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ABSTRACT 

OPTIMIZING CLASSIFIERS FOR PROTEIN SECONDARY 

STRUCTURE PREDICTION  

 

Ömmu Gülsüm UZUT 

Master’s program in Electrical and Computer Engineering Department 

Supervisor: Assist. Prof. Zafer AYDIN 

 

July 2017 

 

 

Protein secondary structure prediction is important for understanding protein structure 

and function. PSSP can be seen as a bridge between amino acid sequence and 3D 

structure of a protein. Many methods have been performed to improve prediction 

accuracy rate and get good achievement. There are multiple situations that will affect 

the performance of a method. One of these situations is selection of correct parameter. 

Hyperparameters are parameters that cannot be directly learned from the regular 

training process. Although the methods have default hyperparameter values, it is 

possible to improve performance of methods by using those hyperparameters with 

different values which can be more convenient. Parameter optimization plays an 

important role at this stage. It applies to methods to find best hyperparameter values to 

apply methods.  

In our thesis, computational methods such as Random forest, Support vector machines 

and deep convolutional neural fields have been used and optimized on CB513 dataset. 

We have aimed to optimize methods with different values to improve the results and 

show the importance of parameter optimization in protein structure prediction. We also 

tried to use some ensemble methods to compare our results with individual classifiers to 

see the improvement of results. 

Keywords: Bioinformatics, Optimizing Models, Ensemble Methods, Protein Structure 

Prediction. 
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ÖZET 

PROTEĠN ĠKĠNCĠL YAPISININ TAHMĠNĠ ĠÇĠN 

SINIFLANDIRMA YÖNTEMLERĠNĠN OPTĠMĠZASYONU 

Ömmu Gülsüm UZUT 

 Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı, Yüksek Lisans Programı 

Tez Yöneticisi:  Yrd. Doç. Dr. Zafer AYDIN 

Temmuz 2017 

 

Protein ikincil yapı tahmini, proteinin yapısını ve fonsiyonunu anlamak için önemlidir. 

Protein ikincil yapı tahmini, bir protein dizisiyle o proteinin 3 boyutlu yapısı arasında 

bir köprü olarak görülebilir. ġimdiye kadar, tahmin doğruluğu oranını artırmak ve iyi 

bir baĢarı elde etmek için birçok yöntem gerçekleĢtirildi. Bir yöntemin performansını 

etkileyecek birden fazla durum vardır. Bu durumlardan biri doğru parametrenin 

seçilmesidir. Hiperparametreler, iĢlem sürecinde doğrudan öğrenilemeyen 

parametrelerdir. Yöntemlerin varsayılan hiperparametre değerleri olmasına rağmen, 

daha uygun olabilecek farklı değerlere sahip hiperparametreler kullanılarak yöntemlerin 

performansını artırmak mümkündür. Parametre optimizasyonu bu aĢamada önemli bir 

rol oynamaktadır. Yöntemlerde kullanılacak en iyi hiperparametre değerlerini bulmak 

için metotlarda uygulanmaktadır. 

Tezimizde, sonuçları iyileĢtirmek ve protein yapı tahmini için parametre 

optimizasyonunun önemini göstermek amacıyla metotları optimize ettik. Sonuçların 

iyileĢtirilmesini görmek için sonuçlarımızı bireysel sınıflandırıcılarla karĢılaĢtırmak için 

bazı topluluk yöntemleri de kullanmaya çalıĢtık. 

Anahtar Kelimeler: Biyoinformatik, Model Optimizasyonu, Topluluk Yöntemleri, 

Protein Yapı Tahmini.  
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Chapter 1  

 

1.Introduction 
 

 

 

 

 

Predict of three dimensional structure of a protein from its amino acid sequence is 

called as protein structure prediction [1]. Protein structure prediction has been an 

essential issue in the field of bioinformatics because of understanding of protein 

function. Three dimensional structure of a protein gives crucial information about its 

function. So, to understand function of a protein, protein tertiary structure has to be 

known. Despite being accurate, experiments are expensive and time consuming. Also, 

prediction tertiary structure directly has computational complexity, so some approaches 

aim to make predictions about features of protein’s structure such as protein torsion 

angle, solvent accessibility, protein secondary structure. 

Using computational techniques has a big increase in bioinformatics because of 

complexity of biological data and widespread availability of information about protein 

sequences. Machine learning approaches which is one of most using computational 

techniques have been used in some bioinformatic fields especially protein tasks. The 

problems with proteins such as protein structure prediction [2], protein sequences [3], 

protein fold recognition [4, 5, 6] have been tried to solve with this approaches. 

Protein secondary structure prediction is one of the most important problems in 

bioinformatics. PSSP is generally defined with grouping the amino acids with three 

letters. These three letters are H, E and L. H is for helix E is for strand and L is used for 

loop. 

Secondary Structure prediction has been handled by different learning 

algorithms. Support vector machines, one of these algorithms, has a good performance 

when we compare with other algorithms. 

SVM has been used for protein secondary structure on the full set of 1460 

proteins with three state predictions and gets 77.07 % accuracy by cross-validation [7]. 

Hua and Sun also have showed that it is feasible to get improvement by adding PSI-

BLAST generated profiles in the SVMs method [8]. Kim and Park developed a new 

method, SVMpsi, to improve the current prediction rate by PSI-BLAST PSSM profiles. 



2 

 

The method was performed on different datasets which was RS126 and CB513 and 

showed that    scores for both datasets are improved by 4.9 and 3.1% [9]. Gubbi and 

Lai applied SVM method to CB513 dataset with seven fold cross validation technique 

and obtained 77.9% accuracy [10]. Also there are more studies which SVM outperforms 

when compare with other machine learning classifiers [11]. 

Ensemble learning which has an increase in using day by day is an important 

technique in pattern recognition, machine learning and data mining. The main idea 

behind ensemble learning is combining the classifiers for improving the accuracy 

measure [12]. 

In recent works, we see that many studies have been applied to improve and 

getting better results by combining methods. For example, King used ensemble methods 

that combine some machine learning approaches such as voting and get better accuracy 

than individual classifiers accuracies on CASP dataset [13]. Kountouris also combined 

machine learning techniques for secondary structure prediction and showed this 

technique can improve the quality of the predictions, especially SOV score [14]. 

Alirezaa also used a machine learning approach which was ensemble of neural networks 

with different voting combination methods for class imbalance problem of protein 

secondary structure prediction and showed their ensemble system has better 

performance when compare with individual classifier they used [15]. Bhola and Yadav 

get overall accuracy of 89.20% for predicting the protein function by using 857 

sequence-derived features with different classifiers such as Random Forest, k-Nearest 

Neighbor (k-NN), fuzzy k-Nearest Neighbor and Support Vector Machine (SVM) [16]. 

Melvin and Weston developed a hybrid machine learning approach which combines 

nearest neighbor method and multiclass SVMs for classifying proteins [17]. Pollastri 

and Baldi have studied on ensembles of bidirectional recurrent neural network to 

improve contact and accessibility prediction [18]. Also there are more studies to show 

performance of ensemble approaches that much better than individual classifiers [19, 

20, 21, 22, 23, 24, 25]. 

In this thesis, we optimized classifiers and developed new ensemble methods for 

protein secondary structure prediction. These ensemble methods improve the accuracy 

rate of secondary structure prediction and allow us to show importance of ensemble 

methods for protein structure prediction problem.  

Protein structure prediction has vital importance to understand function of a 

protein. When we have information about three dimensional structure of a protein, we 
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will also have information about its function and by this we have power to diagnose 

disease and design new drugs, 

This thesis is organized as follows: section 2 gives information about proteins 

and their structures. In section 3, protein structure prediction and importance of 

secondary structure prediction is explained briefly. Pre-processing methods about 

preparing feature vectors as the first stage of sequence alignment is elucidated in section 

4 and then, we clarified methods we used and parameter optimization for prediction as a 

second stage. Ensemble methods used stated in section 5 and in section 6 we explain 

our results and give a conclusion. 
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Chapter 2 

 

2.Structure of a Protein 

 

Proteins are polymers of amino acids, consisting of one or more long one 

polypeptide chains and each protein has a specific function. “Proteins perform a vast 

array of functions within organisms, including catalysing metabolic reactions, DNA 

replication, responding to stimuli, and transporting molecules from one location to 

another. Proteins differ from one another primarily in their sequence of amino acids, 

which is dictated by the nucleotide sequence of their genes, and which usually results in 

protein folding into a specific three-dimensional structure that determines its 

activity.”[26] 

Amino acids are constituents of proteins and they 

specify three dimension structure of proteins. Despite of 

having the same general structure, the side chain(R 

group) of each amino acid is different(Figure 2.1). 

Difference of proteins is possible with different sequence 

of amino acids and these side chains provide different 

structure attributes to protein.  

 

        Proteins are large macromolecule class as a result of aminoacids connecting to 

each other in a sequence. There are commonly twenty types of amino acids in nature. 

These amino acids have different physical and chemical character. Characters such as 

electrostatic charge, acid separation coefficient, hydrophobic, size, functional group 

differs from one amino acid to another. These properties plays an important role in 

determining the structure of a protein [27].    

 

Figure 0 The structure of an amino 

acid[27]. 
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2.1 Protein Structure Levels 
 

        There are four basic levels of a protein structure: primary, secondary, tertiary and 

quaternary.  

Primary structure=amino acid sequence 

Secondary structure=hydrogen bonds 

Tertiary structure= three dimensional structure of an amino acid chain 

Quaternary structure=three dimensional structure of multiple amino acid chains 

 

2.1.1 Primary Structure 

 
Primary structure basically can be defined as amino acid sequence of a protein. 

Amino acid sequence gives us information about history of protein. The primary 

structure of a protein consist of all necessary information to determine the protein in the 

3D structure.  This structure is crucial for being 

informed about function of a protein. The 

alteration one of amino acid in sequence can 

change entire protein. 

In summary, primary structure is important; 

- to predict secondary and tertiary structure.  

-many genetic diseases occurs due to abnormal 

amino acid sequences 

-to get information about the molecular system of 

proteins 

-to determine evolutionary history of protein 

2.1.2 Secondary Structure 

Secondary structure of a protein is local structural conformation that formed by 

coiling and folding of polypeptide chains. There are two regular and major structural 

element of secondary structure. These are α helix and β strand. 

Coiling occurs, forming a α helix, due to the formation of hydrogen bonds 

between the nitrogen of one amino acid and the oxygen of another located in another 

Figure 0.1 Primary structure of an amino acid[27]. 
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part of the polypeptide chain. It is usually right-handed in proteins. And each helix 

contain from 5 to 40 amino acids. 

 

Folding occurs, forming β pleated 

sheets, due to hydrogen bonding between 

different polypeptide chains lying side by 

side. 

There are two types of pleated sheets 

which are parallel and antiparallel.   Parallel  

β pleated sheets occur when two peptide run 

in the same direction. For anti parallel, they 

must run in the opposite directions. 

Loops are not regular secondary structure in proteins unlike alpha helices and 

beta sheets. They are forming near the helix and beta sheet and usually found at surface 

of protein. Loops contains turns, random coils and strands which connect the alpha 

helices and beta strands. 

2.1.3 Tertiary Structure 

Tertiary structure is three dimensional form of an entire protein molecule. Every 

protein has unique three dimensional structure and the function of protein depends on it. 

The protein with known structure gives crucial information about its function.  

By understanding function of structure, we can try to diagnose diseases, design 

drugs and investigate new treatment models. 

3D structure is determined by X-ray crystallography and NMR(Nuclear 

Magnetic Resonance) spectroscopy. The known structures have come to light through 

these methods. The atomic coordinates of most of these structures are collected in a 

database known as the Protein Data Bank(PDB). PDB allows to analyze the tertiary 

structures of known proteins. Despite of getting information about structure of protein, 

these methods are also expensive and time consuming. So, computational methods are 

tried to applied in bioinformatic fields.  

Figure 2.1.2.1 Secondary structure of an amino 

acid[28] 

Figure 0.2.1 Secondary structure of an amino 

acid[28] 
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2.1.4 Quaternary Structure 
 

        Quaternary structure is the combination of two or more tertiary units. It is 

stabilized by non-covalent and disulfide bond which also stabilizes tertiary 

structures. 

2.2 Torsion Angle 
 

Torsion angles are defined as angles of rotation of protein backbone 

around the bonds. Torsion angles are 

also called as dihedral angles. There are 

three types of torsion angles; phi, psi 

and omega. Rotation angle between N 

and    is called as phi, Rotation angle 

between    and C atom of C=O groups 

is called as psi and rotation angle of the 

protein around the peptide bond is  

identified as omega(ω). In general, 

omega is flat and fixed to 180 degrees, 

so phi and psi provide the flexibility 

required for the polypeptide backbone to 

adopt a certain fold[29]. 

 

2.3 Solvent Acessibility 

        The accessible surface is identified as the area of a biomolecule on the 

surface that can be reachable by water. All 

molecular surface area is not accessible to 

solvent because of the presence of small spaces.  

Solvent accesible surface area is one of most 

important measure to understand interaction 

tendencies of a protein. 

Figure 2.2.1 The phi (φ), psi (ψ) and omega (ω) angles in 

the protein backbone[30] 

Figure 2.2.2 Van der Waals area and solvent 

accessible area[31]. 
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Chapter 3 

 

3.Protein Structure Prediction 
 

 

Protein structure prediction is a crucial topic in bioinformatic due to relation 

between a function of a protein and its three dimensional structure. 

The main reason for tackling the protein structure prediction problem is 

necessity to understand all functionalities they are related to which configurate 

its ill effect on others as well as its good effect. Although a lot of researches on 

protein structure prediction have been handled, the structure prediction problem 

has not been solved yet.  

 

3.1 Importance of Secondary Structure 

Prediction 

 

Secondary structure prediction is the identification of secondary 

structural elements starting from the sequence information of proteins. The aim 

with this prediction is to assign secondary structure class (helix, strands, loop) 

which corresponds to each amino acid.(figure 1) 

 

Figure 2.2.1 Three state of a protein secondary structure prediction. The first line 

represents the amino acid sequence, the second line represents the secondary (H: coil, E: 

beta strand L: loop). 

For secondary structure prediction, generally supervised learning 

approaches are used. In Supervised learning, a model is trained from the 

database with known secondary structure to make prediction for unknown 

structure.  The expectation is to estimate unknown information thanks to 

information which is already obtained from model.  
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3.1.1 Secondary Structure Types 

3.1.1.1 DSSP 

        DSSP (dictionary of secondary structure prediction) is a program that 

defines secondary structure of a protein with an 8 state assignment denoted by 

single letter codes. 

3.1.1.1.1 8 class secondary structure prediction 

H  - helix 

G     – helix 

I  - helix (extremely rare) 

E  - strand 

B  - bridge 

T - turn 

S Bend 

L the rest 

Table 4.2.5.1.1.1 8 class secondary structure prediction 

However, prediction methods are generallly trained and evaluated for three 

states which are H,E,L. H refers to helix, E refers to strands and L refers to 

coil(loop). For this evaluation, 8 states is converted to 3 states. There are many 

published 8 to 3 states reduction methods.  

There are three standard reduction methods which are mostly used. They are 

defined by programs DSSP[32], DEFINE[33] andSTRIDE[34]. 

 

3.1.1.1.2 3 class secondary structure prediction 

 

DSSP programs use reduction methods as below: 

{G (    – helix), H (- helix)}     H (helix) 

{E (-strand),  B (-bridge)}                E (strands) 

all the rest      L (coil) 

DEFINE programs use reduction methods as below: 
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{G (    – helix), H (- helix)}     H (helix) 

{E (-strand)}                E (strands) 

all the rest      L (coil) 

STRIDE programs use reduction methods as below: 

{G (    – helix), H (- helix)}     H (helix) 

{E (-strand),  B (isolated -bridge)}                E (strands) 

all the rest      L (coil) 

 

3.2 Measures for Prediction Accuracy 

           is most popular measure in literature for protein secondary structure 

prediction methods when evaluating performance of classifiers. It can be 

definable as percentage of all amino acids that have correct matches for the three 

states (H, E, L). 

 

 
   

                 

 
 

 

(3.2.1) 

 

where     is used for true positive number of helix,     is used for true positive 

number of strand,     is used for true positive number of loop and N is for 

number of total data. 

According to 3.2.1 equation we can obtain each class label of secondary 

structure prediction. 

CL  {H, E, L} 

 

    
        

   
 

 

(3.2.2) 

 

where     is rate of class label individually for protein secondary structure 

prediction,      is number of residues correctly in state CL and     is the 

number of residues in state CL. 
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        Also there are other measures for evaluation. For example,    is measure 

for eight states, while SOV is used for testing average overlap between the 

observed and the predicted segments rather than individual residues [35]. 
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Chapter 4 

 

4.Methods 
 

 

Making analyze of very large quantities of data is not possible manually. So, 

at this stage we get help from machine learning methods. The main purpose of 

machine learning methods is to make predictions for the future using the past 

data.  

In our thesis, firstly we used dspred method which is a hybrid approach for 

the prediction of one dimensional features and then used feature extraction 

methods. Also, we used support vector machines, random forest and deep 

convolutional neural field methods as classifiers. 

 

4.1 DSPRED METHOD 
 

 

In our thesis, a hybrid approach, DSPRED, will be followed that uses 

both dynamic Bayesian networks and a classifier together for the estimation of 

one dimensional local features such as secondary structure, dihedral angle and 

solvent accessibility. This approach has been previously applied for dihedral 

angle estimation and successful results have been obtained [40]. In this method, 

there are separate dynamic Bayesian network (DBN) for position specific 

scoring matrices obtained from PSI-BLAST and Hidden Markov Models 

(PSIBLAST PSSM and HHMAKE PSSM) by using proteins with known 

secondary structure labels.  
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Figure 0.1Estimation of the 3-state secondary structure with the hybrid model using 

dynamic bayes networks and artificial neural networks together 

Here, DBN-Previous represents the model in which the profile vector at a 

given position is bound to its previous positions and DBN-future represents the 

model in which the position of the profile vector at a given position is dependent 

on subsequent positions (the vectors are the columns of the profile matrix and 

there are as many columns as the number of amino acids). Therefore, two types 

of DBN models are trained for each profile matrix (four DBN in total). The 

average of probability distributions for the secondary structure class labels from 

these DBN classifiers gets in various combinations. For example, distribution 1 

represents the average of the predictive distributions from the PSI-BLAST 

profile, distribution 2 represents the mean of the distributions from the profile 

matrices derived from the hidden Markov model, and distribution 3 is used for 

the average of the distributions 1 and 2. In this problem, since the 3-degree 

secondary structure class is estimated, the size of Distribution 1, 2, and 3 is 3×U 

where U is the number of amino acids. Consequently, each column contains the 

estimated probabilities of secondary structure classes at that position. In the later 

stage, the profile matrices (PSI-BLAST and HHMAKE) used for DBN are 
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combined with Distributions 1, 2, and 3 and sent to classifiers which will be 

explained in later chapter. Here a symmetrical window is taken around the 

amino acid position at which the secondary structure class is predicted. Then, 

the columns of the profile matrices and the columns 1, 2, and 3 corresponding to 

these windowed positions are used as the input parameter (feature). Finally, the 

output from classifiers gives an estimate of the secondary structure class of the 

amino acid in the middle of the window. In our thesis, in addition to PSI-

BLAST and HHMAKE profiles, profile matrices derived from structural profile 

approach is used as input parameters and separate DBN models is trained for 

these matrices. Then, after multiplying by the various coefficients of the 

probability distributions obtained from these DBN models, averaging is 

performed and the final distribution is calculated. 

 
(A) 

State H H H H H L L L H H H E E E E E L L L L L L 

state count down 5 4 3 2 1 3 2 1 3 2 1 5 4 3 2 1 5 5 4 3 2 1 

change state 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 
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 (B) 
Figure 0.2 A) dynamic bayesian network for protein secondary structure prediction. B) the 

variables used in DBN is shown. State variable is for secondary structure class label. The 

state count down with Dmax=5 shows the value of remaining  class label from current 

position until next label. Change state is used for transition from one label to another. 

Transition state is showed with 1 and when staying in same class label, it is shown with 0. 

 

The dynamic Bayesian network model used for predicting secondary 

structure class with 3 states is shown in Figure 1 [40]. Dynamic bayesian 

network (DBN) is the superset of Hidden Markov Model (HMM) [41]. We 

performed the DBN which is designed by [40]. The nodes in DBN show random 

variables. The model we used includes five variables. Blue circles show the 

profile matrices and the others show hidden conditions. The state variable 

represents the secondary structure class label to be estimated. In training part, 

the observation is made on state variable and in execution time for estimation, it 

is hidden. The amino acid profile variable includes the data which is observed. 

This observation data is the PSSM scores with 20 dimensional vector which is 

produced from PSI-BLAST and HHMAKE methods. The current and previous 

SS label information is kept with state class history variable. The state count 

down identifies each class label with its length number in a descending order. 

There is a Dmax value for this variable. If length of a class label is equal or less 

than this number, then the state count down value is equal to the number of this 

class label letters which start from current position until next different class 

label. If length of a class label is bigger than Dmax value, then the state count 

down value is starts with this number and does not change until the number of 

residues of class label is equal to Dmax. When equality is achieved, then the 

procedure which explained below is applied. Change state shows passing from 

one class label to another.  

DBNs model the generation of input parameters from hidden class 

variable within the probability rules. In our DBN model, the probability of 

producing a particular profile matrix from a given class of structures is modeled 

with a gaussian probability distribution. After the proteins with known 

structured labels are trained with DBN models, the state sequence with the 

highest probability is computed by efficient algorithms. In our thesis, Linux 
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based GMTK software package (Graphical Models Toolkit) is used to create 

DBN models [42]. The GMTK uses the EM algorithm for model training and 

the junction tree algorithm for estimates. 

 

4.2 Feature Extraction 

 

The success of three-dimensional structure estimation approaches using 

particle selection is closely related to the quality of selected particles. For 

example, it is important that these particles are the same as the correct structure 

or similar to the correct structure. Therefore, the better particle selection makes 

possibility of better prediction for three dimensional structures. Various one 

dimensional structural properties of the protein such as profile matrices and 

secondary structure, dihedral angle and solvent accessibility are used as input for 

particle selection. Therefore, it is important to estimate these matrices and their 

structural properties with low misperceptions for selection of the correct 

particles and prediction of the three-dimensional structure correctly. Although 

many advanced methods have been proposed for predicting the structural 

properties and three-dimensional structure of proteins, the scores obtained from 

the PSIBLAST algorithm are often used as input for the profile matrix. In 

addition to the matrices obtained from the PSI-BLAST method as profile 

matrices, matrices obtained from hidden Markov models and structural profile 

matrices is used in our thesis. Structural profile matrices have recently begun to 

be used for secondary structure estimation and particle selection, but the profile 

matrices obtained from hidden Markov models are quite new. Once the profile 

matrices have been computed, one dimensional structural property such as 

protein secondary structure will be estimated.  
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4.2.1 PSSM 

        A PSSM depend on the frequencies of each amino acid in a specific 

position of a multiple alignment. A profile is formed from a series of 

functionally related aligned sequence. After profile is derived from a series of 

sequence, a window with length you specified is run. According to this window 

length, you will have feature number. For example, if you have a window with 

length 4, 9 features will be derived for each amino acid that 4 from the right side 

of amino acid, 4 from the left side of amino acid and 1 from itself. For all amino 

acid, 9*20=180 feature will be derived. 

4.2.2 Position Specific Iterative BLAST (PSI-BLAST) 

        PSIBLAST is an iterative method that searches database by using 

sequences of multiple alignments which has found in high score in each search 

to achieve a new PSSM to use in the next time of searching. At the end iteration 

a profile matrix size 20*N occurs by PSI-BLAST method. N is the number of 

amino acids in the target protein. Proteins with structural similarity whose 

sequence similarity is low can be discovered with the use of profiles in 

alignment. Therefore, they are applied to the profile evaluation. Because of 

being fast and simple to implement, possibility to search PSSMs on large 

database, providing efficiency and sensitivity, PSI-BLAST is the most 

commonly used profile matrix derivation method for structure prediction. 

However, PSI-BLAST method can not only detect more distant protein 

similarities, but also perform mismatches. So, the profile matrices derived from 

this method contain a certain noise. Although this noise plays a difficult role in 

predicting the structural properties, the first profile matrix to be used in this 

project will be obtained by the PSI-BLAST method due to widely using and 

having a certain level of accuracy. 

4.2.3 HMM Profile Matrices 

      Profiles based on hidden Markov models (HMM) can be obtained, 

after multiple alignments are executed with the proteins found by sequence 
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alignment algorithms. HMM can be iteratively used for profile sequence 

alignment or profile-profile alignment [36]. HMM-profiles is generally used as a 

classifier in field of  hand writing recognition, sound recognition, 

bioinformatics, gene prediction. They are applied to models as a classifier in 

previous work for speech recognition [37], protein secondary structure 

prediction [38], protein torsion angle prediction [39]. 

HMM profiles are more sensitive than standard profiles and explore 

more distant protein similarities. However, profile alignments based on Hidden 

Markov Model are slower when compared with PSI-BLAST method. In our 

thesis, HMMs derived at the end of first iteration with HHBlits method will be 

converted to PSSM and used as the second type profile matrix. 

4.2.4 Structural Profiles 

        In addition to profile matrices based on multiple alignments of amino acid 

sequences for structural prediction, structural profile matrices have also been 

used as attributes. Structural profile matrices are constructed using the structural 

sequences of the proteins found by sequence alignment methods. The dimension 

of a structural profile matrix formed for the secondary structure estimation is 3 × 

N. Here, N is the number of amino acids in the target protein and each column 

has the observation score of one of the three states of secondary structures for 

that amino acid. Since structural profilers also use structural information of 

template proteins that are similar to the target protein, they can be evaluated 

separately from the methods that use sequence profiles. Another category is 

directly using secondary structural information of pattern proteins that has a 

sequence similarity to target protein over a certain level for prediction. In this 

case, the situation in which structural profiles are used can be considered as 

category between the case where the sequential profiles are used and the case 

where the proteins are directly used for prediction.  

        The protein sequences used in the construction of structural profiling are so 

healing that the predictions of the target protein are very similar. Furthermore, in 

cases where the target protein resembles a sub-region instead of the entire 

protein (local similarity), there is some improvement in the prediction of the 
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secondary structure and a more significant improvement in the estimation of the 

secondary structure can be achieved when the resembling region is longer. It is 

aimed to capture distant or local similarities by using structural profiles. On this 

basis, structural information of local similarities can be used to estimate the 

structural properties of the target protein. 

        HMM-Profile model obtained by NR alignment in the first stage of 

HHBlits is aligned with the profile-profile alignment by the HMM-profile 

models established for PDB proteins in the second stage. Structural profiles 

matrix is constructed with the secondary structure labels of PDB proteins above 

a certain value of the percentage of sequence identity and by using the proteins 

above the probability score threshold. The frequencies of the other secondary 

structure tags that match each amino acid in the input protein are calculated as a 

matrix and the columns are normalized in itself [38]. 

        Our structural profile is a 3 × N matrix. 3 is used for secondary structure 

class labels and N is used for amino acids in the target. In Fig. 5.1.4.1, an 

example for structural profile is shown. 

 1 2 … N 

H 0.4 0.5 … 0.2 

E 0.3 0.5 … 0.3 

L 0.3 0 … 0.5 

 

Figure 4.2.4.1A structural profiles for 3 state of secondary structure representation. Rows 

show the secondary structure classes and columns demonsrate the amino acids of the 

target. Sum of each column is equal to 1. 

         Once the profile matrices for proteins have been generated, the feature 

vector for each amino acid is obtained by taking a window around that amino 
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acid and concatenating the values from the respective columns of PSI-BLAST, 

HHMAKE and structural profile matrix. An example for obtaining feature 

vectors is shown in figure 4.2.4.2 

4.2.5  Datasets 

 

We make our experiment with one dataset: CB513[43] dataset containing 

513 proteins and 84,119 residues. It contains 396 sequences, usually named 

CB396 and the 117 sequences from RS126 [44] database. 

CB513 is a popular dataset in bioinformatic fields. It was used in many 

studies about protein secondary structure prediction. 

4.2.5.1 K-fold Cross Validation 

Datasets used in machine learning, data mining generally split into two parts 

as train and test set to evaluate predictive models. Train set is to train the model 

and test set is to evaluate it.  

K-fold cross validation is a method to test the model used by dividing the 

data set into k equal size subsets. In k fold cross validation technique, each time, 

one of the k subsets is used as the test set and the other k-1 subsets are acting as 

a training set. This repeats k times until all subsets are used as test set.  

For example, in our thesis, we used 7 fold cross validation. Our k value is 7. 

We divide our dataset into 7 equal size subsets. After we randomly divide our 

training dataset into 7 part, one of these is used as test to validate and the other 6 

subsets are used as training.  After selecting all each fold as test set and evaluate 

the model, we have 7 accuracy rate. Overall accuracy is calculated by taking 

average of 7 results obtained. 

Equation can be written as below: 

 

 
(4.2.5.1.1) 

 

      

Figure 4.2.4.2 An example for obtaining feature vectors 
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CF is classification function, DS is dataset, k is fold number used and t is 

for selected each test set from dataset.  

Overall accuracy is found by dividing the sum of classification function 

result to  the number of k. 

Cross validation also is a solution to find optimum parameters. By this 

way, we make optimization on validation sets and we make our work on test 

with optimum parameters which is found from validation dataset. And this gives 

us a crucial convenience about finding optimum parameters which provides a 

rise on accuracy rate. 

4.3 Support Vector Machines 

 

Simplifying datas and making prediction are two main goals in 

classification. In general, machine learning approaches have been applied to 

classification problem. Support vector machine is one of classification method 

used in machine learning. Main purpose of SVM is to identify hyperplane which 

makes the most appropriate discrimination between two or more classes[45].  

SVM can classify both linear and nonlinear datasets. Let say we have 

two classes and we want to classify them. We can draw an infinite number of 

plane between these two classes. At this point, the aim of SVM is to find the 

hyperplane that maximizes the distance between the closest points of classes to 

itself.  

