Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇelebi, Fatma
dc.contributor.authorBoyvat, Dudu
dc.contributor.authorAyaz-Guner, Serife
dc.contributor.authorTasdemir, Kasim
dc.contributor.authorIcoz, Kutay
dc.date.accessioned2024-03-18T12:22:53Z
dc.date.available2024-03-18T12:22:53Z
dc.date.issued2024en_US
dc.identifier.issn0899-9457
dc.identifier.urihttps://doi.org/10.1002/ima.23052
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2013
dc.description.abstractMesenchymal stem cells (MSCs) are stromal cells which have multi-lineage differentiation and self-renewal potentials. Accurate estimation of total number of senescent cells in MSCs is crucial for clinical applications. Traditional manual cell counting using an optical bright-field microscope is timeconsuming and needs an expert operator. In this study, the senescence cells were segmented and counted automatically by deep learning algorithms. However, well-performing deep learning algorithms require large numbers of labeled datasets. The manual labeling is time consuming and needs an expert. This makes deep learning-based automated counting process impractically expensive. To address this challenge, self-supervised learning based approach was implemented. The approach incorporates representation level contrastive learning component into the instance segmentation algorithm for efficient senescent cell segmentation with limited labeled data. Test results showed that the proposed model improves mean average precision and mean average recall of downstream segmentation task by 8.3% and 3.4% compared to original segmentation model.en_US
dc.language.isoengen_US
dc.publisherWILEY Online Libraryen_US
dc.relation.isversionof10.1002/ima.23052This is an open access article under the terms of theCreative Commons Attribution-NonCommercialLicense, which permits use, distribution and reproduction in anymedium, provided the original work is properly cited and is not used for commercial purposes.© 2024 The Authors.International Journal of Imaging Systems and Technologypublished by Wiley Periodicals LLC.Int J Imaging Syst Technol.2024;34:e23052.wileyonlinelibrary.com/journal/ima1of13https://doi.org/10.1002/ima.23052en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcellular senescenceen_US
dc.subjectinstance segmentationen_US
dc.subjectmask R-CNNen_US
dc.subjectmicroscopy imagesen_US
dc.subjectselfsupervised learningen_US
dc.subjectSimCLRen_US
dc.titleImproved senescent cell segmentation on bright-field microscopy images exploiting representation level contrastive learningen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-3157-6806en_US
dc.contributor.authorID0000-0002-1052-0961en_US
dc.contributor.authorID0000-0002-0947-6166en_US
dc.contributor.authorID0000-0001-7472-8297en_US
dc.contributor.institutionauthorÇelebi, Fatma
dc.contributor.institutionauthorBoyvat, Dudu
dc.contributor.institutionauthorAyaz-Guner, Serife
dc.contributor.institutionauthorIcoz, Kutay
dc.identifier.volume34en_US
dc.identifier.issue2en_US
dc.identifier.startpage1en_US
dc.identifier.endpage13en_US
dc.relation.journalInternational Journal of Imaging Systems and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster