering: Inelastic scattering occurs when the energy and momentum of 

the incident particle are not conserved during the scattering process. This type of 

scattering is characterized by a change in energy, wavelength, or both, of the incident 

particle.  

Scattering theory can be used to detect microplastics in water by analyzing the way 

light scatters off the particles. When light passes through a medium, such as water, it 

interacts with particles in the medium, causing it to scatter in different directions. The 

scattered light can be measured and analyzed to determine the size and concentration of 

the particles in the medium. Scattering theory can be used in several ways to detect 

microplastics in water: 

Dynamic Light Scattering (DLS): DLS is a technique that measures the intensity 

and time-dependence of scattered light from particles in a liquid to determine their size 

distribution. By analyzing the scattered light from microplastics, their size distribution 

can be determined.  

Static Light Scattering (SLS): SLS is a technique that measures the intensity of 

scattered light from a sample of known concentration and compares it to a standard curve 

to determine the concentration of the particles in the sample. This technique can be used 

to quantify the concentration of microplastics in water. 

Multi-Angle Light Scattering (MALS): MALS is a technique that measures the 

intensity of scattered light from a sample at different angles to determine the size 
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distribution and concentration of the particles in the sample. This technique can be used 

to determine the size and concentration of microplastics in water. 

In this study, after investigation of settlement and having same scattering angles for 

different concentrations, we assume that movement of particles does not affect 

experiments. Therefore, it can be said that minor effects of DLS can be ignored, and the 

system can be assumed as a SLS concept.  

There are several methods that can be used to detect and determine the presence of 

microplastics in water resources. Some of the commonly used methods are: 

Filtration: This method involves passing a water sample through a filter with a pore 

size of less than 5 micrometers to capture microplastics. The filter can then be visually 

inspected or analyzed using microscopy to determine the type, size, and concentration of 

microplastics present. 

Spectroscopy: This method uses FTIR or Raman spectroscopy to analyze the 

chemical composition of microplastics. The microplastics can be extracted from water 

samples using a solvent and then analyzed using a spectrometer to identify the type of 

plastic. 

Fluorescence microscopy: This method involves staining microplastics with a 

fluorescent dye and then visualizing them under a fluorescence microscope. This 

technique can be used to determine the size, shape, and concentration of microplastics 

present. 

Flow cytometry: This method involves using a laser to detect and count 

microplastics in water samples. The microplastics are first stained with a fluorescent dye 

and then passed through a flow cytometer, which measures the fluorescence and size of 

each particle.  

It is important to note that each method has its advantages and limitations, and a 

combination of methods may be needed to obtain accurate and comprehensive data on 

microplastics in water resources. Additionally, standardization of methods and protocols 

is necessary to ensure comparability of data across studies. 

2.4 Proposed System and Developments 

Considering the consistent conditions in the laboratories, huge device dimensions, 

high costs, maintenance requirements and alignment issues a portable, low-cost, small 

setups are and will be needed due to rapidly increasing global microplastics problems. As 
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stated in the introduction chapter, it is urgently needed to take precautions at the origin of 

those pollutants. Once it is possible to detect and classify those particles, it would be 

easier to define their source and define global measures to decrease the level of 

microplastics pollution.  

In addition to micro size, with minor adjustments, it is also possible to detect nano 

size particle with the same setup. A thin lens to focus the list on a much smaller area and 

look for just couple of particles instead of high concentrations and zoom the images taken 

at the laboratory would open another window to research on nano plastics.  

Furthermore, once the appropriate solvents, concentrations, and incident light are 

provided, it would be possible to investigate on different type of particles. This point will 

be stated again as future prospects part of this thesis.  

In Fig. 2.3,  the illustration of experimental setup is presented. Directing a laser 

beam onto samples in cuvette through an iris and neutral density filter is the part before 

scattering occurs. When light hits to the particles in cuvette, it scatters, and the pattern 

falls onto the screen behind. Having particles at different size, refractive index, 

concentration and using different incident wavelengths results in different scattering 

patterns. Thus, by a cost-effective setup, different scattering pattern images are acquired.  
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Figure 2.3 Illustration of the experimental setup, (a) light source, (b) iris, (c) neutral 
density filter, (d) cuvette holder and cuvette, and (e) graded white screen, (inset) 
azimuthal and scattering angles. 

Once the raw images are collected from the setup, we crop them and obtain upper 

right quartile as in Fig. 2.4(b). This is possible because of having spherical particles which 

scatter light symmetrically so to decrease computational cost, we work on this quarter 

only. Next, we convert the image into gray-scale. Comparison of red, green, and blue 

images in possible when we analyze them in gray version. Then, to get scattering 

information, we draw azimuthal lines starting from center through outer rings. Again, 

thanks to symmetry, each line has same pixel values on it. To decrease noise and error, 

we take the average of the values on those azimuthal line and at the and the scattering 

information is ready to plot as given in Fig. 2.4(e). 
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Figure 2.4 Representation of image processing flow from the raw image to scattering 
pattern. 
 

The peaks on that scattering line represents bright interference rings and the gaps 

are destructive combinations. Having different samples mean having different patterns 

and different scattering lines. After all those steps, different sets of peak angles are aimed 

to use as random forest algorithm inputs. 
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Chapter 3 

Experimental Work 

3.1 Sample Preparation 

Investigating the impact of material type (particle's refractive index) and particle 

size is possible using commercially available microparticles made of two different 

materials, melamine (Me) and polystyrene (PS), at diameters of 8 µm and 10 µm. In order 

to examine the relationship between particle number and scattering behavior, we also 

generated samples at various concentrations.  

Commercially available 8 µm +/- 100 nm-sized melamine resin (Me8) (95523-

Sigma Aldrich), 8 µm +/- 97 nm-sized Polystyrene (PS8) (84192-Sigma Aldrich) and 10 

µm +/- 110 nm-sized Polystyrene (PS10) (72986-Sigma Aldrich) microspheres, were 

used in the experiments to test the match between the predictions of Mie theory that we 

calculated numerically and the experimental results. Microscope image of Me and PS 

spheres are given in Fig. 3.1. 

   
Figure 3.1 40x-zoomed microscope images of (a) Me8, (b) PS8, and (c) PS10 
particles. Scale bar: 50 µm. 

Samples were prepared at the concentrations from 0.05 fM up to 3.00 fM by adding 

them into ultra-pure water using a micropipette and kept in vials, Fig. 3.2. The samples 

were shaken using vortex before the experiments to make the solution much more 

homogeneous and by hand just before the measurements one more time.  
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Figure 3.2 Samples prepared at different concentrations. 

In our experiments, the safe time limit was about 5 minutes. The sinking of the 

particles deeper in the cuvette and observation of more than 5% decrease in scattering 

intensity was observed after 5 minutes. Our measurement time for each sample was much 

shorter than this limit. In addition, 0.05 - 3.00 fM range corresponds to 3e+4 – 180e+4 

particles/mL which is higher than the values studied in the literature. However, the sizes 

of the particles reported in literature are about 10-100 times bigger, significantly 

increasing the scattering cross-section. Considering this size difference, we believe that it 

is reasonable to have 0.05 fM - 3.00 fM concentration range in our experiments for the 

particle sizes we are interested in [30]. 

For the refractive index of Melamine particles, there is an uncertainty in the 

literature. Thus, we studied the range given in literature which is 1.530-1.922 for the red 

region. The most satisfying match with the Mie theory and experiments were obtained as 

1.79 at 656.3 nm. We used refractive indices of 1.89 and 1.96 for 514.9 nm and 403.8 

nm, respectively [31–33]. 

3.2 Experimental Setup 

For the measurements, at room temperature (22 ºC), the laser power was kept 

between 150-170 µW for collimated red, green, and blue lasers emitting light at 403.8 

nm, 514.9 nm, and 656.3 nm, respectively (CPS405, CPS520 and CPS650F-

THORLABS).  The beam was directed through an iris to squeeze the beam radius. Just 

after the iris, a neutral density filter was used to adjust the laser power to the same level 

during the experiments. A cuvette holder was 3D printed to keep the cuvette in the 

optimum orientation and finally a graded white screen was placed to have the scattering 

pattern on it as presented in Fig. 3.3. 
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Figure 3.3 Experimental setup, (a) light source, (b) iris, (c) neutral density filter, (d) 
cuvette holder and cuvette, (e) graded white screen, and (f) camera module. 

Subsequently, each sample was placed into cuvettes and the scattering patterns of 

the laser light at different wavelengths from these particles fell on a screen placed 6.5 cm 

apart from the cuvette. 200 images of these scattering patterns were taken in a dark 

environment by a CMOS camera (Raspberry Pi Focus Adjustable Camera Module-

2592x1944 pixels), -100 ms shutter speed and 20 ms exposure time- controlled by 

Raspberry Pi 4 - 4GB RAM. In total, 1800 images are recorded for processing. 

3.3 Image Processing 

Having recorded images required following image processing steps to obtain some 

digital data to be used in machine learning. For each sample, there were 200 images taken, 

and processing individually was not possible due to high level of noise.  

 
Figure 3.4. (a) Raw scattering image of Me8 particles excited by green laser, (b) 
cropped image, (c) gray-scale image, (d) data lines on scattering image, (e) average 
scattering behavior of 86 lines (5º:1º:90º) on 1.50 fM 8 µm Me particles.  
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The images of the scattering patterns (Fig. 3.4(a)) were analyzed numerically. The 

average of 200 images was calculated for each sample’s scattering pattern to minimize 

noise. Next, as illustrated in Fig. 3.4(b-c), all the images were cropped and converted to 

grayscale. To decrease the computational cost, 86 lines were defined with 1º azimuthal 

angle increments between 5º and 90º starting from the center towards the outer regions 

on the upper-right quartile of the images as given in Fig. 3.4(d), (Fig. 3.4(d), presents only 

10º azimuthal increment for better visualization). As the next step, the average of pixel 

data on all those 81 lines were taken to decrease the noise level on measurements. Finally, 

azimuthal angular scattering intensity was obtained as presented in Fig. 3.4(e). However, 

it was still noisy to identify peak angles so that 2nd degree polynomial was fitted around 

the peak angles to the experimental data. The scattering angle limit in the light direction 

is 21º because of the screen size and the distance from the sample. 

3.4 Random Forest Algorithm  

Random Forest is a popular machine learning algorithm used for both classification 

and regression tasks. It is an ensemble learning method that creates a set of decision trees 

and combines their predictions to make a final prediction [34–36]. 

The algorithm works by first randomly selecting a subset of the data and a subset 

of the features for each tree in the forest. Then, a decision tree is built using these subsets 

of data and features. The process is repeated multiple times, resulting in a forest of 

decision trees as presented in Fig. 3.5 [37]. 

 
Figure 3.5 Structure of random forest algorithm. 
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When making a prediction for a new data point, each tree in the forest independently 

makes a prediction, and the final prediction is made by taking the majority vote of all the 

trees in the forest. 

Random Forest has several advantages over a single decision tree. It is less prone 

to overfitting, as the individual trees in the forest are trained on different subsets of the 

data and features. It can handle high-dimensional data and is relatively easy to use, as it 

requires few hyperparameters to be tuned. 

Overall, Random Forest is a powerful and widely used algorithm in machine 

learning that can be used for a variety of tasks, such as classification, regression, and 

feature selection. 

Given the inherent numerous scatterings of the spheres in liquid, the random forest 

algorithm offers the opportunity to categorize the measured scattering data, which would 

not be a simple operation to manage theoretically. Random forest was utilized in this 

investigation because of its straightforward design and repeatable outcomes. In our earlier 

study, the correspondence between experimental findings and numerical solutions was 

revealed. We think that this match made it possible to apply random forest easily in terms 

of data preparation. This numerical solution methodology produced the data set, which 

included the incidence wavelength, particle size, material type, and bright ring angles that 

were used to run the algorithm. A test set of data was created from 20% of all 

measurements. The remaining part was used to train the random forest algorithm.  

Random Forest is a popular machine learning algorithm for classification tasks that 

works by creating an ensemble of decision trees, where each tree is trained on a subset of 

the data and a subset of the features. When making a prediction for a new data point, each 

tree in the forest independently makes a prediction, and the final prediction is made by 

taking the majority vote of all the trees in the forest. This approach results in a more robust 

and accurate prediction compared to a single decision tree, as the ensemble of trees can 

capture the complex interactions and relationships between the features. 

One of the main advantages of Random Forest for classification is its ability to 

handle high-dimensional data. The algorithm can effectively deal with datasets that have 

a large number of features, where other machine learning algorithms may struggle due to 

the curse of dimensionality. Additionally, Random Forest is less prone to overfitting 

compared to other algorithms, as the individual trees in the forest are trained on different 

subsets of the data and features. This means that the ensemble of trees can capture the 

general patterns and avoid overfitting to noise in the data. Overall, Random Forest is a 
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powerful algorithm for classification tasks that can achieve high accuracy and is suitable 

for a wide range of applications. 

The inputs for classifying material types and particle sizes were incident 

wavelength and bright ring angles. The concentration and scattering intensities were not 

required for this stage because it was discovered during the image analysis that the peaks 

were at the same angle for a certain material type and size. However, we are aware that 

as sphere concentration in samples grew, the total scattering intensity had to rise as well. 
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Chapter 4 

Effects of Particle Size, Concentration, 
Material, and Incident Wavelength 
 

There are parameters effecting scattering during the investigation of scatterers. 

Concentration of particles, particle size, refractive index, or the material that particles 

made of, and incident wavelength. In this chapter, effects of those parameters will be 

investigated and their relevance to this study will be discussed. Experimental and 

theoretical results will be given. For theoretical results, equations were embedded on a 

MATLAB code, and it is given in Appendix A. 

4.1 Effect of Concentration on Scattering 

Mie scattering is a type of scattering of electromagnetic radiation, such as light, by 

particles of a size comparable to or larger than the wavelength of the radiation. The 

intensity and pattern of Mie scattering can be affected by the concentration of the 

scattering particles. 

At low concentrations, Mie scattering is typically linearly proportional to the 

concentration of the scattering particles. This means that if the concentration of the 

scattering particles is doubled, the intensity of the scattered light will also double. 

However, at high concentrations, the relationship between Mie scattering and particle 

concentration becomes more complex. 

At high concentrations, the particles can interact with each other, leading to a 

phenomenon known as multiple scattering. Multiple scattering can cause the scattered 

light to be redirected and interfered with, resulting in a more complex scattering pattern. 

In extreme cases, the multiple scattering can lead to a phenomenon known as optical 

turbidity, where the scattered light is so intense that it can obscure the light source and 

reduce the visibility of the scattering particles. 
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Figure 4.1 Scattering images of Me8 particles by red, green, and blue lasers with 
increasing concentration. 
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In summary, the effects of concentration on Mie scattering can range from a linear 

increase in scattering intensity at low concentrations to complex multiple scattering and 

optical turbidity at high concentrations. 

It was explained in Chapter 1 that forward scattering is dominant in Mie scattering. 

Considering the equations in the same chapter, when number of the particles increases, 

the scattered light at close to zero angles, join to the zero-degree scattering, forward 

scattering, and makes the intensity higher. Therefore, it is expected that increasing the 

concentration results in more shiny and wider centers on images.  

   

   

   
Figure 4.2 Scattering intensity vs concentration change for Me8, PS8 and PS10 
materials by red, green, and blue lasers. 

In addition to the concentration, the settlement of the particles is also important. As 

discussed in previous chapters, particles are shaken by vortex before experiments and by 

hand just before the measurements. However, during the photoshoot, particles move 

through the bottom of the cuvettes due to gravity. If those particles go down fast, there 

will be less than targeted concentration and this would lead to less scattering intensity. 

Less scattering intensity may have two meanings, first, particles move down too fast, and 

we lose information, second, concentration of the sample is less than targeted. To 

investigate this issue, instead of 200 images per sample, 800 images were taken 
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consecutively. Grouping them as 100-image packages and platting their scattering 

information on the same graph with closest higher and closest lower concentration 

samples would give us information about reliability of our measurement. In Fig. 4.3, gray-

scale images belonging to average of consecutive 100 images of same sample, it was not 

possible to comment by eye so that we did our image processing steps and obtained 

scattering lines for those image packages.  

  

  

  

  
Figure 4.3 Scattering patterns for 2.00 fM PS8 particles for consecutive 100 images. 
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Figure 4.4 Scattering intensity vs time for PS8 particles excited by green laser.  

As given in Fig. 4.4, even the last package of 100-image (701-800), meaning that 

the lowest scattering intensity among the groups, has higher scattering intensity than the 

closest lower one, 1.25 fM Therefore, we can say that settlement is not an issue on our 

measurements. 

Scattering intensity is important while determining the concentration of particles. 

The area under scattering lines gives information about how much light scattered and this 

is directly related to the concentration. We calculated the areas under scattering lines for 

three different measurements and plotted that data. Then, fitting a curve, calibration 

curve, provided information about how much amount of scattered light scattered vs 

concentration. After that point, it is just an image processing step to calculate the value 

for an unknown concentration to define its value.  
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Figure 4.5 Total scattering intensity vs concentration change for Me8, PS8 and PS10 
materials by red, green, and blue lasers. 

As presented in Fig. 4.5, there are different calibration curves for different particle 

size, incident wavelength and refractive index. It is known that scattering is dependent on 

all those parameters. If there is enough number of different particles and lasers, a general 

equation depending on particle size, refractive index, concentration, power, and 

wavelength of incident light can be generated. 

To sum up, after the experiments, we observed that, as expected, forward scattering 

gets dominant with increasing concentration. In addition, the same sample scatters at 

same peak angles, interference rings, and this provides opportunity to use those 

interference ring angles specifically for that material identification. In our concentration 

range, because the lines go saturation, it shows that we already reached the limit of our 

setup to determine the concentration of the samples.  
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4.2 Effect of Particle Size on Scattering 

Mie scattering is a type of scattering phenomenon that occurs when light interacts with 

particles that are comparable in size to the wavelength of the incident light. In Mie 

scattering, the scattered light depends strongly on the particle size and the refractive index 

of the particle. 

 

Figure 4.6 Angular distribution of the first four scattering intensity peaks to the 
particle size as calculated using Mie theory. The particle size was varied between 5-
100 µm in water and 514.9 nm incident light beam in MATLAB, (inset) experimental 
image showing peaks (greater than 5º) for 8 µm. 

The size of the particle determines the angle and intensity of the scattered light. In 

general, smaller particles scatter light more in the forward direction, while larger particles 

scatter light more in the backward direction. This is because larger particles diffract light 

more, causing it to scatter in multiple directions. 

For a given wavelength of light, there is a characteristic size of particle that scatters 

the most light in the forward direction, which is called the Mie scattering peak. The Mie 

scattering peak is shifted to smaller sizes for shorter wavelengths of light. 
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Figure 4.7 Total scattering intensity vs concentration change for Me8, PS8 and PS10 
materials by red, green, and blue lasers. 

In laboratory experiments, to be able to monitor the effect of particle size, PS8 and 

PS10 particles were used. 8 and 10 µm size of those particles provided information about 

particle size parameter when other parameters, i.e., incident wavelength, particle 

refractive index and concentration, were constant. As expected, when size of Polystyrene 

particles was increased, forward scattering got dominant. Having more peaks at the same 

range of scattering angle (5- 21 degree), presents that the scattered light at small angles, 

got closer even combined with zero-degree scattering. Thus, as given in Fig. 4.7, 10 µm-

size PS particles have shiny spot at the center and more bright interference ring at the 

same range of images.  
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Figure 4.8 Scattering patterns of PS8 and PS10 particles at 1.50 fM concentration to 
monitor particle size effect by 656.3 nm, 514.9 nm, and 403.8 nm lasers. 

In summary, the particle size has a significant effect on Mie scattering, with smaller 

particles scattering more light in the forward direction, while larger particles scatter more 

light in the backward direction. The Mie scattering peak is shifted to smaller sizes for 

shorter wavelengths of light. 

4.3 Effect of Particle Refractive Index on Scattering  

In Mie scattering, the refractive index of particles plays an important role in 

determining the scattering pattern. Mie scattering is a type of elastic scattering of light by 

spherical particles, where the size of the particle is on the same order as the wavelength 

of light. The refractive index of a material is a measure of the speed of light in that material 

and how it bends when it passes through the material. 

The refractive index of particles affects the scattering pattern because it determines 

the phase shift of the scattered wave relative to the incident wave. This phase shift is 
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caused by the change in the speed of light as it passes from one medium (air) to another 

(the particle). 

  

  

  
Figure 4.9 Scattering intensities vs particle refractive index for red, green, and blue 
lasers, respectively (left column), locations of first four peak angles vs particle 
refractive index for reg, green, and blue lasers, respectively (right column) 

In particular, the refractive index affects the scattering angle at which the scattered 

light is most intense. The angle is known as the "scattering angle." As the refractive index 

of the particle increases, the scattering angle decreases. Additionally, the refractive index 

affects the polarization of the scattered light. 

In laboratory, Me8 and PS8 particles were used to investigate the effect of particle 

refractive index. This is one of the key points of this study because -it is worth to say 
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again- there is lack of study in terms of same size and shape but material of particle in the 

literature. In theory, if a particle has higher refractive index value compared to the 

particles having lower refractive index, it scatters the light with wider angles. Therefore, 

at the same range of distance from the center on an image, a smaller number of bright 

interference rings are observed. As presented in Fig. 4.9, left column (Me8 with lower 

refractive index) has more rings compared to the right one (PS8 with higher refractive 

index). It shouldn’t be forgotten to compare the refractive indices at proper wavelengths 

due to dispersion.  

  

  

  

Figure 4.10 Scattering patterns of Me8 and PS8 particles at 1.50 fM concentration 
to monitor refractive index effect by 656.3 nm, 514.9 nm, and 403.8 nm lasers. 

In summary, the refractive index of particles plays a crucial role in Mie scattering 

by influencing the scattering angle and polarization of the scattered light. 
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4.4 Effect of Incident Wavelength on Scattering  

Mie scattering is a type of elastic scattering that occurs when a beam of 

electromagnetic radiation interacts with particles that are larger than the wavelength of 

the incident radiation. In Mie scattering, the scattered radiation is dependent on the size, 

shape, and refractive index of the particles as well as the incident wavelength of the 

radiation. 

The size parameter, which is defined as the ratio of the particle radius to the incident 

wavelength, determines the scattering behavior of Mie scattering. As the size parameter 

increases, the scattering pattern changes from forward scattering to backward scattering. 

In general, for small particles (size parameter << 1), the scattering is strongly 

dependent on the incident wavelength. 

Mie scattering is a type of scattering phenomenon that occurs when electromagnetic 

radiation, such as light, interacts with spherical particles that are similar in size to the 

wavelength of the incident radiation. The size of the particles and the wavelength of the 

incident radiation play a crucial role in determining the characteristics of Mie scattering. 

The incident wavelength has a significant effect on Mie scattering. When the size 

of the spherical particle is comparable to the wavelength of the incident radiation, the 

scattered light undergoes constructive and destructive interference, leading to complex 

scattering patterns. This phenomenon is known as resonance scattering. The resonance 

wavelength, at which the scattering is the strongest, depends on the size and refractive 

index of the particle. 

 
Figure 4.11 Calculated angular distribution of the scattering cross-section of 8 μm-
sized particle in water for three different incident wavelengths. The triangles 
represent the locations of the scattering peaks. 
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As the incident wavelength increases, the scattering becomes less sensitive to the 

size of the particle, and the scattering pattern becomes more uniform. This is because the 

effect of resonance scattering diminishes as the size of the particle becomes small 

compared to the wavelength of the incident radiation. In this case, the scattering pattern 

becomes more similar to Rayleigh scattering, which occurs when the size of the particle 

is much smaller than the wavelength of the incident radiation. 

It is starting point of this study in the laboratory. We were expecting that different 

incident wavelengths (lasers) needed to provide different patterns of scattering and it had 

to be observable. In addition, different sizes of same particle and different particles at 

same size were aimed to be resulted in different images. All those expectations occurred 

successfully. Using a cost-effective setup, a few hundreds of euros, we were able to 

observe those different patterns clearly. In addition, three different sample sets and 

measurements at different times provided consistent results.  

 

    

    

    
Figure 4.12 Scattering patterns of Me8, PS8, and PS10 particles at 1.50 fM 
concentration and their scattering data to monitor incident wavelength effect by 
656.3 nm, 514.9 nm, and 403.8 nm lasers. 
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the wavelength increases, the scattering becomes less sensitive to the size of the particle 

and the scattering pattern becomes more uniform. 
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Chapter 5 

Machine Learning Integration 
 

In previous chapters, it was showed that the equations to calculate scattering is 

difficult and complex for hand-calculations. Thus, they were embedded to numerical 

solvers. However, for rapid analysis and ease of use, integration of machine learning to 

the setup would create a dramatical increase on the performance of this study.  

Using the equations, peak angles (bright interference ring angles) are obtained from 

the theory. In real life application, instead of the inputs which we use to get those peak 

angles, we have the output, the pattern of scattering .So, reverse engineering is needed on 

the theoretical calculations. In this study, we aimed to show the match between theory 

and experimental results which are limited by two materials, Me and PS. Furthermore, 

only 8 and 10 µm-sized particles were used to prepare samples for investigation. There 

will be much more options in real life applications.  

