Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydin, Zafer
dc.contributor.authorBaker, David
dc.contributor.authorNoble, William Stafford
dc.contributor.authorFred, A
dc.contributor.authorGamboa, H
dc.contributor.authorElias, D
dc.date.accessioned2023-08-15T08:51:43Z
dc.date.available2023-08-15T08:51:43Z
dc.date.issued2015en_US
dc.identifier.isbn978-3-319-27706-6
dc.identifier.isbn978-3-319-27707-3
dc.identifier.issn1865-0929
dc.identifier.otherWOS:000370811800013
dc.identifier.urihttps://doi.org/10.1007/978-3-319-27707-3_13
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1709
dc.descriptionMeeting:8th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC) Location:Lisbon, PORTUGAL Date:JAN 12-15, 2015en_US
dc.description.abstractPrediction of backbone torsion angles provides important constraints about the 3D structure of a protein and is receiving a growing interest in the structure prediction community. In this paper, we introduce a three-stage machine learning classifier to predict the 7-state torsion angles of a protein. The first two stages employ dynamic Bayesian and neural networks to produce an ab-initio prediction of torsion angle states starting from sequence profiles. The third stage is a committee classifier, which combines the ab-initio prediction with a structural frequency profile derived from templates obtained by HHsearch. We develop several structural profile models and obtain significant improvements over the Laplacian scoring technique through: (1) scaling templates by integer powers of sequence identity score, (2) incorporating other alignment scores as multiplicative factors (3) adjusting or optimizing parameters of the profile models with respect to the similarity interval of the target. We also demonstrate that the torsion angle prediction accuracy improves at all levels of target-template similarity even when templates are distant from the target. The improvement is at significantly higher rates as template structures gradually get closer to target.en_US
dc.description.sponsorshipInst Syst & Technologies Informat, Control & Commun; ACM Special Interest Grp Bioinformat, Computat Biol, & Biomed Informat; ACM Special Interest Grp Artificial Intelligence; ACM Special Interest Grp Management Informat Syst; EUROMICRO; Int Soc Telemedicine & eHealth; Assoc Advancement Artificial Intelligence; European Assoc Signal Proc; Biomed Engn Soc; European Soc Engn & Med; IEEE Engn Med & Biol Socen_US
dc.language.isoengen_US
dc.publisherSPRINGERen_US
dc.relation.isversionof10.1007/978-3-319-27707-3_13en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTorsion Angleen_US
dc.subjectTorsion Classen_US
dc.subjectPosition Specific Score Matrixen_US
dc.subjectStructural Profileen_US
dc.subjectSimilarity Intervalen_US
dc.titleTemplate Scoring Methods for Protein Torsion Angle Predictionen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.institutionauthorAydin, Zafer
dc.identifier.volume574en_US
dc.identifier.startpage206en_US
dc.identifier.endpage223en_US
dc.relation.journalBIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, BIOSTEC 2015en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster