Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGüner, Hüseyin
dc.date.accessioned2022-09-01T11:13:29Z
dc.date.available2022-09-01T11:13:29Z
dc.date.issued2022en_US
dc.date.submitted2022-01
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1366
dc.description.abstractAs a sub-discipline of Artificial Intelligence, deep neural networks have received enormous interest in research and industrial applications over the last decades owing to their highly successful performance in addressing and solving broad areas of problems. Hence, especially hitherto achievements in computer-aided drug design brought an extra impetus with the novel deep learning approaches in structure-based drug design etiology. Our group offers a novel convolutional neural network model, deepMLR, that casts insight into the molecular recognition of ligand molecules and a receptor protein molecule. Having compared our model and a few other existing models with a case study of a traditional approach, herein, we present the success story of a deep learning model straight.en_US
dc.description.abstractYapay Zeka'nın bir alt disiplini olarak derin sinir ağları, geniş spektrumdaki problem alanlarını ele alma ve çözmedeki son derece başarılı performansları nedeniyle, son on yılda (özellikle) araştırma ve endüstriyel uygulamalarda büyük bir ilgi görmeye başladı. Özellikle son zamanlardaki, bilgisayar destekli ilaç tasarımındaki başarıları nedeniyle, yapı tabanlı ilaç tasarımı etiyolojislerindeki yeni derin öğrenme yaklaşımlarına karşı ekstra bir ivme kazanmıştır. Grubumuz, ligand moleküllerinin ve bir reseptör protein molekülünün moleküler olarak tanınması hakkında bir fikir veren yeni bir konvolüsyonel sinir ağı modeli sunmaktadır. Diğer mevcut modellerle ve modelimizle geleneksel bir yaklaşımın örnek çalışmasıyla karşılaştırıldığında, burada derin bir öğrenme modelinin başarı hikayesini sunuyoruz.en_US
dc.description.tableofcontents1. INTRODUCTION .................................................................................................... 1 2. STRUCTURE BASED DRUG DISCOVERY........................................................ 3 2.1 MOLECULAR RECOGNITION ..................................................................................... 5 2.1.1 Thermodynamic Entities.................................................................................. 6 2.2 LIGAND-PROTEIN AFFINITY SCORING FUNCTIONS................................................... 7 2.3 MOLECULAR DYNAMICS SIMULATIONS ................................................................... 8 2.3.1 Force fields in protein-ligand complexes ........................................................ 9 2.4 THE MM/PBSA AND MM/GBSA METHODS............................................................ 9 3. DEEP LEARNING METHODS............................................................................ 11 3.1 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY................................................... 11 3.1.1 Feed-forward neural networks ...................................................................... 12 3.1.2 Convolutional Neural Networks .................................................................... 16 4. EXPERIMENTAL RESULTS............................................................................... 20 4.1 COMPUTATIONAL RESOURCES ............................................................................... 20 4.2 CONVENTIONAL/TRADITIONAL SBDD CAMPAIGN ................................................ 20 4.2.1 Structural Data Files and Preparation for Docking Experiments ................ 20 4.2.2 Docking experiments...................................................................................... 22 4.2.3 MD Experiments............................................................................................ 24 4.3 A 3D CNN MODEL BY PAFNUCY............................................................................ 25 4.3.1 Datasets ......................................................................................................... 26 4.3.2 Architecture of the network............................................................................ 27 4.3.3 Training with Back-propagation ................................................................... 27 4.3.4 Results and metrics of back-propagation ...................................................... 28 4.3.5 Binding affinity of 2SHP with the leads......................................................... 30 4.4 OUR MODEL DEEPMLR......................................................................................... 30 4.4.1 Architecture of DeepMLR.............................................................................. 32 4.4.2 Training and evaluation of DeepMLR........................................................... 34 4.4.3 Evaluation Metrics......................................................................................... 35 4.4.4 Results of experiments run by DeepMLR....................................................... 35 5. CONCLUSIONS AND FUTURE PROSPECTS ................................................. 40 5.1 CONCLUSIONS ........................................................................................................ 40 5.2 SOCIETAL IMPACT AND CONTRIBUTION TO GLOBAL SUSTAINABILITY................... 41 5.3 FUTURE PROSPECTS ............................................................................................... 42 6. BIBLIOGRAPHY................................................................................................... 43en_US
dc.language.isoengen_US
dc.publisherAbdullah Gül Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMolecular Recognitionen_US
dc.subjectStructure Based Drug Designen_US
dc.subjectDeep Convolutional Neural Networksen_US
dc.subjectProtein-Ligand Affinity Predictionen_US
dc.subjectStructure Based Virtual Screeningen_US
dc.titleMolecular recognition of protein-ligand complexes via convolutional neural networksen_US
dc.title.alternativeProtein-ligand komplekslerinin konvolüsyenel sinir ağları ile moleküler tanınmasıen_US
dc.typemasterThesisen_US
dc.contributor.departmentAGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.relation.publicationcategoryTezen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster