Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCetiner, Erkan
dc.contributor.authorGungor, Vehbi Cagri
dc.contributor.authorKocak, Taskin
dc.date.accessioned2024-06-05T15:06:55Z
dc.date.available2024-06-05T15:06:55Z
dc.date.issued2018en_US
dc.identifier.isbn978-331996132-3
dc.identifier.issn0302-9743
dc.identifier.urihttps://doi.org/10.1007/978-3-319-96133-0_6
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2185
dc.description.abstractHybrid classification approaches on credit domain are widely used to obtain valuable information about customer behaviours. Single classification algorithms such as neural networks, support vector machines and regression analysis have been used since years on related area. In this paper, we propose hybrid classification approaches, which try to combine several classifiers and ensemble learners to boost accuracy on classification results. We worked with two credit datasets, German dataset which is a public dataset and a Turkish Corporate Bank dataset. The goal of using such diverse datasets is to search for generalization ability of proposed model. Results show that feature selection plays a vital role on classification accuracy, hybrid approaches which shaped with ensemble learners outperform single classification techniques and hybrid approaches which consists SVM has better accuracy performance than other hybrid approaches.en_US
dc.language.isoengen_US
dc.publisherSPRINGERen_US
dc.relation.isversionof10.1007/978-3-319-96133-0_6en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCredit-risken_US
dc.subjectFeature selectionen_US
dc.subjectHybrid-classifieren_US
dc.titleEvaluation of hybrid classification approaches: Case studies on credit datasetsen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-0803-8372en_US
dc.contributor.institutionauthorGungor, Vehbi Cagri
dc.identifier.volume10935en_US
dc.identifier.startpage72en_US
dc.identifier.endpage86en_US
dc.relation.journalMachine Learning and Data Mining in Pattern Recognitionen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster