Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorRaza, Basit
dc.contributor.authorSher, Asma
dc.contributor.authorAfzal, Sana
dc.contributor.authorMalik, Ahmad Kamran
dc.contributor.authorAnjum, Adeel
dc.contributor.authorKumar, Yogan Jaya
dc.contributor.authorFaheem, Muhammad
dc.date.accessioned2021-03-12T11:36:57Z
dc.date.available2021-03-12T11:36:57Z
dc.date.issued2019en_US
dc.identifier.issn0219-1377
dc.identifier.issn0219-3116
dc.identifier.urihttps://doi.org/10.1007/s10115-018-1272-0
dc.identifier.urihttps://hdl.handle.net/20.500.12573/589
dc.descriptionThe study is funded by COMSATS University Islamabad (CUI), Islamabad, Pakistan, under CIIT/ORIC-PD/17. We appreciate the suggestions and comments of esteemed reviewers that helped in improving the quality of paper.en_US
dc.description.abstractThe workload in large-scale data repositories involves concurrent users and contains homogenous and heterogeneous data. The large volume of data, dynamic behavior and versatility of large-scale data repositories is not easy to be managed by humans. This requires computational power for managing the load of current servers. Autonomic technology can support predicting the workload type; decision support system or online transaction processing can help servers to autonomously adapt to the workloads. The intelligent system could be designed by knowing the type of workload in advance and predict the performance of workload that could autonomically adapt the changing behavior of workload. Workload management involves effectively monitoring and controlling the workflow of queries in large-scale data repositories. This work presents a taxonomy through systematic analysis of workload management in large-scale data repositories with respect to autonomic computing (AC) including database management systems and data warehouses. The state-of-the-art practices in large-scale data repositories are reviewed with respect to AC for characterization, performance prediction and adaptation of workload. Current issues are highlighted at the end with future directions.en_US
dc.description.sponsorshipCOMSATS University Islamabad (CUI), Islamabad, Pakistan CIIT/ORIC-PD/17en_US
dc.language.isoengen_US
dc.publisherSPRINGER LONDON LTD, 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLANDen_US
dc.relation.isversionof10.1007/s10115-018-1272-0en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDecision support system (DSS)en_US
dc.subjectOnline transaction processing (OLTP)en_US
dc.subjectAdaptationen_US
dc.subjectPredictionen_US
dc.subjectClassificationen_US
dc.subjectLarge-scale data repositoriesen_US
dc.subjectWorkload managementen_US
dc.subjectAutonomic computingen_US
dc.titleAutonomic workload performance tuning in large-scale data repositoriesen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-2024-0699en_US
dc.identifier.volumeVolume: 61en_US
dc.identifier.issue1en_US
dc.identifier.startpage27en_US
dc.identifier.endpage63en_US
dc.relation.journalKNOWLEDGE AND INFORMATION SYSTEMSen_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster