Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTas, Merve
dc.contributor.authorYilmaz, Bulent
dc.date.accessioned2021-11-25T09:30:12Z
dc.date.available2021-11-25T09:30:12Z
dc.date.issued2021en_US
dc.identifier.issn0045-7906
dc.identifier.issn1879-0755
dc.identifier.urihttps //doi.org/10.1016/j.compeleceng.2020.106959
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1036
dc.descriptionThe first author, Merve Tas, was supported by the Turkish Higher Education Council's 100/2000 Scholarship Program. See more data fieldsen_US
dc.description.abstractAbstract Colonoscopy is the most common methodology used to detect polyps on the colon surface. Increasing the image resolution has the potential to improve the automatic colonoscopy based diagnosis and polyp detection and localization. In this study, we proposed a pre-processing approach that uses convolutional neural network based super resolution method (SRCNN) to increase the resolution of the training colonoscopy images before the localization of polyps. We also investigated the use of CNN based models such as the Single Shot MultiBox Detector (SSD) and Faster Regional CNN (RCNN) for real-time polyp detection and localization. Our results showed that using SRCNN method before the training process provides better results in terms of accuracy in both models compared to the low-resolution cases. Furthermore, we reached an F2 score of 0.945 for the correct localization of colon polyps using Faster RCNN with ResNet-101 feature extractor.en_US
dc.description.sponsorshipMinistry of National Education - Turkey 100/2000en_US
dc.language.isoengen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLANDen_US
dc.relation.isversionof10.1016/j.compeleceng.2020.106959en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learningen_US
dc.subjectConvolutional neural networksen_US
dc.subjectTransfer learningen_US
dc.subjectSuper resolutionen_US
dc.subjectColonoscopyen_US
dc.subjectColon polyp localizationen_US
dc.titleSuper resolution convolutional neural network based pre-processing for automatic polyp detection in colonoscopy imagesen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.contributor.institutionauthorYilmaz, Bulent
dc.contributor.institutionauthorTas, Merve
dc.identifier.volumeVolume 90en_US
dc.relation.journalCOMPUTERS & ELECTRICAL ENGINEERINGen_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster