Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBozdal, Mehmet
dc.contributor.authorIleri, Kadir
dc.contributor.authorOzkahraman, Ali
dc.date.accessioned2024-03-12T06:40:47Z
dc.date.available2024-03-12T06:40:47Z
dc.date.issued2024en_US
dc.identifier.issn0920-8542
dc.identifier.urihttps://doi.org/10.1007/s11227-023-05511-w
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1990
dc.description.abstractThe Internet of Things (IoT) has revolutionized the functionality and efciency of distributed cyber-physical systems, such as city-wide water treatment systems. However, the increased connectivity also exposes these systems to cybersecurity threats. This research presents a novel approach for securing the Secure Water Treatment (SWaT) dataset using a 1D Convolutional Neural Network (CNN) model enhanced with a Gated Recurrent Unit (GRU). The proposed method outperforms existing methods by achieving 99.68% accuracy and an F1 score of 98.69%. Additionally, the paper explores dimensionality reduction methods, including Autoencoders, Generalized Eigenvalue Decomposition (GED), and Principal Component Analysis (PCA). The research fndings highlight the importance of balancing dimensionality reduction with the need for accurate intrusion detection. It is found that PCA provided better performance compared to the other techniques, as reducing the input dimension by 90.2% resulted in only a 2.8% and 2.6% decrease in the accuracy and F1 score, respectively. This study contributes to the feld by addressing the critical need for robust cybersecurity measures in IoT-enabled water treatment systems, while also considering the practical trade-of between dimensionality reduction and intrusion detection accuracy.en_US
dc.language.isoengen_US
dc.publisherSPRINGERen_US
dc.relation.isversionof10.1007/s11227-023-05511-wen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectIntrusion detectionen_US
dc.subjectSecure water treatment dataseten_US
dc.subjectConvolutional neural networksen_US
dc.subjectDimensionality reductionen_US
dc.subjectGated recurrent uniten_US
dc.titleComparative analysis of dimensionality reduction techniques for cybersecurity in the SWaT dataseten_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-2081-7101en_US
dc.contributor.institutionauthorBozdal, Mehmet
dc.identifier.volume80en_US
dc.identifier.issue1en_US
dc.identifier.startpage1059en_US
dc.identifier.endpage1079en_US
dc.relation.journalJournal of Supercomputingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster