Advanced Search

Show simple item record

dc.contributor.authorHo, Dongil
dc.contributor.authorJeong, Ha-Yun
dc.contributor.authorMinh Nhut Le
dc.contributor.authorUsta, Hakan
dc.contributor.authorKwon, Hyuck-In
dc.contributor.authorKim, Myung-Gil
dc.contributor.authorKim, Choongik
dc.date.accessioned2021-01-26T11:53:11Z
dc.date.available2021-01-26T11:53:11Z
dc.date.issued2020en_US
dc.identifier.issn2050-7526
dc.identifier.issn2050-7534
dc.identifier.urihttps://doi.org/10.1039/d0tc02393k
dc.identifier.urihttps://hdl.handle.net/20.500.12573/494
dc.descriptionNational Research Foundation of Korea (NRF) - Korean government 2020R1C1C1003606 2017M2B2A9A02049820 2020R1A2C4001617 2018R1A4A1022647en_US
dc.description.abstractElectrical properties of metal oxide thin-film transistors (TFTs) are tunedviathe microstructural control of organic back-channel passivation layers. In this study, organic semiconductor (OSC) passivation layers with various molecular and physicochemical properties are employed to identify the back-channel passivation mechanism in solution-processed amorphous indium gallium zinc oxide (a-IGZO) TFTs. The OSC microstructure influences the passivation of electrical defects ina-IGZO TFTs by compensating for acceptor-like trap states and dangling bonds in the back-channel. First, the distance between an n-type OSC (C-60) and thea-IGZO back-channel is controlled by employing phosphonic acid molecules with different carbon chain lengths. Positive bias stress stability is tuned by applying both the OSC and carbon chain effect, leading to stable, high-performance TFTs with the determination of subgap density of states to confirm the compensation effects on the total acceptor-like defect states. The n-doping of identical passivation layers is further investigated by using perylenedicarboximide derivatives to confirm the proposed n-doping mechanism. Finally, the semiconductor 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene is selected on the basis of our proposed passivation model and exhibited good passivation characteristics. This study demonstrates an ideal molecular design for organic passivation layers, which shows significant potential for the realization of stable, high-performance TFTs.en_US
dc.language.isoengen_US
dc.publisherROYAL SOC CHEMISTRY, THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLANDen_US
dc.relation.isversionof10.1039/d0tc02393ken_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleMicrostructural modulation of organic passivation layers for metal oxide semiconductors to achieve high bias stabilityen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0001-7494-0677en_US
dc.identifier.volumeVolume: 8en_US
dc.identifier.issue32en_US
dc.identifier.startpage11209en_US
dc.identifier.endpage11222en_US
dc.relation.journalJOURNAL OF MATERIALS CHEMISTRY Cen_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record