dc.contributor.author | Tas, Merve | |
dc.contributor.author | Yilmaz, Bulent | |
dc.date.accessioned | 2021-11-25T09:30:12Z | |
dc.date.available | 2021-11-25T09:30:12Z | |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 0045-7906 | |
dc.identifier.issn | 1879-0755 | |
dc.identifier.uri | https //doi.org/10.1016/j.compeleceng.2020.106959 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12573/1036 | |
dc.description | The first author, Merve Tas, was supported by the Turkish Higher Education Council's 100/2000 Scholarship Program.
See more data fields | en_US |
dc.description.abstract | Abstract
Colonoscopy is the most common methodology used to detect polyps on the colon surface. Increasing the image resolution has the potential to improve the automatic colonoscopy based diagnosis and polyp detection and localization. In this study, we proposed a pre-processing approach that uses convolutional neural network based super resolution method (SRCNN) to increase the resolution of the training colonoscopy images before the localization of polyps. We also investigated the use of CNN based models such as the Single Shot MultiBox Detector (SSD) and Faster Regional CNN (RCNN) for real-time polyp detection and localization. Our results showed that using SRCNN method before the training process provides better results in terms of accuracy in both models compared to the low-resolution cases. Furthermore, we reached an F2 score of 0.945 for the correct localization of colon polyps using Faster RCNN with ResNet-101 feature extractor. | en_US |
dc.description.sponsorship | Ministry of National Education - Turkey 100/2000 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND | en_US |
dc.relation.isversionof | 10.1016/j.compeleceng.2020.106959 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Transfer learning | en_US |
dc.subject | Super resolution | en_US |
dc.subject | Colonoscopy | en_US |
dc.subject | Colon polyp localization | en_US |
dc.title | Super resolution convolutional neural network based pre-processing for automatic polyp detection in colonoscopy images | en_US |
dc.type | article | en_US |
dc.contributor.department | AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü | en_US |
dc.contributor.institutionauthor | Yilmaz, Bulent | |
dc.contributor.institutionauthor | Tas, Merve | |
dc.identifier.volume | Volume 90 | en_US |
dc.relation.journal | COMPUTERS & ELECTRICAL ENGINEERING | en_US |
dc.relation.publicationcategory | Makale - Uluslararası - Editör Denetimli Dergi | en_US |