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Opinion statement
The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 
(FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid 
leukemia (AML) patients. It represents poor prognosis due to continuous activation of 
downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, 
FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), 
such as midostaurin and quizartinib, have been clinically approved. However, patients 
possess generally poor remission rates and acquired resistance when FLT3I used alone. 
Various factors in patients could cause these adverse effects including altered epigenetic 
regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications 
are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, 
critical driver mutations have been identified in genes controlling DNA methylation (such 
as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect 
disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, 
understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis 
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and how they modulate FLT3I’s activity is important to rationalize combinational treatment 
approaches including FLT3Is and modulators of methylation regulators or pathways. Data 
from ongoing pre-clinical and clinical studies will further precisely define the potential 
use of epigenetic therapy together with FLT3Is especially after characterized patients’ 
mutational status in terms of FLT3 and DNA methlome regulators.

Introduction

Acute myeloid leukemia (AML) is a heterogeneous 
clonal disease characterized by aberrant proliferation 
of poorly differentiated cells in the hematopoietic sys-
tem [1]. Patients are characterized based on the genetic 
alterations such as amplifications, deletions, rearrange-
ments, and point mutations. The cytogenetic profiles 
of the patients are important in prognosis to assess 
risk levels and to decide on treatment approaches [2]. 
Some of the common gene mutations in AML are FLT3, 
NPM1, DNMT3A, and N/KRAS, considered significant 
diagnostic and/or prognostic markers [3, 4].

The FMS-like tyrosine kinase 3 (FLT3) encodes 
a receptor tyrosine kinase (RTK), which is mainly 
expressed on immature hematopoietic progenitors and 
hematopoietic stem cells (HSCs) [5•]. As these cells 
mature, the presence of the FLT3 receptor is reduced or 
completely lost [6]. FLT3 signaling is dependent on the 
binding of FLT3 ligand (FLT3L) to FLT3, resulting in 
dimerization of the receptor and autophosphorylation 
of the tyrosine residues. Then, downstream signaling 
pathways including PI3K/AKT, MAPK, and JAK2/STAT5 
are activated, leading to increased cell growth and 
decreased apoptosis [7]. Two main mutations in the 
FLT3 receptor are internal tandem duplication (ITD) 
and tyrosine kinase domain (TKD) mutations, account-
ing for 20–25% and 5–10% of newly diagnosed AML 
patients, respectively [8]. These mutations cause FLT3L-
independent dimerization and continuous activation 
of the receptor, initiating the aforementioned down-
stream signaling pathways, thereby increasing cell pro-
liferation and suppressing apoptosis [1, 8]. FLT3-ITD 
mutations are associated with lower overall survival 
(OS) rate, poor treatment response, and shorter dis-
ease-free survival (DFS), which makes FLT3 an appeal-
ing treatment target in AML [9, 10]. Several small 
molecule inhibitors named FLT3 inhibitors (FLT3Is) 
have been developed with promising preclinical and 

clinical outcomes, some of which, including midostau-
rin, sorafenib, gilterinitib, and quizartinib, have been 
clinically approved for different clinical settings [11].

Pathogenesis of FLT3-ITD AML is not only triggered 
by this specific mutation but also by several epigenetic 
alterations [12]. Epigenetics alters gene expression with-
out any change in the DNA sequence, which mainly 
includes DNA methylation, histone modification, and 
chromatin remodeling and impacts cell growth and 
disease development [13–15]. Dysregulation of epige-
netic mechanisms activates oncogenes, inhibits tumor 
suppressor genes, and destabilizes the chromosomes, 
which leads to the development and progression of can-
cer [16]. Hence, several epi-mutations are commonly 
found in FLT3-ITD AML, including the gene mutations 
in histone modification Enhancer of Zeste Homologue 2 
(EZH2) and the additional sex combs-like gene (ASXL1), 
regulation of DNA methylation (DNMT3A, TET2), and 
enzymes regulating metabolism (IDH1/2) with epige-
netic consequences [14, 17]. Since epigenetic changes 
are reversible, targeting epigenetic regulators is thought 
to be a promising strategy in AML, such as using hypo-
methylating agents (HMAs), 5-azacitidine and decit-
abine, and histone deacetylase (HDAC) inhibitors [14]. 
However, the therapeutic efficacy of HMAs and HDAC 
inhibitors are limited when used as single agents. Hence, 
combination strategies of epigenetic therapy with tar-
geted therapies such as FLT3Is are currently at different 
stages of pre-clinical and clinical studies.

In this review, the importance of DNA methylation 
in healthy and abnormal AML hematopoiesis will be 
summarized. Moreover, pre-clinical and clinical data 
regarding the role of DNA methylome alterations in 
the pathogenesis and treatment modalities of FLT3-ITD 
AML and potential approaches to target DNA methyla-
tion regulators alone or in combination with FLT3Is 
used in the clinic will be discussed.
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FLT3‑ITD AML
Molecular biology of FLT3‑positive AML

The human FLT3 gene is found on chromosome 13q12, containing 24 exons 
and 993 amino acid residues and encodes for FLT3 transmembrane receptor 
belonging to type III RTK family [8, 18, 19]. Major cell types expressing FLT3 
receptor are HSCs, multipotent progenitors, most myeloid and lymphoid 
progenitor cells, and mature dendritic cells [20]. Each FLT3 receptor contains 
an extracellular domain made up of 5 immunoglobulin-like subdomains, a 
transmembrane domain, an intracellular juxtamembrane (JM) domain, and 
an intracellular C-terminal domain [8]. The intracellular domain is composed 
of tyrosine kinase domain 1 (TKD1) and tyrosine kinase domain 2 (TKD2), 
which are linked by an activation loop (A-loop) [8].

FLT3L is an extracellular ligand being either attached to the cell membrane 
or in a soluble state, which is mainly produced by lymphocytes, HSCs, and bone 
marrow stromal cells [21]. FLT3L concentration is generally low but can increase 
due to aplasia, ensuring the controlled activation of FLT3 via negative-feedback 
mechanism [22]. When FLT3L binds to the extracellular domain of the recep-
tor, FLT3 receptor undergoes dimerization followed by conformational changes 
in the JM domain, making the kinase domain accessible for ATP binding, and 
consequent autophosphorylation and activation of the receptor [10, 18, 23].

Two major FLT3 mutations, ITD and TKD, account for approximately 30% 
of AML patients, making them the most frequently identified mutations in AML 
[5•]. These mutations cause FLT3L-independent dimerization and activation of 
FLT3 receptor, hence, resulting in aberrant proliferation of the malignant cells 
even in the absence of FLT3L [24]. FLT3-ITD mutations occur in the JM domain, 
involving duplications of a fragment which vary in length and position [25, 26]. 
FLT3-ITD mutations are associated with increased relapse and reduced OS and 
the length of the duplicated fragment is inversely correlated with the OS [11, 25, 
27]. On the other hand, FLT3-TKD mutations generally consist of single amino 
acid substitutions, deletions, or insertions located in the A-loop of the TKD, 
resulting in the loss of auto-inhibition [28]. Several signaling pathways regulat-
ing proliferation, differentiation, and apoptosis of HSCs are activated upon FLT3 
dimerization [21]. Upon FLT3 binding, a series of events are triggered including 
autophosphorylation of tyrosine residues followed by adaptor proteins (such 
as GRB2, SHP2, and SRC family kinases) binding. These interactions primarily 
lead to the activation of PI3K/AKT/mTOR and RAS/MEK/ERK pathways [29–33]. 
FLT3-ITD and -TKD mutations activate similar pathways; however, FLT3-ITD spe-
cifically induces the JAK/STAT pathway through phosphorylation of STAT5A. Fur-
thermore, FLT3-ITD mutations cause the reduced expression of C/EBPalpha and 
PU.1, which are crucial transcription factors for myeloid cell differentiation [34].

Clinically approved FLT3 inhibitors
Several tyrosine kinase inhibitors (TKIs) to target mutant FLT3 have been 
investigated. However, only some of them have been approved for the 
treatment of FLT3-ITD AML including midostaurin, sorafenib, gilterinitib, 
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and quizartinib [5•]. TKIs are categorized as first- and next-generation 
inhibitors, distinguished by their particular capacity to inhibit FLT3 and 
the related downstream cascades [10, 11]. These inhibitors can be further 
characterized as type I or type II inhibitors depending on their effective-
ness against both FLT3-ITD and -TKD mutations, or solely against FLT3-ITD 
mutations, respectively [10, 11, 35].

Midostaurin is a first-generation, type I FLT3I, targeting both FLT3-ITD 
and -TKD mutations [5•]. Midostaurin is originally a protein kinase C 
inhibitor; however, it also inhibits other tyrosine kinases including FLT3 
[36]. After recognition of FLT3 mutations in AML pathogenesis, midostau-
rin is characterized as a FLT3i based on in vitro and in vivo studies [37]. 
Reports have shown that midostaurin inhibits FLT3 receptor signal trans-
duction and induces cell cycle arrest and apoptosis [36]. In early clinical 
trials, midostaurin showed limited and transient activity as a single-agent 
treatment and induced about a 50% reduction in peripheral and bone 
marrow blast counts in relapsed/refractory (R/R) AML patients with FLT3 
mutation [38]. When patients carrying either wild-type FLT3 or mutated 
FLT3 were treated, midostaurin achieved 42% and 71% reduction in the 
peripheral and bone marrow blasts, respectively [39]. Therefore, midos-
taurin failed to induce complete remission (CR). The limited clinical effi-
cacy of midostaurin is resulted from the activation of alternative pathways, 
protection of leukemic clones, and limited presence of free midostaurin in 
the plasma [38, 39]. However, combination of midostaurin with other cyto-
toxic agents showed promising results in in vitro models followed by clini-
cal trials [40, 41]. Combination of midostaurin with standard chemother-
apy in newly diagnosed younger patients with FLT3-mutated AML achieved 
high CR and high OS rates [42]. The milestone RATIFY (NCT00651261) 
trial led to approval of midostaurin by Food and Drug Administration 
(FDA) in 2017 with the results of significantly increased OS and reduced 
death by 22% regardless of the high or low mutant allelic fractions or pres-
ence of TKD mutation [43, 44].

Sorafenib is a first-generation, type I FLT3I originally developed as a RAF 
kinase inhibitor. Sorafenib has also shown activity against other tyrosine 
kinases including FLT3 [45]. In vitro studies reported that sorafenib inhib-
its phosphorylation of downstream target proteins of FLT3 including RAF, 
MEK, ERK, and STAT5A and induces apoptosis in a Bim-dependent manner 
[45–47]. SORMAIN study demonstrated that addition of sorafenib results 
in higher probability of 24-month OS [48••]. Sorafenib showed safe and 
efficient profile on FLT3 mutant AML when it is combined with stand-
ard anthracycline/cytarabine induction therapy [49]. In the study includ-
ing 99 newly diagnosed FLT3-ITD AML patient, sorafenib plus intensive 
chemotherapy showed better OS [50]. The results of these clinical studies 
resulted in approval of sorafenib by National Comprehensive Cancer Net-
work (NCCN) in 2019 [51].

Gilteritinib is a type I, next-generation FLT3I having more potency against 
mutated FLT3. The mechanism of action of gilteritinib is through binding of 
the drug to the active site of the receptor and stabilizing the inactive confor-
mation, thereby inhibiting the downstream signaling molecules including 
ERK and STAT5 [52]. FDA approval of gilteritinib in 2018 for the treatment of 
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R/R AML FLT3 patients was based on ADMIRAL trial (NCT02421939) which 
reported higher CR and OS rates compared to salvage chemotherapy. In this 
trial, 49 patients treated with gilteritinib lived more than 2 years [53, 53, 54].

Quizartinib, a next-generation, type II FLT3i showed high potency, precise 
kinase selectivity, and favorable pharmacokinetic properties in in vitro and 
in vivo studies, making it a great candidate for clinical trials [55, 56]. QUAN-
TUM-R (NCT02039726), which is a phase III study assessing quizartinib as a 
monotherapy in R/R FLT3-ITD AML patients, resulted in increased OS com-
pared to salvage chemotherapy [57••]. Thirty-two percent of patients treated 
with quizartinib arm could proceed to an allogeneic stem cell transplanta-
tion (allo-SCT), which was 11% in salvage chemotherapy group. However, 
quizartinib caused cardiac toxicities and strong myeloid suppression which 
prevented its approval by FDA in the USA although it is approved as mono-
therapy in R/R FLT3-ITD AML in Japan in 2019 [58]. In 2023, FDA approved 
quizartinib based on the results from the QuANTUM-First (NCT02668653), 
a phase 3 clinical trial, to be used as an induction therapy with standard 
chemotherapy, cytarabine consolidation therapy, and as maintenance mono-
therapy, despite its side effects [59].

Epigenetics in FLT3‑ITD AML
Cancer arises from a series of disruptions to the regulation of various cel-
lular processes, such as cell growth, immortality, angiogenesis, cell death, 
invasion, and metastasis. Persistent changes in these functions are often 
driven by genetic mechanisms like mutations, copy number alterations, 
insertions, deletions, and recombination. As a result, cancer has tradition-
ally been considered primarily a genetic disease. However, it is now clear 
that epigenetic changes offer an alternative route for acquiring stable onco-
genic characteristics [12].

Epigenetics is commonly described as a genomic mechanism that exerts 
reversible effects on gene expression without changing DNA sequence [13]. 
These mechanisms involve DNA methylation, histone modification, chroma-
tin remodeling, and RNA-associated modifications [14]. Epigenetic changes 
have the ability to influence cellular phenotype and to control several cellular 
activities such as cell growth, differentiation, and disease development [15]. 
Dysregulation of epigenetic mechanisms plays a crucial role in the devel-
opment and progression of cancer, as they could activate oncogenes, cause 
chromosomal instability, and silence tumor suppressor genes [16]. Moreover, 
recurrent somatic alterations in genes with crucial roles in epigenetic regula-
tion are frequently seen in AML [17]. Clinical observations and experimen-
tal evidences show that epigenetic mutations contribute to a pre-leukemic 
state but not adequate to cause full-blown acute leukemia [60]. Notably, 
the frequency of epigenetic mutations correlates with increasing age of AML 
patients. These mutations are also used as markers of prognostic risk strati-
fication in AML [61]. As the changes caused by epigenetic mutations in the 
genome are frequently reversible, targeting epigenetic regulators or pathways 
holds important implications for therapeutic approaches in a specific subtype 
of AML, FLT3-ITD AML (Fig. 1) [14].
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DNA methylome modifiers and their roles in FLT3‑ITD AML
DNA methylation regulators in healthy and abnormal hematopoiesis

DNA methylation is a significant epigenetic modification in eukaryotic cells 
with a crucial role in regulating gene expression [62]. It is involved in several 
processes such as embryonic patterning, X-inactivation, and genomic imprinting 
[63]. The control of gene expression is achieved through addition of a methyl 
group to cytosine residues at specific CpG islands found in the promoter regions 
of about 50% of human genes, resulting in formation of 5-methylcytosine 
(5mC) [62, 64]. Cytosine methylation in these promoter regions leads to the 
recruitment of corepressor complexes, resulting in reduced gene expression [4]. 
Both hypo- and hypermethylation of CpG islands at different locations have 
been associated with the development of leukemia [62]. Hypermethylation of 
transcriptional enhancers and promoters of protein coding and non-coding 
genes is observed in different cancer types including AML [65]. These genes are 
associated with cell cycle control, DNA repair, apoptosis, and signaling pathways 

Fig. 1  Mechanisms of action of DNA methylation targeting involved in FLT3-ITD AML pathogenesis. This figure summarizes 
new therapeutic strategies targeting DNA methylome in FLT3-ITD AML.
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[66–68]. For instance, the results of a cohort study including 344 AML patients 
indicated that downregulation of genome-wide gene expression was found to be 
linked to hypermethylation of the genes in the majority of patients and distinct 
methylation profiles could be observed in different AML subtypes. However, 
DNA methylation is not likely to be the only factor for leukemogenesis [69].

DNA methyltransferases in hematopoiesis

DNA methyltransferases (DNMTs) are responsible for DNA methylation, which 
are encoded by DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3L genes 
in the human genome [70]. DNMT1, DNMT3A, and DNMT3B possess func-
tional methylation activities. DNMT3A and DNMT3B called de novo meth-
yltransferases are responsible for methylation of several CpG islands while 
DNMT1, the maintenance methyltransferase, shows a higher affinity for hemi-
methylated CpG dinucleotides [70–72]. DNMT1 level reaches the highest at the 
early S phase, methylating the newly synthesized CpG sites located opposite to 
methylated CpGs on the mother strand during the S phase of DNA replication, 
ensuring highly accurate maintenance of methylation patterns and decreases 
to its lowest level at G1 phase [72, 73]. The dynamics of DNA methylation 
determines the fate of HSCs [74, 75]. Although CpG methylation in HSCs and 
progenitor cells is low during normal differentiation process, CpG methyla-
tion is increased in the specific regions of the genes to be silenced that are not 
associated with the committed lineage to ensure proper differentiation [76]. 
For instance, loss of methylation of transcription factors like PRDM16, MEIS1, 
and HOXA9 is important for myeloid differentiation [77]. The maintenance 
of DNMT1 is essential for HSC survival and development through controlling 
self-renewal and differentiation, and suppressing apoptosis [74, 78, 79]. HSCs 
express higher levels of DNMT1 and its loss disrupts the differentiation and 
self-renewal potential of HSCs and progenitor cells [79]. DNMT1 depletion 
in HSCs leads to decreased promoter methylation of myeloerythroid genes 
including CD48, GATA1, C/EBPalpha, and ID2 resulting in reactivation of these 
genes, which hence induce skewed differentiation to myeloerythroid lineages 
with impaired lymphopoiesis [74, 80]. Similar to DNMT1, DNMT3A is also 
important for HSC self-renewal and differentiation [81]. DNMT3A-deficient 
HSCs in mice led to extensive repopulation of HSCs and declined the differ-
entiation potential. Aberrant methylation pattern was observed in differentia-
tion-related genes such as FLK2, PU.1, and IKAROS. Also, multipotency-related 
genes including RUNX1, GATA3, PBX1, and CDKN1A were hypomethylated 
[81–83]. Loss of DNMT3B appears to have similar phenotype to DNMT3A loss 
but the effects are milder [84].
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DNA methyltransferases in FLT3-ITD AML

DNMTs are involved in cancer initiation by its increased or decreased 
expression resulting in hyper- or hypomethylation, respectively. 
Therefore, they regulate several tumor suppressor genes and onco-
genes including BRCA1 and TGFβ in different cancer types and loss of 
DNMTs cause demethylation and re-expression of several tumor sup-
pressor genes [85–87]. DNMT1 also maintains genomic stabil-ity 
through the interaction with DNA damage repair (DDR) systems that 
its disruption may contribute to cancer development. There are sev-
eral studies showing hypermethylation of DDR genes in different can-
cer types [88–90]. In 2002, Di Croce provided the first mechanistic  
proof connecting genetic and epigenetic alterations in leukemogenesis  
suggesting that abnormal methylation of the genome plays a role in  
the early stages of tumorigenesis [91]. Di Croce found that PML-RAR  
fusion protein, an oncogenic transcription factor, recruited DNMT1 
and DNMT3A to retinoic acid receptor beta 2 leading to its methylation  
and subsequent gene silencing in acute promyelocytic leukemia (APL)  
[91]. The interaction of DNMT1 with STAT3 and HDAC1 resulted in  
hypermethylation of SHP-1 tyrosine phosphatase in cutaneous T cell 
lymphoma [92]. The interaction of DNMT3A and DNMT3B with PU.1  
in murine hematopoietic progenitor cells resulted in methylation of 
p16 tumor suppressor gene [93]. These studies suggest that DNMTs can  
be recruited by oncogenic transcription factors to CpG sites of tumor 
suppressor genes leading to aberrant methylation and silencing of the  
genes involved in tumorigenesis. Moreover, these three DNMTs were 
reported to be overexpressed in AML cells [94].

DNMT3B mutations are rare in AML and de novo methylation activ-
ity is mainly due to DNMT3A in AML cells [95, 96]. DNMT3A mutations 
can be missense, nonsense, frame-shift, and splice-site mutation. The 
most common mutation in DNMT3A is at a single amino acid residue 
which is arginine 882 [97]. HSCs with DNMT3A mutation undergo a pre-
leukemic state with increased self-renewal which results in dysregulated 
DNA methylation [83, 98, 99]. This aberrant methylation pattern could 
be important to detect AML with no clinical indication [95]. Malignant 
transformation of HSCs in pre-leukemic state occurs by acquiring addi-
tional genetic alterations including FLT3, NPM1, and IDH1 mutations  
[97]. Moreover, this aberrant methylation in AML results in decreased 
expression of miRNA-370, a tumor suppressor, and increased expression 
of FOXM1, a tumor-promoting factor. Furthermore, dysregulated miR- 
NAs in AML post-transcriptionally regulates DNMT1 which might lead  
to overexpression of DNMT1 [100]. Development and relapse of AML  
can be triggered by DNMT1 overexpression through hypermethylation 
of tumor suppressor genes. For instance, spalt-like transcription factor 4 
(SALL4), which is a key molecule in hematopoiesis and leukemogenesis, 
leads to recruitment of DNMT1 to its promoter to block self-repression 
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of HSCs [101–103]. Fatty acid-binding protein 4 (FABP4) also regulates 
DNMT1 expression by inducing IL-6/STAT3 axis promoting AML aggres-
siveness [104].

There are limited mechanistic studies on the role of DNMTs particu-
larly in FLT3-ITD-positive AML. SHP-1 is a tumor suppressor gene nega-
tively regulating JAK/STAT signaling which has an essential role in reg-
ulation of immune response, cell growth, and differentiation, therefore 
also in pathogenesis of AML. Mechanistically in FLT3-ITD-positive AML, 
upregulation of DNMT1, DNMT3A, and DNMT3B hypermethylate SHP-
1 result in silenced SHP-1 and aberrant activation of STAT3 [105, 106]. 
Other tumor suppressor genes negatively controlling JAK/STAT pathway  
including SOCS-1 and SOCS-3 were also found to be silenced via promoter  
hypermethylation by DNMT1 [105]. Inhibition of DNMTs led to increased  
re-expression of tumor suppressor genes including CDKN2B, BIM, and 
CDKN2A in FLT3-ITD-positive AML [107]. The gene expression signature  
of FLT3-ITD/DNMT3A co-mutated murine models showed that HOXB3, 
CDKN2C, MYC1, ZFP521, and MEIS1 genes, some of which are related to  
HSC self-renewal and differentiation, were upregulated compared to wild- 
type murine models [108]. Another study showed that FLT3-ITD mutation  
together with DNMT3A mutation or deletion in mice caused resistance to  
PARP inhibitor [109]. High expression of DNMT3B was associated with 
low expression of MTSS1, a tumor suppressor, and decreased OS, while 
low expression of DNMT3B is linked to high expression of MTSS1 and 
increased OS. Moreover, in murine AML cells overexpressing FLT3-ITD,  
MTSS1 was found to be downregulated which might be linked to DNMT3B  
overexpression [110].

Ten-eleven-translocation enzymes in hematopoiesis

Another epigenetic regulator includes ten-eleven-translocation (TET) 
enzymes which catalyze the oxidation of 5mC to form 5-hydroxym-
ethylcytosine (5hmC) [111]. These enzymes are crucial for both active 
and passive DNA demethylation influencing the binding and recruit-
ment of chromatin regulators [112]. Active DNA methylation is carried 
out by oxidation of 5hmC to 5-formylcytosine and 5-carboxylcytosine 
which are directly recognized by thymine DNA glycosylase-mediated 
base-excision repair to produce unmethylated cytosine [113]. While 
TET1 and TET2 play a role in oxidation of 5mC, TET3 does not modify 
the DNA but it does regulate the expression level of TET2 [114], of 
which the enzymatic activity is important for myelopoiesis and non-
catalytic activity is needed for HSC self-renewal and lymphopoiesis 
[115]. Moreover, 5hmC can be recognized by specific transcription fac- 
tors (e.g., MECP2, the MBD3/NURD complex, UHRF1, UHRF2, 
SALL1/SALL4, PRMT1, RBM14, and WDR76) to induce gene expres-
sion [116, 117]. Also, TET proteins act as tumor repressor by main-
taining genomic stability [113]. TET proteins mark the dam-
aged DNA sites and control the expression of DNA repair genes 

727



Current Treatment Options in Oncology (2024) 25:719–751

including RAD50, BRCA1, RAD51, BRCA2, and TP53BP1 [118]. 
SMAD nuclear interacting protein 1 (SNIP1) is another TET2 inter- 
actor during DNA damage response. SNIP1 regulates c-MYC target  
genes participating in apoptosis by recruiting TET2 to the promoter  
region of c-MYC target genes [119]. Loss of TET1/TET2 or TET2/
TET3 results in impaired DNA repair, suggesting that it promotes 
genomic stability. TET2 cooperates with TET1 and TET3 [120–123].  
Consequently, loss of TET2 results in reduced 5hmC marks at the dam-
aged regions impairing the DNA repair [118, 120, 124, 125].

As DNMTs, TET protein family is also important for normal  
hematopoiesis [95]. The regulation of epigenetic landscape in hemat-
opoietic stem/progenitor cells (HSPCs) by TET family controls the 
phases of lineage commitment at various differentiation stages [112, 
120, 126–128]. Therefore, TET proteins collaborate with lineage-spe- 
cific transcription factors [129–131]. TET1 deficiency in HSCs of mice  
led to skewed differentiation into B cell lineage showing that TET1 is 
important for lymphoid differentiation [132]. TET3 deletion in mice 
resulted in increased number of HSCs without disturbing the frequency 
of differentiated cells [132]. TET2 is vastly expressed in HSCs but its 
expression is reduced after differentiation [133]. During myelopoiesis, 
C/EBPalpha activates TET2 and in cooperation with PU.1 and RUNX1 
transcription factors, it is recruited to myeloid target genes including 
KLF4, CHD7, JUN, and SMAD3 [131, 134–137]. TET2 also regulates 
the genomic accessibility of erythroid transcription factors including  
GATA1, SCL, and KLF1 [129, 130]. Deletion of TET2 in mice enhanced 
the self-renewal capacity of HSCs by increasing the expression of MEIS1 
and EVI1, and resulted in methylated erythroid transcription factor  
binding sites to block erythroid differentiation [137, 138]. There-
fore, TET2 disruption shifted differentiation toward myeloid lineages 
[137]. Not only homozygous but also heterozygous disruption of TET2 
enhanced the self-renewal capacity and myeloid differentiation show- 
ing that haploinsufficiency of TET2 is enough to disturb HSCs homeo-
stasis [112, 128, 139, 140]. Moreover, miRNA-22 and CXXC-containing 
protein IDAX target TET2 for degradation. Overexpression of miRNA-22 
and CXXC-containing protein IDAX also caused increased self-renewal 
and defective differentiation of HSCs [134, 141, 142].

Ten-eleven-translocation enzymes in FLT3-ITD AML

TET2 mutations are considerably common in hematological malig-
nancies among three TET genes and TET3 alterations are the least 
common [143, 144]. In myeloid malignancies, TET1 has a tumor-
promoting role. Especially in AML with MLL-fusion proteins, TET1 
overexpression has been observed [145]. TET1 exerts an oncogenic 
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role in AML as it upregulates the expression of oncogenes includ- 
ing HOXA9, MEIS1, and PBX3 [145] and downregulates the tumor sup-
pressor targets such as miR-22 [146].

miR-22 represses CRTC1, FLT3, and MYCBP in FLT3-ITD human and 
mouse leukemic cells. Upregulation of TET1 represses miR-22 which 
eventually leads to aberrant activation of CREB, FLT3, and MYC pathway 
resulting in increased expression of oncogenic downstream targets [147]. 
High TET1 expression also regulates important oncogenic pathways as 
targeting STAT/TET1 axis proposed as a targeted therapeutic strategy in 
TET1 overexpressed AML [145, 148]. TET3 regulates the genes involved in 
AML-associated genes, glucose metabolism pathways, and STAT5A signal-
ing pathway. Therefore, overexpression of TET3 promotes AML progres- 
sion through epigenetic regulation of glucose metabolism and leukemic 
stem cell–associated pathways [149]. TET2 mutations can be deletions, 
nonsense, and missense mutations at highly conserved residues inactivat-
ing the enzyme [150, 151]. TET2 mutations are associated with reduced 
5hmC levels, increased DNA methylation, and therefore increased epige-
netic silencing [152]. TET2 controls the self-renewal of HSCs; hence, its 
loss in mouse model resulted in expansion of stem cells with increased 
repopulation ability [138, 146]. Consequently, TET2 mutations in HSCs 
leads to shift into pre-leukemic state which disrupts the ability of HSCs 
to differentiate into mature blood cells. TET2 mutations are considered 
early event in myeloid malignancies and additional mutations are needed 
for the development of full-blown leukemia [83, 98, 153]. TET2-mutated 
myeloid malignancies tend to have more mutational events than the  
TET2 wild-type malignancies suggesting that loss of TET2 causes hyper-
mutagenicity [123]. Mutations in TET2 gene have been found in differ- 
ent hematologic malignancies including CMML, lymphoma, AML, MDS, 
and MPN [133]. Although the exact role of TET2 mutations and which 
genes and pathways it regulates is not fully understood in AML, in vitro 
studies and animal models suggest that loss of catalytic function of TET2 
may contribute to leukemogenesis due to disruption of the cell renewal 
control, but its sole mutations are insufficient to induce AML [112, 152].

AML patients with TET2 mutations showed aberrant methylation and 
expression profiles of SRSF2, ASXL1, RUNX1, DNMT3A, FLT3-ITD, C/ 
EBPalpha, and JAK2 compared to TET2 wild-type AML patients [154]. 
Although TET2 mutation alone is not enough to induce leukemia, TET2 
loss in combination with FLT3-ITD mutation is found to be sufficient to 
induce AML in vivo [152, 155]. Moreover, survival of these TET2 ( −)/
FLT3-ITD ( +) mice was significantly reduced compared to FLT3-ITD sin- 
gle mutated mice. Loss of TET2 in FLT3-ITD-mutated mice model resulted 
in reduced expression of GATA2, which is a regulatory gene in hemat-
opoiesis and differentiation. Re-expression of GATA2 leads to restoration 
of differentiation and attenuates leukemogenesis [152]. TET2/FLT3-ITD 
co-mutation is also associated with the increased expression of long non-
coding RNA (lnc) MORRBIDD specific to myeloid cells to regulate the  
lifespan, and loss of MORBID in TET2/FLT3-ITD-mutated mice model 
caused increased expression of BIM resulting in apoptosis and attenuated 
disease progression [156]. AML cells harboring both TET2 and FLT3-ITD 
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mutations showed hypermethylation profiles in the regulatory elements  
of the genes including ID1, GATA1, MPL, and SOCS2 involved in self-
renewal and differentiation [152].

Isocitrate dehydrogenases in hematopoiesis

Isocitrate dehydrogenases (IDHs) are  NADP+-dependent enzymes 
catalyzing the conversion of isocitrate to a-ketoglutarate (a-KG) via 
oxidative decarboxylation within the krebs cycle [111, 157, 158]. 
The conversion of isocitrate to a-KG by IDH1/2 generates a cru- 
cial reducing agent, NADPH, which plays a pivotal role in regulat- 
ing cellular defense mechanisms against oxidative stress through 
reduction of glutamine metabolism [159]. During this process, 
cells produce citrate and acetyl-CoA to sustain lipid metabolism 
and promote cellular growth under hypoxic conditions [160].  
a-KG also binds to JmjC domain-containing histone demethyl- 
ases (JmjC KDMs), TET2 and EGLN family of prolyl hydroxylases 
(PHDs), and ALKB homolog (ALKBH) DNA repair enzymes which 
have crucial roles in histone methylation, DNA methylation, and 
DNA repair, respectively [161, 162]. Hence, loss of IDH1/2 results  
in impaired detoxification mechanism and aberrant methylation 
leading to increased DNA damage and genome instability in cancer  
cells [163].

IDH1 is primarily located in the cytoplasm and peroxisomes,  
while IDH2 is localized in mitochondria [164]. IDH3 is the third  
isozyme located in the mitochondria; however, it has not been  
defined as mutated in cancer [165]. IDH1/2 mutations are hete- 
rozygous missense mutations in a single R residue within the active  
site of the enzyme [166]. Three conserved arginine residues, R132  
for IDH1 and R172 and R140 for IDH2, are commonly mutated  
with wide-range of substitutions including polar (H, C, K, S, T,  
Q) and bulky nonpolar (W, V, M) amino acids [158]. The most  
common substitutions include IDH1 R132H, IDH1 R132C, IDH2  
R172K, IDH2 172 M, and R140Q [167]. These mutations change  
the structure of the enzyme leading to reduced affinity to isocitrate  
and increased affinity to a-KG and NADPH to produce 2-hydroxy- 
glutarate (2-HG) and  NADP+ [168]. 2-HG disrupts metabolic pro- 
cesses and suppresses the krebs cycle, reducing the availability  
of α-ketoglutarate [169]. In cancer cells, IDH1/2 mutations lead  
to excessive accumulation of 2-HG, which is an oncometabolite  
inducing biochemical and epigenetic alterations though competi- 
tive inhibition of a-KG-dependent enzymes including KDMs, PHDs,  
TETs, and ALKBH DNA repairs enzymes [167]. For instance, inhibi- 
tion of TET2 by 2-HG leads to increased 5mC levels; hence, IDH1/2 
and TET2 mutations are mutually exclusive showing significant  
overlap methylation signatures [111]. IDH1 R132H mutant allele 
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expression in mice mirrored many aspects of TET2 mutation and  
led to an increase in total 5-mC amount in HSPC compartment and  
bone marrow [114, 170]. Moreover, hypermethylation signatures in 
IDH1/2 mutant AML patient samples and TET2 mutant AML patient  
samples overlap and 93% of the genes which were overexpressed in  
TET2-mutated samples were also overexpressed in IDH1/2 mutated  
samples [111].

Expression of IDH2 R140Q mutation in murine bone marrow  
cells inhibited myeloid differentiation and caused accumulation of  
immature progenitor cells [111]. Furthermore, expression of either  
IDH2 R140Q or IDH1 R132H in TF-1 human erythroleukemia cell  
line blocked the differentiation [171–173]. Retroviral transfection  
of  CKIT+ with IDH2 140Q and IDH2 R172K resulted in decreased  
number of myeloid progenitor cells and HSC accumulation [174]. 
Moreover, IDH1 R132H or IDH2 R140Q overexpression in HSCs led  
to extramedullary hematopoiesis and splenomegaly showing the pres-
ence of a myeloproliferative disease [175–177]. Mechanistically, TET2  
is inhibited by 2-HG; therefore, TET2 cannot regulate PU.1 and WT1 
target genes, leading to transcriptional repression [178, 179]. Not only 
PU.1 target genes but also GATA1 and GATA2 binding sites were 5mC 
enriched in IDH1/IDH2 mutant cells [111, 178, 180]. IDH1-mutated  
cells displayed overexpression of HOXA and HOXB cluster genes alter-
ing the differentiation which was associated with altered expression  
of RUNX1, PU.1, GATA1, and C/EBPalpha transcription factors [181]. 
In addition to TET2 inhibition, KDM inhibition by 2-HG results in 
decreased histone demethylation leading to differentiation blockage 
and promoted self-renewal of HSCs [162]. Hence, IDH1/2 mutations 
and 2-HG accumulation result in inhibition of blocked differentiation  
of HSCs and enhanced self-renewal through inhibition of DNA and  
histone demethylation [182]. 2-HG inhibits ALKB family proteins in a 
similar manner to TET enzymes; therefore, inhibition of ALKB family  
proteins leads to reduced DNA repair and accumulated DNA damage 
which may lead to cancer development through mutations [183].

Isocitrate dehydrogenases in cancer

Inhibition of PHD, which are the regulatory proteins to degrade hypoxia-
inducible factor 1a (HIF-1a), also promotes cancer development and pro-
gression [162]. In addition to aforementioned effects of accumulation of 
2-HG, apoptosis and cell cycle regulation are also affected by the IDH1/2 
mutations. Mutant IDH1 leads to suppression of CDKN2A and CDKN2B 
stimulating MAPK pathway and results in enhanced cell proliferation [176, 
184]. Furthermore, 2-HG inhibits cytochrome-c oxygenase, a component 
of the mitochondrial electron transport chain involved in removal of  
reactive oxygen species. Although the precise mechanism remains  
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unclear, this inhibition leads to elevated BCL-2 expression, thereby inhib-
iting apoptosis in leukemic cells [185]. 2-HG stabilizes NF-kB activation 
in bone marrow stromal cells through ERK kinase pathway; hence, active 
NF-kB activates IL-6 and IL-8 secretion inducing AML cell proliferation 
[183]. 2-HG also induces hypermethylation signatures on the WNT inhib-
itory signals leading to increased stemness [186].

Despite the epigenetic and cellular changes caused by IDH1/2 muta-
tions, expression of mutant IDH1/2 enzymes does not induce leuke- 
mic transformation [182]. Mouse models expressing mutant IDH1 or  
IDH2 showed similar patterns to those found in AML patients such  
as increased early hematopoietic progenitors, splenomegaly, anemia,  
hypermethylated DNA, and histone signatures. However, the mouse  
models did not develop full-blown leukemia [175]. Therefore, IDH1/2 
mutations are considered early events in leukemogenesis and additional 
mutations including FLT3, MEIS1A, HOXA9, and NRAS are crucial to  
drive leukemogenesis [174, 177].

Prognostic impact of DNMTs in FLT3‑ITD AML
Mutations in DNMT3A is identified in 15–25% of AML patients [62] and 
36–44% of FLT3-ITD-positive AML patients carry concurrent DNMT3A  
mutations [187]. Although the role of mutant DNMT3A in leukemia devel- 
opment remains unclear, one hypothesis proposes that mutant DNMT3A  
has a dominant negative effect over wild-type DNMT3A [98]. Notably 
R882H mutation in AML cells has been reported to have a significant  
reduction in de novo methyltransferase activity and increased proliferation 
[96, 188]. Co-occurrence of DNMT3A mutations with FLT3-ITD mutation 
is found to be indicative of a poorer prognosis [97, 189]. The peripheral 
white blood cell count is significantly higher in DNMT3A/FLT3-ITD co-
mutated AML patients compared to FLT3-ITD AML patients and DNMT3A/
FLT3-ITD mutations results in higher burden of disease compared to only 
DNMT3A-mutated AML patients [190, 191]. Concurrent DNMT3A and  
FLT3-ITD mutation in AML patients is related to poorer OS and worse  
outcomes after chemotherapy compared to single mutated FLT3-ITD or 
DNMT3A AML patients [190–194] The effectiveness of chemotherapy is  
also decreased in DNMT3A/FLT3-ITD-mutated patient group [191]. More- 
over, patients carrying persistent DNMT3A/FLT3-ITD mutations had the  
highest rate of relapse after induction therapy [195]. Furthermore, early  
presence of DNMT3A mutations is found to be linked to a higher inci- 
dence of FLT3-ITD-positive clones at relapse [64, 196]. While DNMT3A 
mutations are the most studied ones in FLT3-ITD AML, there are limited 
studies related to the roles of other DNMTs. High DNMT1 expression was 
correlated with p15 methylation in FLT3-ITD AML and DNMT1 inhibition 
caused upregulation of p15 and p16 tumor suppressor genes [107]. Another 
report showed that high DNMT3B expression was observed in FLT3-ITD  
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AML patients compared to FLT3-WT AML patients, which was associated  
with poor prognosis [110].

Prognostic impact of TETs in FLT3‑ITD AML
TET1 mutations are found in 1–5% AML patients [17]. As the most mutated 
TET family protein is TET2, mutations in TET2 gene are observed in 7 to 
23% of AML patients particularly with a normal karyotype and are asso- 
ciated with poorer OS and reduced response to chemotherapy [62, 64,  
197]. One study demonstrated that AML patients with homozygous TET2 
mutations showed inferior event-free survival (EFS) and higher relapse rate 
compared to heterozygous TET2-mutated AML patients [198]. Moreover,  
the presence of TET2 mutations together with FLT3 mutations indicates an 
adverse outcome [199–201]. Patients with TET2/FLT3-ITD double mutation 
had lower the 3-year OS (37.9% vs 25%), DFS (48.9% vs 16.7%), and EFS 
(27.8% vs 16.7%) compared to patients with FLT3-ITD mutation [202]. Co-
occurrence of TET2 mutations with FLT3-ITD mutations may result in the 
development of leukemia inducing synergistic gain-of-function effects on  
DNA methylation, therefore gene expression. Moreover, blocking only FLT3 
signaling in TET2/FLT3-ITD-mutated AML is not enough to restore mutated 
TET2 activity. Therefore, methylated CpGs cannot be reversed, presenting  
a potential resistance mechanism to FLT3 inhibitor monotherapy [152]. 
However, deletion of TET2 from FLT3-ITD-mutated cells increased sensitiv- 
ity toward PARP inhibitor or PARP inhibitor plus quizartinib therapy, while 
deletion of DNMT3A caused resistance compared to FLT3-ITD-mutated  
cells [109]. In contrary, in TET2/FLT3-ITD-mutated mice model, CXCR4 and 
CXCL12 expressions were increased compared to FLT3-ITD mice causing 
resistance to chemotherapy and FLT3 inhibitor [155]. In a de novo study, 
high frequency of FLT3-ITD mutations at relapse was associated with TET2  
or IDH1/2 mutations suggesting that mutations in epigenetic regulators in 
AML may induce FLT3-ITD mutations through genetic instability and it may 
lead to relapse and resistance to therapy [196].

Prognostic impact of IDHs in FLT3‑ITD AML
The frequencies of IDH1 and IDH2 mutations in AML are 7–14% and 
8–19%, respectively [165]. IDH1/2 mutations are exclusively heterozy-
gous and are generally found in AML patients with normal cytogenetics 
[17, 200, 203]. The prevalence of IDH1/2 mutations is higher in older 
AML patients carrying intermediate risk [17]. Moreover, patients car-
rying IDH1/2 mutations frequently have higher platelet count, higher 
peripheral blast, and bone marrow percentages compared to wild-type 
IDH1/2 AML patients [204–206]. IDH mutations are mostly considered 
an early event in carcinogenesis and may remain after chemotherapy or 
at relapse [207–209]. Although AML patients with IDH1 mutations and 
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AML patients with IDH2 mutations show a significant overlap in the dif-
ferentially expressed genes, in a meta-analysis including 12,747 patients, 
it was reported that IDH1 mutation was associated with inferior OS and 
EFS while IDH2 mutation was associated with favorable OS [210]. Another 
meta-analysis showed that the most frequent concurrent mutation is 
NPM1 followed by FLT3-ITD [206]. Moreover, IDH1 and IDH2 mutations 
co-occur in 15–27% and 8–30% of AML patient with FLT3-ITD, respec-
tively [211]. Furthermore, co-occurrence of FLT3-ITD and IDH1 mutation 
is considered a negative prognostic factor and is associated with shorter 
OS and EFS [210].

Targeting DNA methylome in FLT3‑ITD AML
Targeting DNA methylation in AML has gained significant attention, given 
the fact that it represents a potential therapeutic strategy to reverse the 
epigenetic dysregulations that contribute to disease progression, drug 
resistance, and inferior prognostic impact in the presence of FLT3-ITD 
mutations.

Azacitidine and decitabine are pyrimidine analogs approved for the 
treatment of AML, resulting in low blast count. These compounds function 
as the inhibitors of DNMTs to reverse DNA hypermethylation, therefore 
restoring the expression of critical genes including tumor suppressor genes 
[212]. Azacitidine incorporates into RNA and to a lesser extent into DNA 
while decitabine only incorporates into DNA. DNA incorporation leads to 
formation of covalent bonds with DNA methyltransferases, hence block- 
ing DNA hypermethylation [213, 214]. Although there are several studies 
on decitabine or azacitidine for AML treatment, studies of these drugs as 
a single agent on FLT3-ITD-mutated AML are limited. Hu and colleagues 
showed that decitabine, as a single agent, on MV4-11 and MOLM-13 FLT3-
ITD AML cells, induced C/EBP alpha-PU.1 pathway, which is required for 
myeloid differentiation, leading to downregulation of FLT3 and induc- 
tion of apoptosis. In another study, FLT3-ITD + /TET2 mutant mice model 
treated with azacitidine, which resulted in normalization in peripheral  
blood cell counts and splenomegaly, decreased total white blood cell  
count and spleen weight. Also, treatment with azacitidine reduced the  
aberrant DNA methylation in the stem-progenitor cells. Additionally, azac- 
itidine treatment restored the myeloid maturation toward normal neu- 
trophil populations [215]. In mouse xenograft models of FLT3-ITD AML, 
decitabine was effective to reduce the tumor volume [216]. Treatment of 
CEP-701, a TKI, resistant-MV4-11 cell line with azacitidine, resulted in re-
expression of SHP-1, a tumor suppressor gene and negative regulator of 
STAT3, leading to suppression of STAT3 and induction of apoptosis [106]. 
Another study evaluating the effects of decitabine and azacitidine showed 
that both azacitidine and decitabine treatment resulted in DNA double-
strand breaks and subsequent activation of p53 in MOLM-13 cells. Also, 
both agents reduced the expression of TERT, BCL-2, and MYC oncogenes 
in these cells [217]. In a post hoc analysis of QUAZAR AML-001 phase 3 
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trial (NCT01757535), 66 patients with FLT3-mutated AML (46 patients 
with FLT3-ITD) were treated with oral azacitidine and the median OS  
was prolonged in FLT3-mutated AML patients compared to the placebo 
group (28.2 months vs 9.7 months). Relapse-free survival (RFS) was also 
improved in FLT3-mutated AML patients with 23.1 months compared to 
placebo (4.6 months) [218].

Targeting DNMT in FLT3-ITD AML is also achieved through modula-
tion of DNMT regulators. Sp1 is a zinc finger transcription factor which 
binds to the promoter region of DNMT1 and p65 is NF-κB signaling com- 
ponent which interplays with Sp1 for DNMT1 transactivation in FLT3-ITD  
AML. Therefore, disruption of Sp1/NF-κB complex impairs the expression  
of DNMT1 leading to DNA hypomethylation [219–221]. Bortezomib, a pro- 
teasome inhibitor, is used to reduce Sp1 levels in MV4-11 cells resulting in  
decreased DNMT1 expression, therefore leading to lower global genomic  
DNA methylation compared to the control [221]. Thymoquinone is a natural  
product with anti-cancer activity which decreases the Sp1 levels. It decreases  
DNMT1 and DNMT3A expression levels leading to downregulation of KIT,  
FLT3, STAT5, and AKT in MV4-11 cells [220]. Moreover, treatment of MV4-11  
cells with either thymoquinone or azacitidine leads to decreased methyla- 
tion levels on the promoter regions of SOCS-1, SHP-1, and SOCS-3 tumor  
suppressor genes, causing increased expression of these genes and decreased  
expression of FLT3-ITD, JAK2, STAT3, and STAT5 [105].

Two agents are recently approved to target IDH mutations [222]. 
Enasidenib is a selective allosteric inhibitor of IDH2 which binds to open 
conformation of the enzyme and stabilizes it, thereby blocking the conver-
sion of a-KG to 2-HG [223]. Ivosidenib is a reversible allosteric competitive 
inhibitor of IDH1, competing with the essential cofactor, magnesium ion, 
to bind to IDH1, which prevents the formation of a catalytically active site  
[224]. Enasidenib therapy in FLT3-ITD + /IDH2 R140Q double mutated  
mice model decreased the 2-HG serum levels and induced demethylation  

Fig. 2  Combinational approaches involving epi-drugs and FLT3Is in pre-clinical and clinical studies in FLT3-ITD AML.
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of the hypermethylated promoters in leukemia-derived cells. Moreover,  
treatment with enasidenib normalized the myeloid maturation [215]. In  
clinical trials, enasidenib alone was not effective for the patients with FLT3 
and IDH co-mutations [225].

Combinational therapies including clinically approved FLT3Is and epi‑drugs
The rationale behind combining FLT3Is with epigenetic drugs lies in the 
potential synergy they could create to enhance FLT3I’s activity especially 
when FLT3I resistance occurs. FLT3 inhibitors can directly target the can-
cer cells with FLT3 mutations while epigenetic drugs can modify the epi-
genetic landscape of the cells, potentially enhancing the effectiveness of 
FLT3 inhibition. Several pre-clinical and clinical studies have explored 
the combination of FLT3Is and epi-drugs in FLT3-ITD AML treatment 
(Tables 1 and 2, Fig. 2).

Sequential treatment with decitabine followed by midostaurin syn-
ergistically induced apoptosis through overexpression of apoptotic BIM 
in FLT3-ITD AML-positive MV4-11 and MOLM-13 cells [227]. Treat-
ment of FLT3-ITD + /TET2-mutant and FLT3-ITD + /IDH2 R140Q double 
mutated mice models with quizartinib in combination with azacitidine 
or enasidenib, respectively, showed significant response compared to 
control or monotherapy, reducing leukemic blast in the bone marrow, 
spleen, and liver. Combination therapy decreased DNA methylation even 
more than the monotherapy [215]. FLT3-ITD and IDH2 R172K or IDH2 
R140Q double mutated zebrafish model, when treated with quizartinib 
and enasidenib, showed reduction in the blast population and spleen size 
[226]. Treatment of MOLM-14 cells and newly diagnosed and relapsed 
FLT3-ITD-mutated AML patient–derived cells with quizartinib and  
azacitidine/decitabine resulted in synergistic growth inhibition. When 
sequential or simultaneous treatment with quizartinib and DNMT inhi-
bition were compared, simultaneous DNMT inhibition and quizartinib 
treatment induced synergistic or additive effect compared to sequential 
treatment [228]. In another study, treatment of MV4-11 and MOLM-13 
cells with gilteritinib and azacitidine resulted in induction of apoptosis, 
and in xenografted mouse tumor volume was significantly decreased in 
gilteritinib plus azacitidine–treated group compared to gilteritinib-treated 
group [229]. Similar to quizartinib and gilteritinib, the combination of 
azacitidine with sorafenib also synergistically inhibited MOLM-13 and 
MV4-11 cell growth, induced apoptosis, and decreased tumor volume in 
xenograft mouse model of FLT3-ITD AML. In another study, sorafenib 
is combined with decitabine to treat MV4-11 cells, resulting in growth  
inhibition and synergistic effect [231].

Quizartinib plus azacitidine treatment was given as a frontline or 
salvage therapy in a cohort of 38 FLT3-ITD AML patients. Eighty-seven 
percent of composite response (CRc) rate was achieved in the front- 
line-treated group and 67% of CRc was achieved in R/R AML patients 
[232]. When FLT3-ITD AML patients treated with azacitidine combined 
with sorafenib, allelic burden and FLT3-ITD clone size were significantly 
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reduced and progression-free survival (PFS) was significantly increased 
compared to sorafenib treatment alone [230]. Patients who had relapsed 
after allo-SCT and had FLT3-ITD mutations treated with 5-azacitidine 
and sorafenib. While three out of 5 patients achieved CR, the remaining 
2 patients experienced disease progression [233]. In a cohort of 40 FLT3-
ITD-mutated AML patients, treatment with sorafenib plus azacitidine 
resulted in 46% of overall CRc rate. While previously untreated patients 
had 67% of response rate, it was lower for primary refractory or relapsed 
patients with 58% and 32%, respectively (NCT01254890) [234]. Another 
clinical trial, in which 27 newly diagnosed elderly (61–86 years) AML 
patients with FLT3-ITD mutation were treated with sorafenib plus azaciti- 
dine, resulted in 78% of overall response rate (ORR) suggesting that azac-
itidine and sorafenib combination is well tolerated and effective to treat 
older patients with FLT3-ITD-mutated AML who have not received previ-
ous treatment (NCT02196857) [235]. In a phase 3 trial, 123 patients with 
FLT3-ITD-positive AML who are not eligible for intensive chemotherapy 
were treated with gilteritinib plus azacitidine or azacitidine alone and 
CRc rates were 58.1% and 26.5% respectively showing no new significant 
safety issues compared to individual therapy (NCT02752035) [236••].

Murine model of FLT3-ITD and IDH2 co-mutated AML showed that 
enasidenib treatment significantly reduced 2-HG levels and induced dem-
ethylation of hypermethylated CpG islands, but enasidenib alone was 
not enough to suppress the malignant clones. However, when combined 
with quizartinib, leukocytosis reduction was more effective compared to 
enasidenib monotherapy [215]. In a recent study, FLT3 and/or IDH inhibi-
tors (FLT3Is and/or IDHIs) were administered as a single agent or in combi- 
nation with cytotoxic chemotherapy (CCT) or low-intensity therapy (LIT)  
in 91 AML patients with FLT3-ITD/IDH1 or FLT3-ITD/IDH2 double muta-
tions. The results demonstrated that a combination of a FLT3I with CCT  
or LIT was effective in patients with FLT3-ITD/IDH co-mutated disease in  
both the frontline and R/R settings [237].

Conclusions

Understanding the roles of epigenetic regulators in normal hematopoie-
sis and in initiation and maintenance of hematopoietic malignancies 
including FLT3-ITD AML have paved the way for the development of epi-
genetically targeted therapies including small-molecule inhibitors of cer-
tain epigenetic regulators involved in DNA methylation (azacitidine and 
decitabine) and other epigenetic-related processes such as IDH-related 
modifications. Some of these therapeutic approaches have already under-
gone clinical trials alone or in combination with clinically approved 
FLT3Is including midostaurin, sorafenib, and gilteritinib which evaluate 
their efficacy, safety profile, and patients’ benefit as indicated in Table 2. 
However, majority of them is still infant passing through in vitro and 
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in vivo experimental stages with promising outcomes (Table 1). On the 
other hand, it is quite important to define epigenetic alterations at the 
individual level for the development of specific epigenetic biomarkers  
to predict response to therapy and to identify epi-drugs with specific and 
durable outcomes in the near future for the treatment of FLT3-ITD AML 
patients. It would be assumed that combination of epigenetic therapy 
and FLT3Is could promise higher success rates as compared to epi-drugs 
or FLT3Is alone after revealing mechanisms of action of novel epigenetic 
alterations and carrying out larger randomized trials.
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