Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorOzdil, Ahmet
dc.contributor.authorYilmaz, Bulent
dc.date.accessioned2023-03-08T06:55:02Z
dc.date.available2023-03-08T06:55:02Z
dc.date.issued2023en_US
dc.identifier.issn1768-6733
dc.identifier.issn2116-7176
dc.identifier.otherWOS:000911927700001
dc.identifier.urihttps://doi.org/10.1080/17686733.2022.2158678
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1493
dc.description.abstractNon-alcoholic fatty liver disease (NAFLD) causes accumulation of excess fat in the liver affecting people who drink little to no alcohol. Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease (inflammation in the liver), may progress to cirrhosis and liver failure. Liver function tests, ultrasound (US) and magnetic resonance imaging (MRI) are used to help diagnose and monitor liver disease or damage. In this study, the feasibility of medical infrared thermal imaging (MITI) in automatic detection of NAFLD was investigated, and 167 MITI images (44 positive) from 32 patients (7 positive) were evaluated using image processing and classification methods. Convolutional neural network (CNN) architectures and texture analysis methods were used in the feature selection phase. After feature selection and binary classification, the highest values from different setups for recall, f-score, specificity, accuracy, and area-under-curve (AUC) were 1.00, 1.00, 0.83, 1.0, 0.94, and 0.92, respectively. The highest values were achieved by CNN based methods on different datasets, however, texture analysis method performed lower. Here, it is shown that some of the CNN architectures have high potential on extracting features from thermal images. Finally, machine and deep learning approaches can be combined in detecting NAFLD using infrared thermal images.en_US
dc.language.isoengen_US
dc.publisherTAYLOR & FRANCIS LTDen_US
dc.relation.isversionof10.1080/17686733.2022.2158678en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNon-alcoholic fatty liver diseaseen_US
dc.subjectmedical infrared thermal imagingen_US
dc.subjectmachine learningen_US
dc.subjectconvolutional neural networksen_US
dc.titleMedical infrared thermal image based fatty liver classification using machine and deep learningen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-2954-1217en_US
dc.contributor.institutionauthorYılmaz, Bülent
dc.identifier.startpage1en_US
dc.identifier.endpage18en_US
dc.relation.journalQUANTITATIVE INFRARED THERMOGRAPHY JOURNALen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster