Advanced Search

Show simple item record

dc.contributor.authorDogan, Abdulkadir
dc.date.accessioned2020-02-14T13:21:43Z
dc.date.available2020-02-14T13:21:43Z
dc.date.issued2014en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/20.500.12573/172
dc.description.abstractWe are interested in the existence of positive solutions for the p-Laplacian dynamic equation on time scales (phi(P)(u(Delta)(t)))(V) a(t)f (t, u Delta(t), (t)) = 0, t is an element of (0,T)(T), subject to the multipoint boundary condition, u(0) = Sigma(m-2)(i=1) alpha iu, (xi(i)) = u Delta(T) = 0, where phi(p)(S) = vertical bar s vertical bar p(-2) s, p > 1, xi i is an element of [0, T](T,) 0 < xi 1 < xi 2 < . . . < xi m-2 < p(T). By using fixed point theorems, we prove the existence of at least three nonnegatvie solutions, two of them positive, to the above boundary value problem. The interesting point is the nonlinear term f is involved with the first order derivative explicitly. An example is given to illustrate the main result.en_US
dc.language.isoengen_US
dc.publisherTEXAS STATE UNIV, 601 UNIVERSTITY DRIVE, SAN MARCOS, TX 78666 USAen_US
dc.relation.ispartofseriesArticle Number: 37;
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTime scalesen_US
dc.subjectboundary value problemen_US
dc.subjectp-Laplacianen_US
dc.subjectpositive solutionen_US
dc.subjectfixed point theoremen_US
dc.titleEXISTENCE OF POSITIVE SOLUTIONS FOR p-LAPLACIAN AN m-POINT BOUNDARY VALUE PROBLEM INVOLVING THE DERIVATIVE ON TIME SCALESen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.institutionauthorDogan, Abdulkadir
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record