Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTurk, Umut
dc.contributor.authorOsth, John
dc.contributor.authorKourtit, Karima
dc.contributor.authorNijkamp, Peter
dc.date.accessioned2022-03-05T09:06:31Z
dc.date.available2022-03-05T09:06:31Z
dc.date.issued2021en_US
dc.identifier.issn0966-6923
dc.identifier.issn1873-1236
dc.identifier.urihttps //doi.org/10.1016/j.jtrangeo.2021.103130
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1241
dc.descriptionKarima Kourtit and Peter Nijkamp acknowledge the grant of the Romanian Ministry of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0166, within the PNCDI III"project ReGrowEU - Advancing ground-breaking research in regional growth and development theories, through a resilience approach: toward a convergent, balanced and sustainable European Union (Iasi, Romania). Karima Kourtit, Peter Nijkamp and John Osth acknowledge support by the Axel och Margaret Ax:son Johnsons Stiftelse, Sweden.en_US
dc.description.abstractDestination attractiveness research has become an important research domain in leisure and tourism economics. But the mobility behaviour of visitors in relation to local public transport access in tourist places is not yet well understood. The present paper seeks to fill this research gap by studying the attractiveness profile of 25 major tourist destination places in the world by means of a 'big data' analysis of the drivers of visitors' mobility behaviour and the use of public transport in these tourist places. We introduce the principle of 'the path of least resistance' to explain and model the spatial behaviour of visitors in these 25 global destination cities. We combine a spatial hedonic price model with geoscience techniques to better understand the place-based drivers of mobility patterns of tourists. In our empirical analysis, we use an extensive and rich database combining millions of Airbnb listings originating from the Airbnb platform, and complemented with TripAdvisor platform data and OpenStreetMap data. We first estimate the effect of the quality of the Airbnb listings, the surrounding tourist amenities, and the distance to specific urban amenities on the listed Airbnb prices. In a second step of the multilevel modelling procedure, we estimate the differential impact of accessibility to public transport on the quoted Airbnb prices of the tourist accommodations. The findings confirm the validity of our conceptual framework on 'the path of least resistance' for the spatial behaviour of tourists in destination places.en_US
dc.description.sponsorshipConsiliul National al Cercetarii Stiintifice (CNCS) Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (UEFISCDI) PN-III-P4-ID-PCCF-2016-0166 Axel och Margaret Ax:son Johnsons Stiftelse, Swedenen_US
dc.language.isoengen_US
dc.publisherELSEVIER SCI LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLANDen_US
dc.relation.isversionof10.1016/j.jtrangeo.2021.103130en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPath of least resistanceen_US
dc.subjectPrinciple of least efforten_US
dc.subjectTourism mobilityen_US
dc.subjectDestination placesen_US
dc.subjectTourist attractionsen_US
dc.subjectMultilevel modelsen_US
dc.subjectAirbnben_US
dc.subjectTripAdvisoren_US
dc.subjectOpenStreetMapen_US
dc.titleThe path of least resistance explaining tourist mobility patterns in destination areas using Airbnb dataen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Yönetim Bilimleri Fakültesi, Ekonomi Bölümüen_US
dc.contributor.authorID0000-0002-8440-7048en_US
dc.contributor.institutionauthorTurk, Umut
dc.identifier.volumeVolume 94en_US
dc.relation.journalJOURNAL OF TRANSPORT GEOGRAPHYen_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster