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Abstract: Sloshing behavior due to near-fault type and earthquake excitations of a fluid in a tank having
a highly deformable elastic structure in the middle was investigated experimentally and numerically in
this paper. In the numerical model, fluid was simulated with smoothed particle hydrodynamics (SPH)
and structure was simulated with the finite element method (FEM). The coupling was satisfied with
contact mechanics. The δ-SPH scheme was adapted to lower the numerical oscillations. The proposed
fluid-structure interaction (FSI) method can simulate the violent fluid-structure interaction problem
successfully. The effects of near-fault type and earthquake excitations on free-surfaces of fluid and the
elastic structure are presented.

Keywords: fluid-structure interaction; FSI; smoothed particle hydrodynamics; SPH; contact mechanics;
near-fault type excitation; earthquake; seismic excitation

1. Introduction

Sloshing, a highly nonlinear free-surface movement of fluid in partially filled tanks, is an important
subject in fluid-structure interaction (FSI) problems. Violent sloshing occurs in partially filled tanks
during earthquakes can cause dynamic loads on the tank structure. To prevent structural damage,
a proper prediction of forces due to sloshing is critical.

Sloshing is generally affected by the geometry of the tank, the frequency and the amplitude of
the movement, the amount of the liquid on the tank and the properties of the liquid. Experimental
and numerical studies have been conducted to investigate the effect of the dimensions and the
elasticity of the base of the tank and the frequency of the fluid-tank system on the sloshing
under harmonic excitations [1–10]. Seakeeping problems by considering sloshing in tanks were
investigated numerically with smoothed particle hydrodynamics (SPH)-finite element method (FEM)
coupling [11]. A particle-based FSI solver was proposed to solve sloshing flows in roller tanks with
elastic baffles [12]. Researchers have studied sloshing due to earthquake excitation experimentally and
numerically [9,13–17]. There are more recent studies investigating sloshing due to seismic excitation
that consider the effect of the interaction between the fluid and the structure [18–20].

In the present study, sloshing due to seismic excitation was investigated both experimentally and
numerically. Real earthquake data was applied to a tank that had an elastic buffer in the middle. Various
numerical models to couple fluid-structure interaction problems, such as MPS-FEM coupling [21] or
immersed boundary methods combined with volume of fluid or level-set approaches [22–24], have been
proposed in the literature [25]. In the present numerical model, smoothed particle hydrodynamics was
coupled with the finite element method, and the coupling was satisfied with contact mechanics [26,27].
SPH, a Lagrangian and mesh-free method, was originally developed to simulate astrophysical
problems [28,29]. SPH has successfully been applied to different scientific areas including fluid, soil
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and structural mechanics, impact problems etc. [30–32]. Recently, SPH was coupled with FEM to
solve FSI problems. The first study coupling SPH and FEM was conducted to couple the interaction
between two structures [33]. Two bars were impacted and SPH particles were treated as the nodes
of the finite element. The coupling was satisfied with a master-slave algorithm, in which if an SPH
particle assigned as a slave node enters the structural domain assigned as master node, this SPH
particle is expelled from structural domain by conserving linear and angular momentum. In addition,
the velocity components perpendicular to the surface were assumed to be the same [34,35]. The biggest
disadvantage of a master-slave algorithm is the necessity of determining the master and slave surfaces,
which increases the computational time. In one study [36], a contact algorithm allowing frictionless
sliding between SPH particles and finite element was proposed. In this algorithm, finite element nodes
were treated as SPH particles and a particle to particle contact approach was applied. Contact surface
did not need to be defined. A continuous blending method was adapted to satisfy the contact between
fluid and structure [37]. In the method, there were three regions. One region had only FE elements,
the other region had only SPH particles. In the third region, both SPH particles and FE nodes were
located. This region was called the transition region and the continuous blending method, originally
developed for the coupling of moving least square and FEM, was applied. The shape function used
for the continuous blending method is hard to get and computational cost is high [38]. Similarly,
by adding FE nodes to the SPH neighbor list, SPH-FEM was coupled and contact force was calculated
from the SPH particle to particle contact algorithm [38]. Contact occurs when the distance between
an FE node and an SPH particle is less than two times the smoothing length; this is not similar to
the reality. To lower the computational time of SPH-FEM, a searching algorithm was proposed [39].
In a more recent study, a weak coupling strategy, in which both SPH and FE solvers were treated
as black boxes and a coupling program was used to exchange fluid pressures and nodal positions,
was adapted [40]. Although the implementation is easy, there is no control over FE solver, which may
be considered to be a disadvantage. A ghost particle method was proposed to complete the kernel and
satisfy the first order consistency near the boundaries in SPH-FEM [41]. Since ghost particles were
defined at every time step, the computational cost is relatively high.

The aim of the present study is to investigate sloshing due to the seismic excitations with the
SPH-FEM method developed by the author [27]. The coupling of fluid and structure is satisfied
with contact mechanics. Due to the rapid displacement of the ground, simulating an FSI problem
under heavy earthquake excitation is difficult. Earthquake excitation is highly transient. It may cause
high deformation on the structure interacting with fluid. In addition, the direction of the earthquake
excitation is not constant and can change at any instant. Therefore, numerical method should be
very stable in order to simulate the FSI problem under earthquake excitation. The numerical model
should also capture the complex behavior of free-surfaces, which is hard if FEM is used instead of
particle methods for simulating fluid flows. To the best of the author’s knowledge, this is the first
study investigating sloshing behavior of the water as well as the deformation of the elastic plate
interacting with water due to both near-fault and earthquake excitations by coupling SPH and FEM
with contact mechanics.

This paper is organized as follows. Firstly, the equations of δ-SPH are shown and the method is
explained briefly. Secondly, the finite element model is described. Thirdly, the SPH-FEM coupling
algorithm is presented. Finally, the experimental setup is demonstrated and numerical results are
compared with the experimental data followed by the conclusions.

2. Numerical Models

2.1. Smoothed Particle Hydrodynamics

In SPH, a field function f at position ri and its derivative can be approximated in the following form:

〈
f (ri)

〉
=

∑
j

m j

ρ j
f
(
r j
)
W

(
ri − r j, h

)
(1)
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〈
∇· f (ri)

〉
=

∑
j

m j

ρ j
f
(
r j
)
∇iW

(
ri − r j, h

)
(2)

where m and ρ denote mass and density, respectively, W(ri − r j, h) is the kernel function, and h is the
smoothing length. Hereinafter, W(ri − r j, h) is referred to as Wi j. The choice of the kernel function
affects the accuracy of the solution. A detailed discussion about the kernel function can be found
in [30,42]. In the present work, cubic spline kernel is employed by taking h = 1.33dx, where dx is the
initial particle spacing.

The Lagrangian form of Navier-Stokes equations can be shown as:

dρ
dt

= −ρ∇·u (3)

ρ
du
dt

= −∇·p + µ∇2u + g (4)

where d
dt is the time derivative operator, u is the velocity vector, g is the gravitational acceleration,

p is the pressure, and µ is the dynamic viscosity. In SPH, for stability reasons, an artificial viscosity
term was used instead of the dynamic viscosity shown in Equation (4). In the present work, the δ-SPH
scheme proposed by [43] was used. In δ-SPH, an artificial diffusion term was added into the continuity
equation to remove the numerical oscillations in the pressure field. The δ-SPH scheme and other
governing equations can be shown as follows [31,44,45]:

dρi

dt
= −

∑
j

m jui j·∇iWi j + δhc0

∑
j

ϕi j·
m j

ρ j
∇iWi j (5)

ρi
dui
dt

= −
∑

j

m j(pi + p j)·∇iWi j + ρigi + 0.02hc0ρ0

∑
j

πi j
m j

ρ j
∇iWi j (6)

ϕi j = 2(ρ j − ρi)
r ji∣∣∣ri j
∣∣∣2 − [〈∇ρ〉Li + 〈∇ρ〉Lj ] (7)

πi j =
(u j − ui )·r ji∣∣∣ri j

∣∣∣2 (8)

pi = c2(ρi − ρ0) (9)

dri
dt

= ui + 0.05
∑

m j

(ui − u j

ρi

)
Wi j (10)

where 〈∇ρ〉L is the renormalized density gradient and calculated by [46]:

〈∇ρ〉a
L =

∑
j

mb
ρb

(ρb − ρa)La∇aWab (11)

La =

∑
b

mb
ρb

rab
⊗
∇aWab

−1

(12)

where δ is used to control the intensity of density and taken 0.1. An in-depth analysis about the choice
of δ can be found in [46]. According to Equation (10), the fluid is assumed as slightly compressible,
and in the equation, c is the speed of sound and taken as much lower than the original speed of sound.
According to [47] the square of the speed of sound should be compatible with the following equation:

c2 = max
(
ub

2 ρ0

∆ρ
,
µub

ρl
ρ0

∆ρ
, Fl

ρ0

∆ρ

)
(13)
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where F is the magnitude of external force, l is the length scale, ub is the fluid bulk velocity, and ∆ρ is
the absolute density variation.

Differential equations were integrated with the leap-frog algorithm and the maximum time
step was calculated from the Courant-Friedrichs-Lewy (CFL) stability condition based on maximum
velocity [48].

The boundary condition proposed by [49] was adapted, where the deformation of the structure
was not important. Boundary particles were assigned at the solid boundaries and they exerted a
repulsive force to the fluid particles. At the beginning of the simulation, the local unit normal vector
that pointed from the boundary to the fluid was defined. While a fluid particle moves from one
boundary particle to another, a constant boundary force was applied.

In the regions where structural deformation is important, contact mechanics is used. Slip boundary
condition in which SPH particle slides on the solid structure during contact is preferred. The velocity
component in local tangential direction is zero and skin friction is not observed. Therefore, the parallel
movement of an SPH particle is not disturbed [27].

2.2. Finite Element Method

Finite element is a well-known numerical method used to solve problems in various areas [50].
To simulate structural part of FSI problem, FEM is employed in this study. The Lagrangian formulation
of FEM for nonlinear structural analysis can be followed in [50].

The governing equation of structural domain is written as:

M
..
u + C

.
u + Ku = 0 (14)

where M, C, and K denote the mass, damping, and stiffness matrices, respectively, and
..
u,

.
u, and u

are the acceleration, velocity, and displacement vectors, respectively. As can be seen in the equation,
damping is included in the numerical calculations knowing that damping is not very effective for
inertia-driven problems containing continuous interaction [26]. Rayleigh damping proportional to a
linear combination of mass and stiffness was used:

C = b0M + b1K (15)

where b0 and b1 are constants of proportionality. For more detailed information, the study of [51] can
be investigated.

2.3. SPH-FEM Coupling

Interaction between fluid and the structure is satisfied with contact mechanics in which overlapping
of fluid and structural domain was eliminated. In the FSI problem simulated with the proposed
SPH-FEM method, there are fluid particles and a deformable structural body. At the beginning of
the interaction, fluid particles were allowed to invade the structural domain, but these particles were
expelled from the structural domain with the node to line equation of contact mechanics. The following
equation developed for node to line contact mechanics was solved to represent the behavior of fluid
and the structure under interaction [27]:


(

K(i−1)
solid

)
t+∆t

0

0 2
∆t2

(
Mp

(i−1)
)
t+∆t

 [(
K(i−1)

c

)
t+∆t

]
[(

K(i−1)
c

)
t+∆t

]T
0




∆u(i)
solid

∆u(i)
p

∆λ(i)


=


(R)t+∆t

0
0

−


(
F(i−1)

)
t+∆t

0
0

+


(
R(i−1)

c

)
t+∆t(

∆
(i−1)
c

)
t+∆t


(16)
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where ( K(i−1)
solid )t+∆t is the tangential stiffness matrix of the solid structure in which geometrical

nonlinearity is included, t+∆tK(i−1)
c is the contact stiffness matrix, (Mp

(i−1))t+∆t is the mass matrix of

the SPH particles, ∆u(i)
solid and ∆u(i)

p are the incremental displacements vectors, ∆λ(i) is the incremental

contact forces vector, (R)t+∆t is the total applied external loads vector, (F(i−1))t+∆t is the equivalent

nodal forces vector, (R(i−1)
c )t+∆t is the contact forces vector, and (∆

(i−1)
c )t+∆t is the overlap’s vector.

By solving this equation, displacements of SPH particles and the structure are obtained.
Contact force, displacements of the structure, and the fluid particles invading the structural

domain were calculated from Equation (16). Contact force was applied to the structural nodes and
according to the corresponding displacement vector, SPH particles were expelled from the structural
domain in a single iteration. Iteration indices were used just for the sake of completeness.

In the numerical simulations, the convergence tolerance is taken as the minimum of 1.0 × 10−6

and 0.0001 * residual force. Since the time step was very small due to the explicit solution of SPH,
convergence criteria was satisfied within a single iteration.

Shifting the surface of the structural domain (SSOSD) was used to prevent possible instabilities
near the surface of the structure. In SSOSD, an intermediate boundary layer shown in Figure 1 was
defined. When a fluid particle invades this intermediate domain, it was relocated according to the
following equation: (

∆
(i−1)
p new

)
n
=

(
∆
(i−1)
p

)
n
− d + e

−

 |(∆
(i−1)
p )

n
|

|d|


d (17)

where (∆
(i−1)
p )n is the overlap of particle p in local normal direction n of the boundary surface,

(∆
(i−1)
p new

)n is the new assumed overlap (which is the amount of displacement to be applied to particle
p), and d is a flow dependent vector in local normal direction. This parameter defines the depth of the
boundary violation. The upper and lower limits of d is explained in [27]. Hydrodynamic variable of
the relocated SPH particle should be modified according to its new position.

ωinew = ωi + ∆
(i−1)
p new

·(∇ω)i (18)

where ωi is a general hydrodynamic variable.
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Figure 1. Illustration of fluid and structural domains in surface of the structural domain (SSOSD).

In contact mechanics, fluid and structure are coupled and simultaneously solved together (strong
coupling); thus, predictive corrective steps are not necessary and the completeness of the whole system
is guaranteed. In addition, a continuous boundary is used by shifting the original boundary of the
structure which prevents bunching of suspended particles.
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3. Numerical Results

An experimental setup was developed to investigate the behavior of a highly elastic plate in a
water tank under earthquake excitation. The experimental setup can be seen in Figure 2. A water tank
was fixed on a shake table, which was connected to a computer. A motion was transmitted to the
shake table with software compatible with the shake table. The acceleration of the shake table was
also recorded with a single axis DC response accelerometer, which was also connected directly to the
computer. There was no amplifier between the computer and the accelerometer.
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Figure 2. Experimental Setup.

The fluid was water, having a density of 1000 kg/m3, dynamic viscosity of 0.001 Pa, and bulk
modulus of 2.2 GPa. The free-surfaces of water and the deformation and displacement of the elastic
plate under a ground movement were recorded. Average modulus of elasticity of the elastic plate was
10.0 MPa. The height and the width of the elastic plate were 8 cm and 0.3 cm, respectively. All the
experiments were repeated five times. Free-surface profiles and the deformations of elastic plate
obtained from repeated experiments were consistent.

In the numerical simulations, the number of SPH particles and finite elements for elastic plate
were 13,146 and 120, respectively. The initial distance between SPH particles was 1.5 mm. Time step
was controlled by the CFL stability condition. The depth of water in the tank is 10 cm. The parameters
used in the numerical model are summarized in Table 1. The initial distribution of SPH particles and
the initial mesh of the elastic structure are shown in Figure 3.Water 2020, 12, x FOR PEER REVIEW 7 of 16 
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Table 1. The parameters used in the numerical model.

The height of the plate (cm) 8.0
The width of the plate (cm) 0.3
Modulus of elasticity of the plate (MPa) 10.0
The initial distance between SPH particles (cm) 0.15
Max. time step (s) 0.000016
The number of SPH particles 13,146
The number of finite elements 120

3.1. Near-Fault Type Excitation

Seismic response of a structure due to near-fault excitation can be significantly different from the
seismic response due to the far-field excitation [52]. Structures are exposed to high input energy in the
beginning of the earthquake due to the ground motions in the near-fault region. Therefore, near-fault
type excitations can considerably damage the structures [53]. In order to represent near-fault type
excitation, two idealized pulses, one-cycle sine, and one-cycle cosine, shown in Figure 4, were utilized.
Periods and maximum accelerations were the same for sine and cosine impulses.
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In Figures 5 and 6, horizontal tip displacements of the elastic plate due to one-cycle cosine and
one-cycle sine impulses are shown, respectively. As can be seen, simulated displacements were close
to the experimental data. Similar displacement profiles were obtained for sine and cosine impulses.
Maximum tip displacement due to one-cycle cosine was about 4 cm, whereas it was about 3.5 cm when
one-cycle sine impulse was utilized. The second and the third tip displacement peaks were also higher
for cosine impulse.
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In Figures 7 and 8, free-surface profiles when cosine and sine impulses were utilized are given.
The instants when the profiles are given were chosen according to the instants when peak displacements
are observed. It is seen that simulated free-surfaces are similar to the experimental data. In addition,
the behavior of the elastic plate is captured correctly.
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3.2. Earthquake Excitation

For the time history analysis, the 1940 El Centro earthquake (or 1940 Imperial Valley earthquake)
was chosen. The acceleration spectrum is given in Figure 9. Applied ground motion with shake table
is also compared with the measured one in Figure 10. It can be said that applied ground motion is the
same with the measured one and the system works correctly.
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Figure 10. Applied and measured ground motion.

Horizontal tip displacement of the elastic plate is given in Figure 11. The maximum displacement
was approximately 2 cm, which is 25% of the total length of the plate. Although minor deviations were
observed between the present numerical results and the experimental data, overall, the agreement
was seen to be very good. In addition, horizontal tip displacements were compared when δ-SPH
scheme and standard SPH algorithm were applied. As can be seen, they are very similar. In contact
mechanics algorithm, some SPH particles located in the SSOSD or intermediate region are suspended.
The forces on the structure are calculated through the displacement of SPH particles interacting with
the structure. Since there are always suspended particles in the SSOSD region, smoother contact forces
were obtained. Therefore, similar tip displacements were obtained when δ-SPH scheme and standard
SPH algorithm were utilized.
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Figure 11. Horizontal tip displacement of the elastic plate.

Time history of the water level near the right wall is given in Figure 12. Sloshing length near the
wall of liquid tank was found to change approximately 20%. According to the figure, it can be said that
numerical model can capture the free-surfaces near the wall correctly.
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Figure 12. Free-surface wave height near the right wall.

Free-surface profiles at arbitrarily chosen times are given in Figure 13. Pressures (in Pascal) of
SPH particles were colorized in the numerical results. At t = 2.10 s, maximum pressure was found to be
1000 Pa and it was observed near the right wall, whereas at t = 5.17 s, maximum pressure was calculated
as 1200 Pa and it was observed both near the right wall and at the right side of the elastic plate.
Free-surface profiles were simulated correctly though the complex ground motion. The simulated and
measured profiles of the elastic rubber were also in good agreement.
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Figure 13. Free-surface profiles of (a) experimental data and (b) numerical results.

Figure 14 shows the pressure contours at t = 1.44 s. At the left side of the figure, δ-SPH scheme
is given, whereas at the right side, standard SPH equations are shown. As can be seen in the figure,
pressures on the SPH particles were smoother in the δ-SPH scheme. In addition, pressure distribution
was also represented better in the δ-SPH scheme. Although the differences observed in pressure
distribution, the deformations of elastic plate were similar. This is due to the fact that in the proposed
method, the forces on the structure were calculated with contact mechanics. In the literature, most of
the researchers calculated the forces on the structure from the pressures of the surrounding SPH
particles, which would cause differences in the deformation profile of the structure, as explained above.
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Figure 14. Comparison between free-surface profiles of (a) the δ-SPH scheme and (b) the standard SPH
at t = 1.44 s.

Horizontal and vertical velocity profiles are shown in Figure 15. The results of δ-SPH scheme and
standard SPH are shown in the left and right columns, respectively. The regions where maximum
and minimum velocities were observed are similar. However, there were small differences in the
velocity profiles. The magnitude of maximum velocity found with the standard SPH scheme was
slightly higher.
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Figure 15. Comparison between velocity contours of (a) the δ-SPH scheme and (b) the standard SPH at
t = 1.44 s.

4. Conclusions

In this study, sloshing behavior of a fluid due to near-fault and earthquake excitations in a
rectangular tank that has a highly elastic plate in the middle was investigated by including fluid-structure
interaction effects. For this purpose, new experiments were conducted. In the experiments, free-surface
profiles of fluid and deformation of the elastic plate were recorded. In addition, simulations were
utilized by coupling δ-SPH and FEM with contact mechanics. Results obtained from the proposed
method showed good agreement with the experimental data under highly nonlinear seismic excitations.
When contact mechanics were used as a coupling algorithm, pressure noise does not disrupt the
behavior of elastic plate significantly, because forces on the structure are not calculated through the
pressures of surrounding SPH particles. Moreover, it was found that although the magnitude of
maximum input accelerations of near-fault type and earthquake excitations were similar, maximum
tip displacement of elastic plate due to near-fault type excitation was twice the one obtained due to
earthquake excitation.
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