• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@AGÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@AGÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modification of surface charge characteristics for unsupported nanostructured titania-zirconia UF/NF membrane top layers with calcination temperature

Thumbnail

View/Open

Makale Dosyası (3.403Mb)

Access

info:eu-repo/semantics/closedAccess

Date

01.03.2020

Author

Erdem, Ilker
Ciftcioglu, Muhsin

Metadata

Show full item record

Abstract

Ceramic membranes are more advantageous alternatives especially for harsh working conditions when compared with the polymeric membranes. The porous multilayer structure of the ceramic membranes (composed of support, intermediate, and top layers) can be prepared via different oxides. Titania and zirconia, having superior properties, are mainly preferred for the top layer formation. The separation properties of the membrane are both dependent on pore morphology and surface charge of the oxide(s) forming the top layer. The effect of surface charge in separation may be very significant in case of filtration of charged species with relatively lower mass as in the ultrafiltration (UF) and nanofiltration (NF). In this study, unsupported membrane top layers were prepared with varying titania/zirconia ratios by sol-gel technique. Their surface charges at different pH conditions after calcination at varying temperatures (400 degrees, 500 degrees, and 600 degrees C) were determined. The surface charge of the pure titania (full Ti) top layer was decreasing with the increasing calcination temperature. The highest magnitudes of zeta potential for both acidic and basic conditions were measured via Zr rich top layer (TiZr2575) at calcination temperatures >= 500 degrees C, which was composed of anatase, rutile (titania), and tetragonal (zirconia) phases after calcination. The tailor-made top layer can be prepared with modifications during membrane preparation.

Source

JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY

Volume

Volume: 56 Issue: Pages:

Issue

1

URI

https://doi.org/10.1007/s41779-019-00352-4
https://hdl.handle.net/20.500.12573/544

Collections

  • Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu [81]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Instruction | Guide | Contact |
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Abdullah Gül University || OAI-PMH ||

Abdullah Gül University, Kayseri, Turkey
If you find any errors in content, please contact:

Creative Commons License
Abdullah Gül University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@AGÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.