In Fig. 5.1, it is presented that the match between theory and experimental results 

are satisfying. Small differences between those two types of results, provided opportunity 

to create a dataset for further developments.  
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Figure 5.1 Differences between Me8, PS8 and P10 particles at 1.50 fM concentration 
to monitor consistency between experiments and theory by 656.3 nm, 514.9 nm, and 
403.8 nm lasers. 
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theory (MATLAB) and experimental results, as showed in Table 5.1. Statistical t-tests 

showed that there is no meaningful difference between those data.  

Table 5.1 Matching of experimental and three experimental peak angles (P1, P2, P3, 
P4) with standard deviation and error calculations for red (R), green (G), and blue 
(B) lasers. 

 Theory Experiment              
(170 µW) 

Experiment         
(150 µW) 

Experiment        
(160 µW) 

R G B R G B R G B R G B 

M
e8

 

P1 7,2 5,7 7,8 7,6 5,9 NA 7,4 5,7 NA 7,4 5,7 NA 

P2 12,2 9,6 10,1 12,8 9,8 10,2 12,7 9,7 10,1 12,8 9,9 10,2 

P3 18,5 15,8 13,6 19,7 16,0 13,6 19,5 15,9 14,0 19,8 16,0 13,7 

P4 NA 20,8 18,6 NA 20,6 18,2 NA 20,6 17,9 NA 20,5 18,1 

PS
8 

P1 7,5 6,0 7,8 6,7 5,8 7,5 7,2 5,7 7,6 7,3 5,9 7,7 

P2 13,6 11,9 12,4 13,9 12,1 12,2 14,0 11,9 12,5 13,6 11,8 12,5 

P3 20,6 16,8 16,2 20,7 16,9 16,0 20,6 16,7 16,1 20,5 16,8 16,0 

P4 NA NA 19,7 NA NA 19,6 NA NA 19,7 NA NA 19,5 

PS
10

 

P1 6,4 10,0 6,0 6,6 10,2 6,0 6,6 10,1 5,7 6,5 10,2 5,9 

P2 13,4 13,8 8,6 13,5 12,5 8,3 13,6 12,9 8,4 13,5 13,2 8,4 

P3 17,8 17,5 12,5 17,9 16,3 11,8 18,1 16,6 11,9 18,0 16,6 12,0 

P4 NA NA 15,5 NA NA 15,6 NA NA 15,4 NA NA 15,3 

 
STD AVEG MAPE RMSE 

R G B R G B R G B R G B 

M
e8

 

P1 0,12 0,12 NA 7,47 5,77 NA 3,70 1,17 NA 0,28 0,12 NA 

P2 0,06 0,10 0,06 12,77 9,80 10,17 4,64 2,08 0,66 0,57 0,22 0,08 

P3 0,15 0,06 0,21 19,67 15,97 13,77 6,31 1,05 1,23 1,17 0,17 0,24 

P4 NA 0,06 0,15 NA 20,57 18,07 NA 1,12 2,87 NA 0,24 0,55 

PS
8  

P1 0,32 0,10 0,10 7,07 5,80 7,60 5,78 3,33 2,56 0,51 0,22 0,22 

P2 0,21 0,15 0,17 13,83 11,93 12,40 1,72 0,28 0,00 0,29 0,13 0,14 

P3 0,10 0,10 0,06 20,60 16,80 16,03 0,00 0,00 1,03 0,08 0,08 0,17 

P4 NA NA 0,10 NA NA 19,60 NA NA 0,51 NA NA 0,13 

PS
10

 

P1 0,06 0,06 0,15 6,57 10,17 5,87 2,60 1,67 2,22 0,17 0,17 0,18 

P2 0,06 0,35 0,06 13,53 12,87 8,37 1,00 6,76 2,71 0,14 0,98 0,24 

P3 0,10 0,17 0,10 18,00 16,50 11,90 1,12 5,71 4,80 0,22 1,01 0,61 

P4 NA NA 0,15 NA NA 15,43 NA NA 0,43 NA NA 0,14 
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5.1 Dataset Creation 

After showing the appropriate match between the lab results and theoretical 

calculations, we created a dataset on MATLAB, and the code for it is given in Appendix 

B. Using nested for loops of scattering parameters, i.e., particle size, refractive index of 

the particles and medium, incident wavelength, a dataset was created on MATLAB. 

Considering the limitations of the setup and the literature, we defined appropriate ranges 

for particle size and refractive indices. For incident wavelength, we used the same ones, 

656.3 nm, 514.9 nm, and 403.8 nm, with the ones we have in the laboratory. Starting from 

5 µm to 13 µm with 0.5 µm increments for particle diameter, and from 1.3 to 2.2 with 

0.01 increments of refractive index were the ranges of this nested for loop operation. In 

total 4641lines were obtained including peak angle values (P1, P2, P3, P4) for each 

combination of for loop parameters. A few lines from the dataset are presented in Table 

5.2. 

 
Table 5.2 A few sample lines of the dataset created on MATLAB to be used in 
Random Forest Algorithm.  

Inc. Wl. 
(nm) 

Particle 
Size 

Particle Ref. 
Index 

Medium Ref. 
Index P1 P2 P3 P4 

403,8 5 2,18 1,3388 7,4 12,6 21,4 0,0 
403,8 5 2,19 1,3388 7,4 12,4 21,0 0,0 
403,8 5 2,20 1,3388 7,2 12,0 19,7 0,0 
403,8 5,5 1,30 1,3388 7,4 12,2 16,7 21,4 
403,8 5,5 1,31 1,3388 7,5 12,2 16,8 21,4 
403,8 5,5 1,32 1,3388 7,8 12,4 16,8 21,4 

 
Then, we trained two different models, Model 1 for particle size, and Model 2 for 

particle refractive index. We used randomly selected 80% of this main dataset after 

adjustments to give it as training data to the model. 20 iterations with 100 trees were used 

in model, as commonly done in literature [35]. Once the training had been completed, the 

remain part, 20%, was used to test the performance of the model. It is worth to say that, 

until this step, it was all done using the data created on MATLAB by theoretical 

calculations.   

5.2 Model-1 Particle Size 

Modifications were needed on the dataset for each model. For Model 1, particle size 

estimation, refractive index data were not given as input. Only incident wavelength, 
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refractive index of the medium (in consistency with incident light) and first four peak 

angles were used as the input. So, 6 numbers were the input for a line from dataset and as 

seventh, particle size was added, as presented in Appendix C. 

After 20 iterations and calculation of accuracy for each iteration, the average 

accuracy was calculated for the final accuracy of the model with test data from main 

dataset.  

 
Figure 5.2 Histogram of the differences between real and estimated particle size for 
randomly selected 20% of the dataset. 

As presented in Fig. 5.2, most of the test results have an error less than 0.5 µm 

compared to real values. The correlation between real and estimated results is 0.95. Thus, 

we are able to say that we trained a successful model to predict particle size from incident 

wavelength, refractive index of the medium and first four bright interference rings of 

scattering.  

Although obtaining promising results by test data created on MATLAB, the 

important point is having the same performance from experimental results as test data. 

Prediction of particle size will be meaningful if the model could determine it successfully. 

Therefore, we used laboratory results as new test data for the Model 1. As given in Table 

5.3, among 9 test data, 3 particles by three incident light, the highest error is 1.5 µm which 

is for PS8 by red light. Other than that, we only have 0.5 µm difference between theory 

and prediction. T-tests also showed that there is no significant difference between those 

two types of data, theory, and prediction.  
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Table 5.3 Real and predicted values of particles sizes for experimental results as test 
data for Model 1.  

 Red (656.3 nm) Green (514.9 nm) Blue (403.8 nm) 
 Me8 PS8 PS10 Me8 PS8 PS10 Me8 PS8 PS10 
Real 8 µm 8 µm 10 µm 8 µm 8 µm 10 µm 8 µm 8 µm 10 µm 
Predicted 8 µm 6.5 µm 10 µm 8 µm 8 µm 10 µm 8 µm 8 µm 9.5 µm 

 
In summary, our random forest algorithm integrated setup was able to define 

particle size. We proved that it is possible to do classifications, estimations with a cost-

effective, simple, and portable device.  

5.3 Model-2 Particle Refractive Index 

As modifications on main dataset for Model 2, particle refractive index estimation, 

particle size data were not given as input. Only incident wavelength, refractive index of 

the medium (in consistency with incident light) and first four peak angles were used as 

the input. So, 6 numbers were the input for a line from dataset and as seventh, particle 

refractive index was added, as presented in Appendix D. 

After 20 iterations and calculation of accuracy for each iteration, the average 

accuracy was calculated for the final accuracy of the model with test data from main 

dataset. 

 
Figure 5.3 Histogram of the differences between real and estimated particle 
refractive index for randomly selected 20% of the dataset. 

As presented in Fig. 5.3, most of the test results have an error less than 0.5 compared 

to real values. The correlation between real and estimated results is 0.748. Thus, we are 

able to say that we trained a successful model to predict particle refractive index from 

incident wavelength, refractive index of the medium and first four bright interference 

rings of scattering.  
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Although obtaining promising results by test data created on MATLAB, the 

important point is having the same performance from experimental results as test data. 

Prediction of particle refractive index will be meaningful if the model could determine it 

successfully. In addition, this is one of the key points of this study, considering the 

estimation of refractive indices of same-sized spheres. Therefore, we used laboratory 

results as new test data for the Model 2. As given in Table 5.4, among 9 test data, 3 

particles by three incident light, the highest error is about 0.13 which is for PS8 by red 

light. Other than that, it is clearly can be seen that Me8 parameters were estimated 

identically. PS10 has better prediction than PS8. T-tests also showed that there is no 

significant difference between those two types of data, theory, and prediction.  

 
Table 5.4 Real and predicted values of particles refractive indices of Me8, PS8, and 
PS10 by 403.8 nm, 514.9 nm, and 656.3 nm lasers. 

 Red (656.3 nm) Green (514.9 nm) Blue (403.8 nm) 
 Me8 PS8 PS10 Me8 PS8 PS10 Me8 PS8 PS10 
Real 1.79 1.589 1.589 1.89 1.601 1.601 1.96 1.617 1.617 
Predicted 1.79 1.72 1.61 1.89 1.60 1.60 1.96 1.56 1.66 
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Chapter 6 

Conclusions and Future Prospects 
 

6.1 Conclusions 

There will be conclusions in this part.  

6.2 Societal Impact and Contribution to Global 

Sustainability 

The societal impact of microplastics is significant. The increasing amount of 

microplastics in our environment has raised public awareness of the plastic pollution 

problem and has led to calls for action from consumers, businesses, and governments. 

People are becoming more conscious of their plastic use and are actively seeking out 

alternative solutions. Furthermore, companies are also changing their practices and 

developing sustainable packaging alternatives. However, the problem of microplastics 

requires a global effort to mitigate its impact.  

The issue of microplastics is closely linked to the United Nations' Sustainable 

Development Goals (SDGs). SDG 14, Life Below Water, specifically aims to conserve 

and sustainably use the oceans, seas, and marine resources for sustainable development. 

Microplastics have been identified as a major threat to marine ecosystems, and addressing 

the issue is crucial in achieving SDG 14. 

Furthermore, microplastics also have implications for other SDGs. For example, 

SDG 12, Responsible Consumption and Production, emphasizes the need for sustainable 

consumption and production patterns to minimize waste generation and reduce the 

negative impacts of consumption on the environment. Addressing microplastics requires 

a shift towards sustainable consumption and production patterns that prioritize reducing 

plastic use and promoting proper waste management practices. 
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Moreover, microplastics can have implications for human health, which is 

addressed by SDG 3, Good Health, and Well-being. It is important to address the issue of 

microplastics to protect both marine and human health. 

In conclusion, addressing the issue of microplastics is crucial in achieving multiple 

SDGs. It requires a global effort to reduce plastic use, promote sustainable consumption 

and production patterns, and develop effective waste management systems. By addressing 

the issue of microplastics, we can promote a more sustainable and healthy future for our 

planet and its inhabitants.  

It is important for governments and organizations to work together to address this 

issue and develop policies and initiatives to reduce plastic use and improve waste 

management systems. By working together, we can create a more sustainable future for 

our planet. 

6.3 Future Prospects 

In terms of this study, the setup can be used for different type of samples, i.e., 

DNAs, bacteria, cells, metallic particles etc. To investigate nano-size particles, a thin lens 

may be needed to focus light on a much smaller area. In addition, by using appropriate 

solvents, solid samples can be diluted and examined after some filtering and basic 

preprocessing steps.  

In general, the issue of microplastics is expected to continue to be a major concern 

in the future, as plastic production and consumption continue to increase globally. 

However, there are also promising prospects for addressing the issue and detecting 

microplastics in the environment. 

In terms of addressing the issue, there is growing awareness among consumers, 

businesses, and governments about the negative impacts of microplastics on the 

environment and human health. This has led to a push for reducing plastic use and 

improving waste management systems. Additionally, there is ongoing research into 

sustainable alternatives to plastic and innovative technologies for capturing and removing 

microplastics from the environment. 

 

In terms of detection, there have been advancements in analytical methods for 

identifying and quantifying microplastics in different environmental samples. These 

include techniques such as Raman spectroscopy, Fourier-transform infrared 
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spectroscopy, and pyrolysis-gas chromatography-mass spectrometry. Furthermore, there 

is ongoing research into developing more efficient and cost-effective methods for 

detecting microplastics, such as biosensors and microfluidic devices. 

Overall, the future prospects of the microplastics issue and detection are both 

challenging and promising. Addressing the issue will require a concerted effort from 

individuals, businesses, and governments to reduce plastic use, improve waste 

management systems, and invest in sustainable alternatives. At the same time, ongoing 

research into detection technologies will be crucial in identifying the extent of the 

problem and developing effective mitigation strategies. 
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APPENDIX A 

Code for Scattering 

d=8e-6;          %sphere diameter 
m_sph=1.79;      %sphere refractive index  
m_env=1.331;     %medium refractive index 
l_vac=656.3e-9;   %wavelength in vacuum 
 
%H20:  1.3310R, 1.3344G, 1.3388B 
%ME:   1.79-R, 1.89-G, 1.96-B 
%PS:   1.589-R, 1.601-G, 1.617-B 
 
 
%%%%%%%%% CALCULATIONS START AFTER HERE 
%%%%%%%%%%%%%%%% 
a=d/2;          
k=2*pi/(l_vac/m_env);    
x=k*a;%DWH eq.1              
m=m_sph/m_env;     
 
M=ceil(x + 4*(x^(1/3) + 2)); 
n=1:M; 
 
fpsi=sqrt(pi*x/2)*besselj(n+0.5,x); %eq 4.9 %DWH eq.29 
dfb=0.5*(besselj(n-0.5,x)-besselj(n+1.5,x)); 
dfpsi=0.5*sqrt((pi/2)/x)*besselj(n+0.5,x)+sqrt(pi*x/2)*dfb; 
 
fpsim=sqrt(pi*(m*x)/2)*besselj(n+0.5,m*x); 
fdbm=0.5*(besselj(n-0.5,m*x)-besselj(n+1.5,m*x)); 
fdpsim=0.5*sqrt((pi/2)/(m*x))*besselj(n+0.5,m*x)+sqrt(pi*(m*x)/2)*fdbm; 
 
fxsi=sqrt(pi*x/2)*besselh(n+0.5,x); %eq 4.10 %DWH eq.30 
fdh=0.5*(besselh(n-0.5,x)-besselh(n+1.5,x)); 
fdxsi=0.5*sqrt((pi/2)/x)*besselh(n+0.5,x)+sqrt(pi*x/2)*fdh; 
 
an=(fpsi.*fdpsim-m*fpsim.*dfpsi)./(fxsi.*fdpsim-m*fpsim.*fdxsi); %eq 4.56 %DWH 
eq.26 
bn=(m*fpsi.*fdpsim-fpsim.*dfpsi)./(m*fxsi.*fdpsim-fpsim.*fdxsi); %eq 4.57 %DWH 
eq.27 
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text=(l_vac/m_env)^2/(2*pi)*sum((2*n+1).*real(an+bn)); %total ext cs %eq 4.62 
%DWH eq.32  
tscat=(l_vac/m_env)^2/(2*pi)*sum((2*n+1).*(abs(an).^2+abs(bn).^2)); %total scat cs 
%eq 4.61 %DWH eq.33 
tabsorp=text-tscat; %total abs cs 
 
theta=0:0.1:25; 
fpi=zeros(length(n),length(theta)); 
ftau=zeros(length(n),length(theta)); 
mu=cosd(theta); 
 
%calculated by the info given between eq.4.47 and 4.48 
%fpi(0)=0; 
%fpi(1)=1; 
fpi(1,:)=1; 
fpi(2,:)=3*mu; 
ftau(1,:)=mu; 
ftau(2,:)=6*mu.^2 - 3; 
 
for n2=3:M 
    fpi(n2,:)=(2*n2-1)/(n2-1)*mu.*fpi(n2-1,:)-n2/(n2-1).*fpi(n2-2,:); %eq 4.47 
    ftau(n2,:)=n2*mu.*fpi(n2,:)-(n2+1)*fpi(n2-1,:); %eq 4.48 
end 
 
En=(2*n+1)./(n.*(n+1)); %DWH eq.22 
aif0=abs(En.*an*fpi+En.*bn*ftau).^2; %DWH eq.22 
aif90=abs(En.*an*ftau+En.*bn*fpi).^2; %DWH eq.23 
 
m_air=1; 
dscat0=(l_vac/m_env)^2/(4*pi^2)*aif0; % diff scat cs (parallel) %DWH eq.19 
dscat90=(l_vac/m_env)^2/(4*pi^2)*aif90; % diff scat cs (perpendicular) %DWH eq.20 
dscat=(dscat0+dscat90)/2; % diff scat cs (unpolarized) %DWH eq.21 
 
theta2=asind(sind(theta)*m_env/m_air); 
 
plim=find(theta2(:)>=5&theta2(:)<=21); %between 5-21 degree 
[aa,bb]=findpeaks(dscat(plim));  
peaks=round(theta2(bb+plim(1)),1); %calculation of peak angle 
 
plot(theta2(plim),dscat(plim)./max(dscat(plim)),'LineWidth',2,'Color','r','LineStyle','-'); 
%title('Unpolarised');  
xlabel('Scattering Angle ( ^\circ )','FontSize',16) 
ylabel('Differential scattering cross section (A.U.)','FontSize',16) 
xlim([theta2(plim(1)) theta2(plim(end))]); hold on 
xlim([5 22]) 
ylim([0 1]) 
 
lmb=char(hex2dec('039B')); 
fprintf(['Peaks at;\n' 'Diameter(um): ', num2str(d*1e+6), '\n' ... 
         lmb '(nm): ' num2str(l_vac*1e+9) '\n' ... 
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         'n_sphere: ', num2str(m_sph), [', and \n' ... 
         'n_medium: '], num2str(m_env) ' = [',num2str(peaks) ']\n']) %?? 
 

OUTPUT: 

Peaks at; 

Diameter(um): 8 

Λ(nm): 656.3 

n_sphere: 1.79, and  

n_medium: 1.331 = [7.2         12.2         18.5] 

 

 
Figure A.1 Theoretical result of angular scattering of Me8 particles by 656.3 nm 
laser. 
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APPENDIX B 

Code for Dataset Creation 

clear 
clc 
 
line=0; 
wl=[656.3 514.9 403.8]; 
rad=5:0.5:13; 
nparticle=1.3:0.01:2.2; 
nmed=[1.331 1.3344 1.3388]; 
 
%H20:  1.3310R, 1.3344G, 1.3388B 
%ME:   1.79-R, 1.89-G, 1.96-B 
%PS:   1.589-R, 1.601-G, 1.617-B 
 
for i1=1:length(wl) 
for i2=1:length(rad) 
for i3=1:length(nparticle) 
 
    line=line+1; 
     
    [a(line,:),theta,theta2]=mie(wl(i1),rad(i2),nparticle(i3),nmed(i1)); 
     
    dta(line,1)=wl(i1); 
    dta(line,2)=rad(i2); 
    dta(line,3)=nparticle(i3); 
    dta(line,4)=nmed(i1); 
     
 
end 
end 
end 
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APPENDIX C 

Sample dataset for Model 1 

Table C.1 Sample lines from dataset adjusted for training for Model 1. 

 

In
ci

de
nt

 w
l 

(n
m

)  

n_
m

ed
 

p1
 

p2
 

p3
 

p4
 

d_
pa

rt
 (µ

m
) 

1 403,8 1,3388 8,2 13,4 18,5 0,0 5 
2 403,8 1,3388 8,4 13,6 18,5 0,0 5 
3 403,8 1,3388 8,6 13,6 18,5 0,0 5 
4 403,8 1,3388 8,6 13,6 18,5 0,0 5 
5 403,8 1,3388 8,6 13,6 18,5 0,0 5 
6 403,8 1,3388 8,6 13,6 18,3 0,0 5 

… … … … … … … … 
1545 403,8 1,3388 6,6 8,2 10,1 13,3 13 
1546 403,8 1,3388 6,6 8,4 12,0 15,2 13 
1547 403,8 1,3388 6,7 8,3 10,6 11,4 13 
1548 514,9 1,3344 10,7 17,3 0,0 0,0 5 
1549 514,9 1,3344 10,8 17,5 0,0 0,0 5 
1550 514,9 1,3344 11,0 17,5 0,0 0,0 5 

… … … … … … … … 
3092 514,9 1,3344 6,1 8,2 10,8 15,2 13 
3093 514,9 1,3344 6,1 8,3 10,6 14,8 13 
3094 514,9 1,3344 6,0 8,4 10,2 13,0 13 
3095 656,3 1,331 13,9 0,0 0,0 0,0 5 
3096 656,3 1,331 14,0 0,0 0,0 0,0 5 
3097 656,3 1,331 14,0 0,0 0,0 0,0 5 

… … … … … … … … 
4636 656,3 1,331 7,7 10,4 14,3 19,2 13 
4637 656,3 1,331 7,9 10,1 13,6 18,8 13 
4638 656,3 1,331 7,7 13,2 17,4 0,0 13 
4639 656,3 1,331 7,6 11,1 16,6 21,5 13 
4640 656,3 1,331 7,6 10,7 16,1 20,2 13 
4641 656,3 1,331 7,7 10,5 14,3 19,5 13 
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APPENDIX D 

Sample dataset for Model 2 

Table D.1 Sample lines from dataset adjusted for training for Model 2. 
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)  

1 403,8 1,3388 8,2 13,4 18,5 0,0 1,30 
2 403,8 1,3388 8,4 13,6 18,5 0,0 1,31 
3 403,8 1,3388 8,6 13,6 18,5 0,0 1,32 
4 403,8 1,3388 8,6 13,6 18,5 0,0 1,33 
5 403,8 1,3388 8,6 13,6 18,5 0,0 1,34 
6 403,8 1,3388 8,6 13,6 18,3 0,0 1,35 

… … … … … … … … 
1545 403,8 1,3388 6,6 8,2 10,1 13,3 2,18 
1546 403,8 1,3388 6,6 8,4 12,0 15,2 2,19 
1547 403,8 1,3388 6,7 8,3 10,6 11,4 2,20 
1548 514,9 1,3344 10,7 17,3 0,0 0,0 1,30 
1549 514,9 1,3344 10,8 17,5 0,0 0,0 1,31 
1550 514,9 1,3344 11,0 17,5 0,0 0,0 1,32 

… … … … … … … … 
3092 514,9 1,3344 6,1 8,2 10,8 15,2 2,18 
3093 514,9 1,3344 6,1 8,3 10,6 14,8 2,19 
3094 514,9 1,3344 6,0 8,4 10,2 13,0 2,20 
3095 656,3 1,331 13,9 0,0 0,0 0,0 1,30 
3096 656,3 1,331 14,0 0,0 0,0 0,0 1,31 
3097 656,3 1,331 14,0 0,0 0,0 0,0 1,32 

… … … … … … … … 
4636 656,3 1,331 7,7 10,4 14,3 19,2 2,15 
4637 656,3 1,331 7,9 10,1 13,6 18,8 2,16 
4638 656,3 1,331 7,7 13,2 17,4 0,0 2,17 
4639 656,3 1,331 7,6 11,1 16,6 21,5 2,18 
4640 656,3 1,331 7,6 10,7 16,1 20,2 2,19 
4641 656,3 1,331 7,7 10,5 14,3 19,5 2,20 
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APPENDIX E 

Code for Random Forest algorithm 

clear  
close all 
warning off 
data=readtable('lib_np.xlsx'); 
%data2=readtable('lab_np.xlsx'); %use when lab results will be tested 
prm='np'; %model type 
 
for i=1:20 
i 
cv = cvpartition(size(data,1),'HoldOut',0.2); %%20 of data is separated for testing 
idx = cv.test; 
dataTrain=data(~idx,:); 
dataTest=data(idx,:); 
%dataTest=data2; %use when lab results will be tested 
testing=dataTest(1:end,1:end-1); 
model1=fitensemble(dataTrain,prm,'Bag',100,'Tree','Type','classification'); 
prediction1=predict(model1,testing); 
ms1(i)=(sum(prediction1==table2array(dataTest(:,end)))/size(dataTest,1))*100; 
 
end 
 
accuracy=sum(ms1)/i; 
sdev=std(ms1); 
 
 
fprintf(['Mean of testing ' prm ' values:' num2str(mean(dataTest{:,7})) '\n']); 
fprintf(['Mean of predicted ' prm ' values:' num2str(mean(prediction1)) '\n']); 
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