• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@AGÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@AGÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of leaching parameters on the dissolution of nickel, cobalt, manganese and iron from Caldag lateritic nickel ore in hydrochloric acid solution

Thumbnail

View/Open

Makale Dosyası (2.681Mb)

Access

info:eu-repo/semantics/closedAccess

Date

02.07.2020

Author

Top, Soner
Kursunoglu, Sait
Ichlas, Zela Tanlega

Metadata

Show full item record

Abstract

The effects of leaching parameters on the metal dissolutions from Caldag laterite ore using hydrochloric acid at atmospheric pressure were investigated. The following leaching parameters were examined to understand their effects on the dissolution of the metals: hydrochloric acid concentration, solid/liquid ratio, particle size, leaching temperature and time. Extractions of 95.8%Ni, 94.5%Co and 94.3%Mn into the leach solution were obtained along with a substantial amount of iron (81.5%) under the following conditions: 3.0 M HCl concentration, 90 degrees C leaching temperature, 8 h leaching time, 1/5 solid/liquid ratio and -0.053 mm particle size. The hydrochloric acid consumption under these optimum conditions was found to be 543 kg t(-1)ore. The results indicated that hydrochloric acid concentration and leaching temperature were the most important parameters affecting metal dissolutions. It was found that the dissolution of nickel did not exhibit a good linear correlation to that of manganese, which suggested that considerable amounts of nickel were not hosted in asbolane phase but also in other mineral phases such as goethite, haematite and clays. It was, however, found that most of the cobalt appeared to be hosted in asbolane. The semi-quantitative mineral analyses revealed that mineral dissolution order was as follows: calcite > goethite > haematite > lizardite >= chlorite-serpentine > asbolane > albite > kaolinite.

Source

CANADIAN METALLURGICAL QUARTERLY

Volume

Volume: 59

Issue

3

URI

https://doi.org/10.1080/00084433.2020.1780560
https://hdl.handle.net/20.500.12573/514

Collections

  • Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu [81]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Instruction | Guide | Contact |
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Abdullah Gül University || OAI-PMH ||

Abdullah Gül University, Kayseri, Turkey
If you find any errors in content, please contact:

Creative Commons License
Abdullah Gül University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@AGÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.