4.3.1 Linear Separation 

In linear separation, datas from 

different classes can be linearly 

separated from each other in different 

ways. As seen in figure 1, datas in 

different class can be separated with 

lots of number planes. Two 
Figure 4.3.1.1 Linear SVM classifier 
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hyperplanes (      , which are farthest from each other, are considered to be 

the most suitable way. The    hyperplane, which forms the center of these two 

hyperplanes, is a linear hyperplane that separates the two classes of datas. These 

   hyperplane is identified as the optimal separation hyperplane.  

Given a training set D which can shown as; 

                               

 

(5.1.1.1) 

n is the number of element in D dataset and y is accepted as element of 

       . 

The    plane in terms of points on a hyperplane can be expressed as: 

     
       

 

(5.1.1.2) 

Also can be written as: 

 
∑        

 

   

 

 

(5.1.1.3) 

where w is weight vector as W={               . b is a constant number. 

The    and    hyperplanes can be expressed azs: 

     
       

 

(5.1.1.4) 

     
        

 

(5.1.1.5) 

 

The points above the hyperplane which is formulated in the first formula 

correspond to the following inequality: 

               

 

(5.1.1.6) 

Similarly, the points at the bottom of the hyperplane correspond to the following 

inequality: 

               (5.1.1.7) 
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4.3.2 Non-linear Separation 

In real word problems, many datasets are not linearly separable. In this case, 

the datas can not be split by a linear function, so non-linear mapping approach 

[46] is applied. The two dimensional dataset is processed into three dimensional 

feature space and linear separation of the dataset is achieved with this approach. 

 

 

Figure 4.3.2.1 The non-linear SVM[46] 

4.3.3 MULTICLASS SVM 

SVM is used to split only two classes. If there are three or more classes to be 

classified, it is identified as multi class SVM. Different approaches can be used 

for multi class SVM.  

One versus one (OVO): This is the most used technique. In this approach, 

problem is reduced to binary groups. For example, we have three classes as 0, 1 

and 2. Firstly, these classes are trained by SVM method in binary groups and the 

SVM multipliers of the classes which relative to each other are generated. 

According to results, which one of these classes is more seen as an output of 

these queries, a new sample is accepted as closer to this class.  
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As seen in figure, a separate SVM has been trained for both classes.     

 

Figure 4.3.3.1 Multiclass SVM 

    

One versus all (OVA): In OVA technique, problem is separated into binary 

classes. One class is considered as positive and all other classes as negative. 

Then, SVM algorithm is implemented and this is applied for all classes 

individually. 

Multi Class Ranking: A SVM algorithm works on the classes to make a 

classification that includes all the members of these classes according to multi 

class ranking approach. This approach is the least preferred one. Because, the 

execution time is unbelievably high when compared with other approaches. 

 

4.4 RANDOMFOREST 

Randomforest is a method that forms a forest of random trees that used 

for classification or regression with different sets of features [47]. It is also 

definable as an ensemble classifier because of using many decision tree models.  

Application areas of random forest are very large. For example, it uses in 

biomedical [48], physics, health, bioinformatics etc. 

Random forests construct decision tree with n number over the available 

training set. A new training dataset is created with displacement from the actual 

dataset for each tree. For this reason, each tree is different from the others. In the 

same way, selected attributes for constructing trees are again chosen randomly 
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with m number. And it starts to form tree by using gini index to specify 

branching criteria in the random forest. When it gets number of trees which 

determinated from the beginning, output of each tree is collected and combined 

by weighted values to find the final classifier. 

Random forests are preferred for a number of reasons. One of this 

advantage and may be most important one is overcoming the problem of 

overfitting. Random forest can avoid this problem by optimization tuning 

parameter, number of trees and training features. By choosing most suitable 

model parameters based on cross validation will form a model without 

overfitting. Also, overfitting problem can be prevented by number of trees. 

Because, if number of trees is getting larger, the forest will more overcome of 

this problem. This implies that you get more alternative to select, because each 

tree in random forest is learning some aspect of the training data.     

The other advantage of random forest that makes it an active research 

subject is with regard to efficient performance on big datas. Fastness of learning, 

convenience about setting parameters, handling missing values are demonstrable 

as other advantages of random forests. 

In recent works, random forests are compared with other classification 

models. For example, a comparison made between randomforest and SVM for 

microarray-based cancer classification and seen that SVM outperform random 

forest [49]. Also, Lee et al. [50] compared random forest with SVM to identify 

protein function with features which obtain from protein sequences attributes. 

They applied a correlation-based feature selection to models and compared them 

with SVM and Random forest without feature selection. 

4.5 Deep Convolutional Neural Fields 

Deep learning is a machine learning approaches to find solution for 

problems in field such as bioinformatics [51, 52], natural language 

processing[53, 54] with deep neural network architectures. The goal of deep 

learning approaches is to learn an attribute order with high level attributes of the 
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order which is formed by the connection of lower level attributes[55]. Learning 

attributes at multiple levels of abstraction provide opportunity for a a system 

about resolving complicated functions that maps the inputs to an output directly 

from datas. 

Deep learning has been improved by the time. Firstly, deep belief 

network with RBM[10] which is an an algorithm that trains a layer at each time 

was introduced. After a while later, connected algorithms formed on auto-

encoders were introduced and then, many algorithms started to propose. 

4.5.1 Deep Convolutional Neural Networks 

Convolutional neural networks are enviable deep learning architecture 

because of the successful training of the hierarchical layers. In Convolutional 

Neural Networks, the convolution has replaced the general matrix multiplication 

in standard NNs. In this way, the number of weights is decreased, thereby 

reducing the complexity of the network. Another advantage of CNN is 

requirement minimal pre-processing.   

4.5.2 Conditional Neural Fields 

 DeepCNF can be define as a improved form of CNF which has a combine 

between CRF and DCNN. Conditional neural fields is created due to the 

inconvenience of resolving the nonlinear connection between input features and 

output layer of CRF, especially for sequence labeling [56].  DEEP CNF is a 

combine of CNF [56] and DCNN [57]. It receives both advantages of CNF and 

DCNN. DeepCNF also design connection between contiguous secondary 

structure labels, while CNF design only complicated and nonlinear contact 

between sequence-structure [58]. So, we can say it is better than CNF with this 

attribute. 
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Figure 4.5.2.1Design of DeepCNF[59] , where i is the position index and  the associated 

input features, while  is for the k-th hidden layer and Y fo the output label. All the 

layers from the first to the top layer constitutes a DCNN with parameter  

 The top layer and the label layer constitutes a CRF with U and T as 

a model parameters. U determines association between output of the top layer and the 

label layer and T is used for adjacent label correlation. 

4.6  Parameter Optimization  

There are multiple situations that will affect the performance of a 

method. One of these situations is selection of correct 

parameter.Hyperparameters are parameters that cannot be directly learned from 

the regular training process. Although the methods have default hyperparameter 

values, it is possible to improve performance of methods by using those 

hyperparameters with different values which can be more convenient. Parameter 

optimization plays an important role at this stage. It applies to methods to find 

best hyperparameter values to apply methods. 

In our thesis we used 3 different classifiers for optimization. Firstly 

support vector machine with different C and gamma parameters, random forest 

by using different number of iterations and deep convolutional neural field with 

3 different parameters that are node string, window string and regularization 

coefficient. 
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4.6.1 Parameter Optimization for Support Vector Machines 

 

In SVM, we optimized the kernel function parameters which are C and 

Gamma (γ). C is a cost function parameter that checks the effect of each support 

vector. Selecting an appropriate value for C is important for tolerating the error. 

When the value of C is low, the decision surface is getting smooth and margin 

width becomes maximum. When the value of C is high, sensitivity at learning 

phase increases because of decreasing margin width. 

 

 

   a)C=10                                                                      b)C=100 

Figure 4.6.1.1 The effect of C constant on the decision boundary a) The effect of C when 

equal to 10 and b) The effect of C when equal to 100. 

Gamma parameter determines the amount of spreading influence. The 

decision boundary becomes more linear when value of gamma parameters is 

small. When gamma parameters take high value, the decision boundary becomes 

non-linear.   

  

       Gamma= 0.1                                                                   Gamma=10 

Figure 4.6.1.2 The effect of kernel parameter on decision boundary 
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We took combination of C and gamma parameters for SVM 

optimization. For C and gamma, we have 10 values separately. Totally, we have 

10*10=100 different combination results for each fold. At the end of execution, 

we found the combination that has best accuracy rate and use it for train-test 

datasets. 

The aim is to test the SVM method with given parameters on validation 

datasets. The outputs we obtained from model will be the performance rate of 

the SVM method. The model parameters which have the highest performance 

ratio will be selected as the optimum parameters. Then, we applied SVM 

method on the test data with the optimum parameters we found and calculate 

correctness of the classification. 

4.6.2 Parameter Optimization for Random Forest 

We have one parameter that will be optimized for our randomforest 

model we used. Number of iteration is optimized for our model. Number of 

iteration means number of trees that will be used in randomforest. If the number 

of trees is larger, the result will be better. But, execution time will be longer.  

We select 24 different values to be optimized for each fold. So, for each fold we 

have 24 different results. After optimization, we found optimum parameters of 

number of iteration for each fold and applied them for train-test datasets. 

4.6.3 Parameter Optimization for Deep Convolutional Neural 

Fields 

Our deepCNF model has 3 hyperparameter to be optimized. These are 

node string, window string and regularization coefficient. Node string parameter 

defines hidden node combination of model. The number of node string gives us 

the number of neurons used for each hidden layer. Window string is used for 

kernel window size at each layer of deepCNF. For example, when window 

string is 5, window size will be 11 for each node (1 for it, 5 for next nodes and 5 

for previous nodes). Regularization coefficient is a fine-tune regularizer. It is 

used for avoiding overfitting.   -norm of regularization is used.   -norm 
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provides to minimize the sum of the square of the differences between the target 

value and the estimated values. 

We used node string, window string and regularization coefficient 

parameters in a combination for deep convolutional neural fields optimization. 

For node string, window string and regularization coefficient parameters, we 

have 3 values separately. Totally, we have 3*3*3=27 different combination 

results for each fold. At the end of execution, we found the combination that has 

best accuracy rate and use it for train-test datasets. 

For an ensemble method, we also optimize the number of hidden layer. 

Each layer has a size in a multi layer neural network that can be set in different 

values and it controls the capacity. We added this parameter between the other 

hyper parameters and try to find optimum one that gives best accuracy rate.  
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Chapter 5 

 

5.Ensemble Methods 
 

 

        The general approach for model selection is which one gives best result it is 

the best classifier. However, results of recent works in machine learning show 

that the performance of the final classifier can be improved by forming a method 

whose output will be a combination with outputs of classifiers that have 

different algorithms. The basic idea behind ensemble methods is to combine the 

predictions of several classifier for the purpose of improving estimation and 

robustness of models. 

5.1 Combining Hidden Layers for Deep CNF 

 

Hidden layer number is an important issue in neural network. Selecting 

hidden layers in different numbers and according to results combining them is a 

different ensemble approach.  

In each fold, we took the optimum result set in the validation train sets and 

combined the results. According to results, we also take the number of hidden 

layers in the configuration. By applying hidden layers to configuration, we aim 

to take best accuracy rate from combination of all hidden layers and  improve 

performance of model on this. 

 

5.2 Model Averaging 

 



32 

 

Model averaging is a successful approach to improve the accuracy of 

secondary structure predictions by averaging over many methods to generate a 

consensus prediction. The main principle for model averaging methods is to 

form several classifiers individually and then averaging their prediction results. 

On model averaging, combined classifiers generally gets better results than any 

of the individual classifier because of its reducing variance.   

Suppose we have N different classifiers n = 1 , … , N with probabilities of 

each class labels of secondary structure of protein. 

 

     
 

 
∑     

 

   

 

 

(5.2.1) 

P(X) is final probability of each class label at the end of model averaging. 

According to result of final probability, new class labels predictions are formed 

and compared with the correct class labels.  

5.2.1 SVM+Randomforest Model Averaging 

The first method we implement for model averaging was combination of 

Support Vector Machine and Randomforest methods. In this method, firstly each 

method is executed individually.  At the end of execution, observed and 

predicted secondary structure class labels are obtained. Both results of methods 

are averaged and a new prediction is generated. This prediction is compared 

with the correct results and a new prediction rate is achieved. 

5.2.2 SVM+DeepCNF Model Averaging 

The second method we implement for model averaging was combination of 

Support Vector Machine and DeepCNF methods. The method applied is the 

same with the first method. Each method is executed individually and then, 

observed and predicted secondary structure class labels are obtained. According 

to results, new prediction is generated. A new rate is obtained with comparison 

of the prediction and the correct results. 
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5.2.3 Randomforest+DeepCNF Model Averaging 

The third method we implement for model averaging was combination of 

Randomforest and DeepCNF methods. The method applied is the same with the 

first and second method. After execution of each method individually, observed 

and predicted secondary structure class labels are derived. Firstly, averaging is 

applied to methods and a new prediction is generated. New accuracy rate is 

obtained with comparison of the prediction and observed results. 

5.2.4 SVM+Randomforest+DeepCNF Model Averaging 

Last method for model averaging was consensus of support vector machine, 

randomforest and deepCNF methods. Our deepCNF method was executed for 

three different layer individually. So, this method is implemented for each layer 

separately and also applied for deepCNF with combination of hidden layers. 
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Chapter 6 

 

6.Results 
 

6.1 7-fold Cross Validation Experiment with 

CB513 Dataset 

 

Firstly, we prepared our dataset to apply the methods. Our dataset for 

SVM and Random forest has 539 features, and 473 feature for Deep CNF 

method. Each amino acid has 49 features for SVM and Random forest, while for 

Deep CNF, it has 43 features. Because of taking window parameters as 5, there 

will be 11 windows for each amino acid which was 1 for itself, 5 for left 

neighbor and 5 for right neighbors and totally there will be 11*49=539 feature 

for SVM and Random forest and 11*43=473 for Deep CNF.   

We train all models using the CB513 dataset and applied seven fold cross 

validation to determine the model hyper-parameters for each training method. . 

We divide our dataset into 7 equal size subsets for 7-fold cross validation. Each 

subset is used as test to validate and other 6 subsets are used as training. 10% of 

train test splits are taken as validation. These were randomly selected at the 

protein level. After selecting all each fold as test set and evaluate the model, 7 

accuracy rates are obtained. Overall accuracy is calculated by taking average of 

7 results obtained. 

6.2 Optimization Results 
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We make parameter optimization for all methods we used with cross 

validation technique. For each method we applied optimization according to 

their hyper parameters.   

After optimization, we re-train in the optimal configuration and get results 

on validation sets. 

6.2.1 SVM Results 

 

Method Fold C parameter Gamma parameter    

SVM 1 32 0.00195313 84.0 

SVM 2 32 0.00195313 81.3 

SVM 3 2 0.03125 84.3 

SVM 
4 

32 0.00195313 83.7 

SVM 8192 0.000122070 83.7 

SVM 5 2 0.0078125 84.5 

SVM 6 2 0.03125 82.7 

SVM 7 2048 0.000122070 83.2 

Overall Accuracy: 83.4 

 

Table 6.2.1.1    accuracy of the SVM method for parameter optimization on CB513 

validation dataset. 

Table 6.2.1.1 shows the    accuracy for optimization results of SVM 

Method on the CB513 dataset.  

For SVM, we have values as below: 

C parameters = ( ) 

Gamma parameters = ( ) 

After making parameter optimization on validation and train datasets, we 

get result which has shown in table 6.2.1.1. As shown in table, generally, 

approximate values were obtained for the parameters in each fold. 

Method Fold Number             

SVM 1 84.0 86.6 74.6 86.0 

SVM 2 81.4 84.0 69.0 85.2 
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SVM 3 84.3 85.6 77.3 87.0 

SVM 
4 

83.8 84.7 79.0 86.0 

SVM 83.8 87.0 80.3 84.5 

SVM 5 84.5 85.3 73.2 85.5 

SVM 6 82.7 83.2 77.0 86.3 

SVM 7 83.2 86.6 74.6 86.0 

Overall Accuracy: 83.4 85.2 75.7 85.8 

 

Table 6.2.1.2             accuracies of the SVM method for training on CB513 

validation datasets. 

Table 6.2.1.2 shows the             accuracies of the SVM method for re-

training optimal configuration on CB513 validation datasets. According to 

result, prediction for coil and helix is very close and more successful than 

strand. On validation datasets, accuracies nearly between 83 and 84%. 

6.2.2 Random Forest Results 

 

Method Fold Number Number of trees    

Random Forest 1 375 83.0 

Random Forest 2 500 79.9 

Random Forest 3 425 82.8 

Random Forest 4 500 82.5 

Random Forest 5 225 82.8 

Random Forest 6 300 80.9 

Random Forest 7 100 81.9 

Overall Accuracy: 81.9 

 

Table 6.2.2.1     accuracy of the Random forest method for parameter optimization on 

CB513 validation dataset. 

  

Table 6.2.2.1 shows the    accuracy for optimization results of Random 

forest method on the CB513 dataset.  We use values as “5 10 15 20 25 50 75 

100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500” for 
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number of trees. As shown in table, generally, the result is better, when we use 

larger value for iteration number. Our overall     accuracy is for random forest 

optimization is %82. 

Method Fold Number             

Random 

Forest 
1 83.0 84.5 70.8 87.2 

Random 

Forest 
2 79.9 82.1 65.7 85.0 

Random 

Forest 
3 82.8 83.1 73.4 88.0 

Random 

Forest 
4 82.5 82.6 75.1 86.7 

Random 

Forest 
5 82.8 85.0 75.8 84.4 

Random 

Forest 
6 80.9 81.7 69.4 86.2 

Random 

Forest 
7 81.9 82.7 74.3 85.4 

Overall Accuracy: 81.9 83.1 72.0 86.1 

 

Table 6.2.2.2             accuracies of the Random Forest method for training on 

CB513 validation datasets. 

Table 6.2.2.2 shows the             accuracies of the Random Forest 

method for re-training optimal configuration on CB513 validation datasets. 

According to result, prediction for coil and helix is more successful than 

prediction of strand. 

6.2.3 Deep CNF Results 

 

We applied 7 fold cross validation to all for each Deep CNF model we 

used using the CB513 dataset. For optimization part, we determined 3 factors 

with three different numbers for each hyper parameter. We repeat optimization 

part for 3 different number of hidden layer. We take hidden layer numbers as 3, 

4 and 5. The values we used for optimization is as shown below: 

Window size: “3, 4, 5”,  

Number of nodes: “75, 100, 125”,  

Regularization coefficient:  “10, 50, 100” 
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6.2.3.1 Deep CNF Model with 3-Hidden Layers 

 

Method 
Number of 

Hidden Layer 
Fold 

Window 

string 
Node string 

Reg. 

Coefficient 
   

Deep 

CNF 
3  1 3,3,3 100,100,100 50 90.5 

Deep 

CNF 
3  2 3,3,3 100,100,100 10 88.8 

Deep 

CNF 
3  3 3,3,3 125,125,125 50 92.0 

Deep 

CNF 
3  4 4,4,4 100,100,100 50 88.9 

Deep 

CNF 
3  5 4,4,4 125,125,125 50 89.7 

Deep 

CNF 
3  6 4,4,4 100,100,100 50 91.3 

Deep 

CNF 
3  7 4,4,4 100,100,100 100 89.6 

 Overall Accuracy: 90.1 

 

Table 6.2.3.1.1    accuracy of the Deep CNF method with 3 hidden layers for parameter 

optimization on CB513 validation datasets. 

  

Table 6.2.3.1.1 shows the    accuracy for optimization results of Deep 

CNF method with 3 hidden layers on the CB513 dataset.  We use 3 different 

hyper parameters to optimize. The best results are usually obtained, when 

regularization coefficient is set to 50. Also, when we set node number for each 

hidden layer as 100 and 125 mostly 100, it gives better result rather than node 

number with 75. Window size is also an important issue around hyper 

parameters. The best accuracy is achieved when window size is set to 3 or 4. 

These values are received for 3 hidden layers. 
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Method 

Number 

of 

Hidden 

Layer 

Fold 

Number 
            

Deep CNF 3 1 90.5 92.2 89.4 89.7 

Deep CNF 3 2 88.8 91.8 85.8 88.2 

Deep CNF 3 3 92.0 95.2 91.2 89.6 

Deep CNF 3 4 89.0 91.8 87.3 88.0 

Deep CNF 3 5 89.7 91.1 87.0 89.9 

Deep CNF 3 6 91.2 93.7 88.5 90.1 

Deep CNF 3 7 89.6 90.3 83.3 90.1 

Overall Accuracy: 90.1 92.3 87.5 89.3 

 

Table 6.2.3.1.2             accuracies of the Deep CNF method with 3 hidden layers for 

training on CB513 validation datasets. 

Table 6.2.3.1.2 shows the             accuracies of the Deep CNF with 3 

hidden layers method for re-training optimal configuration on CB513 validation 

datasets. Successful results are taken when Deep CNF is executed on validation 

datasets. 

6.2.3.2 Deep CNF Model with 4-Hidden Layers 

 

Method Fold 

Number 

of Hidden 

Layer 

Window 

string 
Node string 

Reg. 

Coefficien

t 

   

Deep 

CNF 

1 

 

4  3,3,3,3 75,75,75,75 100 90.6 

Deep 

CNF 

2 4  3,3,3,3 100,100,100,100 10 88.8 

Deep 

CNF 

3 4  4,4,4,4 125,125,125,125 50 91.9 

Deep 

CNF 

4 4  3,3,3,3 125,125,125,125 50 88.9 

Deep 5 4  3,3,3,3 75,75,75,75 10 89.8 
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CNF 

Deep 

CNF 

6 4  3,3,3,3 125,125,125,125 50 91.3 

Deep 

CNF 

7 4  3,3,3,3 75,75,75,75 50 89.6 

Overall Accuracy: 90.2 

 

Table 6.2.3.2.1    accuracy of the DeepCNF method with 4 hidden layers for parameter 

optimization on CB513 validation dataset. 

Table 6.2.3.2.1 shows the    accuracy for optimization results of Deep 

CNF method with 4 hidden layers on the CB513 dataset.  The best results are 

usually obtained, when regularization coefficient is set to 50 as 3 hidden layers. 

When node number is generally set to 75(differently from 3 hidden layers) and 

125, the better results are taken. The best accuracy is achieved when window 

size is set to 3 for six fold and 4 for one fold. These values are obtained for 4 

hidden layers. 

Method 

Number 

of 

Hidden 

Layer 

Fold 

Number 
            

Deep CNF 4 1 90.4 92.4 88.5 89.5 

Deep CNF 4 2 88.5 90.9 85.2 88.8 

Deep CNF 4 3 91.8 94.7 91.2 89.6 

Deep CNF 4 4 89.0 92.2 87.6 87.8 

Deep CNF 4 5 89.6 90.6 87.9 89.6 

Deep CNF 4 6 91.4 93.8 89.5 90.4 

Deep CNF 4 7 89.4 89.6 83.8 91.8 

Overall Accuracy: 90.0 91.9 87.7 89.6 

 

Table 6.2.3.2.2              accuracies of the Deep CNF method with 4 hidden layers for 

training on CB513 validation datasets. 
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Table 6.2.3.2.2 shows the             accuracies of the Deep CNF with 4 

hidden layers method for re-training optimal configuration on CB513 validation 

datasets. Successful results are taken when Deep CNF is executed on validation 

datasets the prediction of strands has least success when we compare with other 

class labels. 

6.2.3.3 Deep CNF Model with 5-Hidden Layers 

 

Method Fold 

Number of 

hidden 

layer 

Window 

string 
Node string 

Reg. 

Coefficient 
   

Deep 

CNF 

 

1 

 

5  3,3,3,3,3 125,125,125,125,125 50 90.7 

Deep 

CNF 
2 5  4,4,4,4,4 125,125,125,125,125 50 88.7 

Deep 

CNF 
3 5  4,4,4,4,4 

75,75,75,75,75 

 

50 

 
91.8 

Deep 

CNF 
4 5  4,4,4,4,4 125,125,125,125,125 50 89.1 

Deep 

CNF 
5 5  3,3,3,3,3 125,125,125,125,125 50 89.8 

Deep 

CNF 
6 5  3,3,3,3,3 75,75,75,75,75 50 91.4 

Deep 

CNF 
7 5  3,3,3,3,3 125,125,125,125,125 

50 
89.5 

100 

Overall Accuracy: 90.1 

 

Table 6.2.3.3.1    accuracy of the DeepCNF method with 5 hidden layers for parameter 

optimization on CB513 validation datasets. 

The    accuracy for optimization results of Deep CNF method with 5 

hidden layers on the CB513 dataset is shown in table 6.2.3.3.1.  The best results 

are usually obtained, when regularization coefficient is set to 50 as in 3 and 4 
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hidden layer. When node number is generally set to 75(differently from 3 hidden 

layer) or 125, the better results are taken. The best accuracy is achieved when 

window size is set to 3 for six fold and 4 for one fold. These values are received 

for 4 hidden layers. 

Method 

Number 

of 

Hidden 

Layer 

Fold 

Number 
            

Deep CNF 5 1 90.4 92.2 89.4 89.0 

Deep CNF 5 2 88.6 91.1 86.1 88.3 

Deep CNF 5 3 91.6 94.8 91.7 89.0 

Deep CNF 5 4 88.8 90.8 86.5 88.9 

Deep CNF 5 5 89.6 91.5 89.0 88.4 

Deep CNF 5 6 91.1 94.0 89.5 89.5 

Deep CNF 5 7 
89.4 

90.2 85.2 90.9 
90.4 

Overall Accuracy: 90.0 91.9 87.7 89.6 

 

Table 6.2.3.3.2             accuracies of the Deep CNF method with 5 hidden layers for 

training on CB513 validation datasets. 

Table 6.2.3.3.2 shows the             accuracies of the Deep CNF with 5 

hidden layers method for re-training optimal configuration on CB513 validation 

datasets. Successful results are taken when Deep CNF is executed on validation 

datasets. 

Overall, as shown from tables, when the number of hidden layers is 

different, there are not big differences at overall accuracies and good results are 

taken when Deep CNF is executed on validation datasets. 

In literature, there are few studies about deep CNF. For optimization, 

there is only one study and it is only about optimization of regularization 

coefficient with 5 fold cross validation [58]. At the end of optimization, they get 

73.2%    accuracy on average. 
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6.3 Train-Test Results 

 

Optimum parameters that found after parameter optimization are 

separately applied to all methods for each fold for training. We differently make 

training on validation dataset as well as test set. 

Method Fold Number             

SVM 1 82.1 85.3 72.0 85.7 

SVM 2 82.2 85.0 76.5 83.4 

SVM 3 83.0 84.6 75.8 85.5 

SVM 4 82.7 84.1 75.7 85.0 

SVM 4 82.6 84.1 78.1 82.7 

SVM 5 82.2 85.0 76.7 83.5 

SVM 6 82.5 87.3 78.2 85.8 

SVM 7 85.0 85.3 72.0 85.7 

Overall Accuracy: 82.8 85.2 75.3 84.9 

 

Table 6.3.1             accuracies of the SVM method for training on CB513 test 

datasets. 

Table 6.3.1 shows the               accuracies for training results of 

SVM Method on the CB513 dataset. As shown in table, generally, accuracies 

that obtained for each fold have close rates because of similarity values that 

found for optimum values. Accuracies are approximately 82% on test datasets, 

except seventh fold. It has nearly 85% accuracy rate at the end of training 

method. Accuracy of    which is used for strand label of secondary structure 

has the lowest value compared to other labels for both of test and validation 

datasets.   

Method Fold Number             

Random 

Forest 
1 81.1 83.2 70.5 86.0 

Random 

Forest 
2 81.5 82.5 75.2 84.3 
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Random 

Forest 
3 81.8 82.3 72.7 86.5 

Random 

Forest 
4 81.5 82.8 73.3 84.8 

Random 

Forest 
5 81.2 82.0 76.1 83.2 

Random 

Forest 
6 82.0 82.8 74.5 85.0 

Random 

Forest 
7 83.4 86.0 73.7 85.4 

Overall Accuracy: 81.8 83.2 73.7 85.0 

 

Table 6.3.2              accuracies of the Random forest method for training on CB513 

test datasets. 

Table 6.3.2 shows the              accuracies for training results of 

Random forest Method on the CB513 dataset. As shown in table, generally, 

accuracies that obtained for each fold have close rates. Overall accuracy is 

81.8% for test set. 

 

Method Fold 

Number of 

Hidden 

Layer 

             

Deep 

CNF 
1 3 81.7 86.7 73.6 83.1 

Deep 

CNF 
2 3 81.7 86.0 76.6 81.4 

Deep 

CNF 
3 3 83.2 84.7 75.4 85.4 

Deep 

CNF 
4 3 82.4 86.1 76.6 82.6 

Deep 

CNF 
5 3 81.7 85.4 78.3 81.2 
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Deep 

CNF 
6 3 82.1 85.3 78.3 82.5 

Deep 

CNF 
7 3 84.2 87.7 77.1 84.9 

Overall Accuracy: 82.4 86.0 76.5 83.0 

 

Table 6.3.3              accuracies of the Deep CNF method with 3 hidden layers for 

training on CB513 test dataset. 

Table 6.3.3 shows the               accuracies for training results of 

Deep CNF Method with 3 hidden layers on the CB513 dataset. The overall 

accuracy is obtained as 82.4% for test set. 

Method Fold 

Number of 

Hidden 

Layer 

             

Deep 

CNF 
1 4 81.9 85.2 73.5 85 

Deep 

CNF 
2 4 81.9 85.4 76.5 82.8 

Deep 

CNF 
3 4 82.9 85.4 76.0 84.1 

Deep 

CNF 
4 4 82.3 85.9 76.5 82.8 

Deep 

CNF 
5 4 81.6 84.8 77.7 81.6 

Deep 

CNF 
6 4 82.3 84.6 77.1 83.4 

Deep 

CNF 
7 4 84.6 88.2 78.2 84.1 

Overall Accuracy: 82.5 85.6 76.5 83.4 

 

Table 6.3.4               accuracies of the Deep CNF method with 4 hidden layers for 

training on CB513 test dataset. 
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Table 6.3.4 shows the               accuracies for training results of 

Deep CNF Method with 4 hidden layers on the CB513 dataset. The overall 

accuracy is obtained as 82.5% for test set. 

Method Fold 

Number of 

Hidden 

Layer 

             

Deep 

CNF 
1 5 82.0 86.2 73.1 84.4 

Deep 

CNF 
2 5 81.7 86.6 77.0 81.5 

Deep 

CNF 
3 5 83.0 85.7 75.6 84.5 

Deep 

CNF 
4 5 82.0 86.8 76.3 81.3 

Deep 

CNF 
5 5 81.7 85.5 77.7 81.3 

Deep 

CNF 
6 5 82.2 85.6 77.0 83.2 

Deep 

CNF 
7 5 84.5 88.3 77.4 84.3 

Overall Accuracy: 82.5 86.4 76.3 82.9 

 

Table 6.3.5                accuracies of the Deep CNF method with 5 hidden layers for 

training on CB513 validation and test dataset. 

Table 6.3.5 shows the              accuracies for training results of 

Deep CNF Method with 5 hidden layers on the CB513 dataset. The overall 

accuracy is obtained as 82.5% for test set. 

 

6.4 Ensemble Methods Results 
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6.4.1  Deep CNF Hidden Layer Combination 

 

The first ensemble method we used is for deep CNF method. For this, we 

added also hidden layer number to configuration. For each fold, we find the 

configuration that gives optimum accuracy from the combination of 3, 4 and 5 

hidden layer train validate results. We make separately a train test for each fold 

with the configuration found (including the hidden layer number). Then, we 

combined the results and make a new prediction rate. 

The results for train-validate and train-test is as shown below. 

 

Method Fold 

Number 

of hidden 

layer 

Window 

string 
Node string 

Reg. 

Coeffici

ent 

            

Deep 

CNF 

1 5 3,3,3,3,3 125,125,125,

125,125 

50 90.7 90.2 89.4 89.0 

Deep 

CNF 

2 4 3,3,3,3 100,100,100,

100 

10 88.8 91.0 85.0 88.8 

3 3,3,3 100,100,100 10 88.8 91.8 85.0 88.0 

Deep 

CNF 

3 3 3,3,3 125,125,125 50 92.0 95.0 91.2 89.0 

Deep 

CNF 

4 5 4,4,4,4,4 125,125,125,

125,125 

50 89.0 90.0 86.5 89.0 

Deep 

CNF 

5 5 3,3,3,3,3 125,125,125,

125,125 

50 89.8 91.5 89.0 88.4 

Deep 

CNF 

6 5 3,3,3,3,3 75,75,75,75,7

5 

50 91.4 94.0 89.5 89.5 

Deep 

CNF 

7 3 4,4,4 100,100,100 100 89.6 90.3 83.3 91.2 

Overall Accuracy: 90.2 91.8 87.7 89.3 

 

Table 6.4.1.1              accuracies of the Deep CNF hidden layer ensemble method for 

train validation on CB513 dataset. 

Table 6.4.1.1 shows the result for train-validate part. After applying 

hidden layer number to configuration, accuracy gets 90.2%. The accuracy for 

each hidden layer number without combining hidden layers was 90.1%. So 

result improved only 0.1% for train-validate result because of close accuracy 
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rate of each hidden layer number. If there were big differences in each hidden 

layer for accuracy rate, result would improve much more. 

Method Fold 
Number of 

hidden layer 

Window 

string 
Node string 

Reg. 

coeffici

ent 

            

Deep 

CNF 

1 5 3,3,3,3,3 125,125,125,

125,125 

50 82.0 86.2 73.0 84.5 

Deep 

CNF 

2 4 3,3,3,3 100,100,100,

100 

10 81.89 85.5 76.6 82.8 

3 3,3,3 100,100,100 10 81.7 86.0 76.0 81.4 

Deep 

CNF 

3 3 3,3,3 125,125,125 50 83.2 84.7 75.4 85.4 

Deep 

CNF 

4 5 4,4,4,4,4 125,125,125,

125,125 

50 82.0 86.8 76.3 81.4 

Deep 

CNF 

5 5 3,3,3,3,3 125,125,125,

125,125 

50 81.7 85.5 77.7 81.3 

Deep 

CNF 

6 5 3,3,3,3,3 75,75,75,75,7

5 

50 82.2 85.7 77.0 83.2 

Deep 

CNF 

7 3 4,4,4 100,100,100 100 84.2 87.7 77.2 85.0 

Overall Accuracy: 82.5 86.1 76.2 83.3 

 

Table 6.4.1.2             accuracies of the Deep CNF hidden layer ensemble method for 

train test on CB513 dataset. 

Table 6.4.1.2 shows the result for train-test part. After the best 

configuration that gives best accuracy rate is found, the optimum parameters 

configuration is applied to train test for each fold. The overall accuracy for    

we get was 82.5%. It is the same with the results for without applying hidden 

layer combination.  

  

6.4.2 Model Averaging Results on Validation and Test Sets 

 



49 

 

6.4.2.1 Support Vector Machines and Random Forest 

Firstly, we applied model averaging method to Support vector machines 

and random forest methods. For this, we prepared predicted probability scores 

for 3 classes for each amino acid in each protein. Then, we took the average of 

these scores and then got the class label that gave the maximum score. At the 

end of averaging, we calculate the new accuracy scores. 

Method Fold Number             

SVM+RF 1 84.0 85.8 73.8 87.5 

SVM+RF 2 83.0 83.8 67.8 85.6 

SVM+RF 3 83.0 85.0 76.0 87.8 

SVM+RF 4 83.0 83.7 77.5 86.7 

SVM+RF 5 83.0 86.2 78.4 85.0 

SVM+RF 6 83.0 84.2 71.4 86.0 

SVM+RF 7 83.0 83.4 76.9 86.7 

Overall Accuracy: 83.2 84.6 74.5 86.5 

 

Table 6.4.2.1.1             accuracies of the SVM and Random forest model averaging 

ensemble method for validation on CB513 dataset. 

 

Method Fold Number             

SVM+RF 1 82.0 84.4 71.0 86.0 

SVM+RF 2 82.2 84.5 76.0 84.0 

SVM+RF 3 82.4 84.0 75.0 86.0 

SVM+RF 4 82.5 83.7 75.0 85.0 

SVM+RF 5 82.4 83.3 78.0 83.0 

SVM+RF 6 82.4 84.3 76.0 85.0 

SVM+RF 7 83.0 86.9 76.0 86.0 

Overall Accuracy: 82.6 84.5 75.5 85.0 

Table 6.4.2.1.2             accuracies of the SVM and Random forest model averaging 

ensemble method for test on CB513 dataset. 
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Table 6.4.2.1.1 and 6.4.2.1.2 shows the result of combination of support 

vector machines and random forests. After making model averaging on SVM 

and RF, new accuracies rates are found. The overall accuracy for    we get was 

83.2% for validation dataset and 82.6% for test dataset. 

6.4.2.2 Support Vector Machines and Deep CNF 

Secondly, model averaging is applied to support vector machines and 

deep convolutional neural field method. Here, we used deep CNF method that 

has a combination with hidden layer numbers.  The same procedure is 

implemented. The predictive probability score of 3 classes for each amino acid 

in each protein is prepared according to result of individual classifier execution. 

Then, we obtained the class label that gave the maximum value by taking 

average of these scores. According to results, overall accuracy score for this 

ensemble method is calculated. 

Method 
Fold 

Number 
            

SVM+DeepCNF 1 84.0 87.0 75.2 86.6 

SVM+DeepCNF 2 83.0 85.3 70.8 84.3 

SVM+DeepCNF 3 83.0 85.3 77.6 87.0 

SVM+DeepCNF 4 84.0 85.5 79.8 85.5 

SVM+DeepCNF 5 84.0 87.5 80.3 84.0 

SVM+DeepCNF 6 83.0 85.4 73.2 85.0 

SVM+DeepCNF 7 83.0 83.8 77.5 85.6 

Overall Accuracy: 83.5 85.7 76.3 85.4 

 

Table 6.4.2.2.1              accuracies of the SVM and Deep CNF with hidden layer 

combination model averaging ensemble method for validation on CB513 dataset. 
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Method 
Fold 

Number 
            

SVM+DeepCNF 1 81.9 86.0 73.2 85.5 

SVM+DeepCNF 2 82.2 85.4 76.8 83.5 

SVM+DeepCNF 3 82.4 85.0 76.0 86.0 

SVM+DeepCNF 4 82.5 85.7 76.5 83.3 

SVM+DeepCNF 5 82.4 84.6 78.0 82.4 

SVM+DeepCNF 6 82.4 85.4 77.2 84.0 

SVM+DeepCNF 7 82.8 87.5 77.8 85.6 

Overall Accuracy: 83.0 85.7 76.5 84.3 

 

Table 6.4.2.2.2              accuracies of the SVM and Deep CNF with hidden layer 

combination model averaging ensemble method for test  on CB513 dataset. 

 

 

Table 6.4.2.2.1 and 6.4.2.2.2 shows the result of ensemble of support 

vector machines and deep CNF with hidden layer combination. After making 

model averaging on SVM and Deep CNF with hidden layer combination, new 

accuracies rates are found. The overall accuracy for    we get was 83.5% for 

validation dataset and 83.0% for test dataset. 

6.4.2.3 Support Vector Machines and Deep CNF with 3 Hidden Layers 

Third method is for support vector machine and deep convolutional 

neural field with 3 hidden layers. According to results of classifiers individually, 

the probability scores are arranged and the average of these scores is taken. Then 

class label which gave maximum score is obtained and prediction results are 

determined. 

Method 

 

Fold 

Number 
            

SVM+DeepCNF(3) 1 84.0 87.0 75.7 86.0 



52 

 

SVM+DeepCNF(3) 2 83.0 85.0 70.8 84.3 

SVM+DeepCNF(3) 3 83.0 85.7 77.0 86.8 

SVM+DeepCNF(3) 4 83.0 84.6 79.8 85.5 

SVM+DeepCNF(3) 5 84.0 87.5 80.3 84.0 

SVM+DeepCNF(3) 6 83.0 85.3 71.7 85.6 

SVM+DeepCNF(3) 7 83.0 84.0 77.5 85.7 

Overall Accuracy: 83.4 85.6 76.0 85.4 

 

Table 6.4.2.3.1              accuracies of the SVM and Deep CNF with 3 hidden layers 

model averaging ensemble method for validation on CB513 dataset. 

 

 

Method 

 

Fold 

Number 
            

SVM+DeepCNF(3) 1 82.0 86.0 73.3 84.8 

SVM+DeepCNF(3) 2 82.0 85.6 77.0 83.2 

SVM+DeepCNF(3) 3 83.0 85.0 76.0 86.0 

SVM+DeepCNF(3) 4 83.0 85.6 76.5 84.2 

SVM+DeepCNF(3) 5 83.0 85.0 78.3 82.3 

SVM+DeepCNF(3) 6 83.0 85.3 77.8 83.5 

SVM+DeepCNF(3) 7 83.0 87.6 77.8 85.6 

Overall Accuracy: 83.0 85.8 76.6 84.2 

Table 6.4.2.3.2              accuracies of the SVM and Deep CNF with 3 hidden layers 

model averaging ensemble method for test on CB513 dataset. 

 

 

Table 6.4.2.3.1 and 6.4.2.3.2 shows the result of combination of support 

vector machines and deep CNF with 3 hidden layers. After making model 

averaging on SVM and Deep CNF with 3 hidden layers, new accuracies rates 

are found. The overall accuracy for    we get was 83.4% for validation dataset 

and 83.0% for test dataset. 
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6.4.2.4 Support Vector Machines and Deep CNF with 4 Hidden Layers 

Fourth method is for support vector machine and deep convolutional 

neural field with 4 hidden layers. According to results of classifiers individually, 

the probability scores are arranged and the average of these scores is taken. Then 

class label which gave maximum score is obtained and prediction results are 

determined. 

Method Fold 

Number 

            

SVM+DeepCNF(4) 1 84.0 87.0 75.2 86.6 

SVM+DeepCNF(4) 2 83.0 84.5 69.4 85.3 

SVM+DeepCNF(4) 3 83.0 85.3 77.6 87.0 

SVM+DeepCNF(4) 4 83.0 85.5 79.8 85.5 

SVM+DeepCNF(4) 5 84.0 87.0 80.7 84.0 

SVM+DeepCNF(4) 6 83.0 85.0 73.0 85.0 

SVM+DeepCNF(4) 7 83.0 83.7 77.7 85.7 

Overall Accuracy: 83.3 85.4 76.2 85.6 

 

Table 6.4.2.4.1              accuracies of the SVM and Deep CNF with 4 hidden layers 

model averaging ensemble method for validation on CB513 dataset. 

 

Method Fold 

Number 

            

SVM+DeepCNF(4) 1 82.0 85.4 73.0 85.5 

SVM+DeepCNF(4) 2 82.0 85.4 76.8 83.5 

SVM+DeepCNF(4) 3 83.0 85.0 76.2 85.5 

SVM+DeepCNF(4) 4 83.0 85.3 76.2 84.5 

SVM+DeepCNF(4) 5 82.0 84.5 77.8 82.7 

SVM+DeepCNF(4) 6 83.0 85.0 77.4 84.0 

SVM+DeepCNF(4) 7 83.0 88.0 78.4 85.4 

Overall Accuracy: 82.6 85.6 76.5 84.4 

Table 6.4.2.4.2              accuracies of the SVM and Deep CNF with 4 hidden layers 

model averaging ensemble method for test on CB513 dataset. 
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Table 6.4.2.4.1 and 6.4.2.4.2 shows the result of combination of support 

vector machines and deep CNF with 4 hidden layers. After making model 

averaging on SVM and Deep CNF with 4 hidden layers, new accuracies rates 

are found. The overall accuracy for    we get was 83.3% for validation dataset 

and 82.6% for test dataset. 

6.4.2.5 Support Vector Machines and Deep CNF with 5 Hidden Layer 

Fifth method is for support vector machine and deep convolutional 

neural field with 5 hidden layers. According to results of classifiers individually, 

the probability scores are arranged and the average of these scores is taken. Then 

class label which gave maximum score is obtained and prediction results are 

determined. 

Method 
Fold 

Number 
            

SVM+DeepCNF(5) 1 84.0 87.0 75.3 85.8 

SVM+DeepCNF(5) 2 83.0 84.5 69.8 85.3 

SVM+DeepCNF(5) 3 83.0 85.4 78.0 87.0 

SVM+DeepCNF(5) 4 83.0 85.2 79.8 85.0 

SVM+DeepCNF(5) 5 84.0 88.0 80.3 83.5 

SVM+DeepCNF(5) 6 83.0 85.5 73.2 85.0 

SVM+DeepCNF(5) 7 83.0 83.8 77.5 85.6 

Overall Accuracy: 83.3 85.6 76.3 85.3 

 

Table 6.4.2.5.1             accuracies of the SVM and Deep CNF with 5 hidden layers 

model averaging ensemble method for validation on CB513 dataset. 

 

Method 
Fold 

Number 
            

SVM+DeepCNF(5) 1 82.0 86.0 73.2 85.5 

SVM+DeepCNF(5) 2 82.0 85.8 77.2 83.0 

SVM+DeepCNF(5) 3 83.0 85.4 76.3 85.7 

SVM+DeepCNF(5) 4 83.0 85.7 76.5 83.3 
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SVM+DeepCNF(5) 5 82.0 84.7 78.0 82.4 

SVM+DeepCNF(5) 6 83.0 85.4 77.2 84.0 

SVM+DeepCNF(5) 7 83.0 87.8 78.0 85.0 

Overall Accuracy: 82.6 85.8 76.6 84.1 

Table 6.4.2.5.2             accuracies of the SVM and Deep CNF with 5 hidden layers 

model averaging ensemble method for test on CB513 dataset. 

 

Table 6.4.2.5.1 and 6.4.2.5.2 shows the result of combination of support 

vector machines and deep CNF with 5 hidden layers. After making model 

averaging on SVM and Deep CNF with 5 hidden layers, new accuracies rates 

are found. The overall accuracy for    we get was 83.3% for validation dataset 

and 82.6% for test dataset. 

6.4.2.6 Random Forest and Deep Convolutional Neural Field 

Sixth method is for combination of random forest and deep convolutional 

neural field. Average scores of predictive probability scores for 3 classes for 

each amino acid in each protein are obtained from random forest and deep CNF 

classifiers results. Then, according to class labels that have maximum score the 

overall accuracy is calculated. 

Method 
Fold 

Number 
            

RF+DeepCNF 1 84.0 86.0 73.0 87.0 

RF+DeepCNF 2 83.0 85.7 69.5 84.4 

RF+DeepCNF 3 83.0 84.7 75.6 87.8 

RF+DeepCNF 4 83.0 84.7 78.2 86.0 

RF+DeepCNF 5 83.0 86.5 78.8 84.4 

RF+DeepCNF 6 83.0 84.0 71.5 85.3 

RF+DeepCNF 7 83.0 83.7 76.0 83.0 

Overall Accuracy: 83.1 85.0 74.6 85.8 

 

Table 6.4.2.6.1              accuracies of the RF and Deep CNF with hidden layer 

combination model averaging ensemble method for validation on CB513 dataset. 
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Method 
Fold 

Number 
            

RF+DeepCNF 1 82.0 85.3 72.5 85.7 

RF+DeepCNF 2 82.0 84.4 76.3 84.0 

RF+DeepCNF 3 82.0 84.5 75.0 86.0 

RF+DeepCNF 4 82.0 85.5 75.0 83.6 

RF+DeepCNF 5 82.0 84.0 77.4 82.6 

RF+DeepCNF 6 82.0 85.0 75.8 84.6 

RF+DeepCNF 7 87.4 75.8 85.8 83.0 

Overall Accuracy: 82.8 85.2 75.5 84.6 

 

Table 6.4.2.6.2              accuracies of the RF and Deep CNF with hidden layer 

combination model averaging ensemble method for test on CB513 dataset. 

 

 

Table 6.4.2.6.1 and 6.4.2.6.2 shows the result of ensemble of random 

forests and deep CNF with hidden layer combination. After making model 

averaging on RF and Deep CNF with hidden layer combination, new accuracies 

rates are found. The overall accuracy for    we get was 83.1% for validation 

dataset and 82.8% for test dataset. 

6.4.2.7 Random Forest and Deep CNF with 3 Hidden Layers 

Seventh method is for random forest and deep convolutional neural field 

with 3 hidden layers. According to results of classifiers individually, the 

probability scores are arranged and the average of these scores is taken. Then 

class label which gave maximum score is obtained and prediction results are 

determined. 

Method 
Fold 

Number 
            

RF+DeepCNF(3) 1 82.0 86.3 73.0 86.0 

RF+DeepCNF(3) 2 82.0 85.7 69.5 84.0 

RF+DeepCNF(3) 3 82.0 85.0 75.5 87.6 
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RF+DeepCNF(3) 4 82.0 84.0 78.2 86.0 

RF+DeepCNF(3) 5 82.0 86.5 78.8 84.4 

RF+DeepCNF(3) 6 82.0 83.6 70.0 85.7 

RF+DeepCNF(3) 7 83.0 84.0 76.0 85.4 

Overall Accuracy: 82.1 85.0 74.4 85.6 

 

Table 6.4.2.7.1              accuracies of the RF and Deep CNF with 3 hidden layers 

model averaging ensemble method for validation on CB513 dataset. 

 

Method 
Fold 

Number 
            

RF+DeepCNF(3) 1 82.0 86.0 73.3 84.8 

RF+DeepCNF(3) 2 82.0 85.6 76.8 83.2 

RF+DeepCNF(3) 3 82.0 85.0 76.0 86.0 

RF+DeepCNF(3) 4 82.0 85.6 76.5 84.2 

RF+DeepCNF(3) 5 82.0 85.0 78.3 82.3 

RF+DeepCNF(3) 6 82.0 85.3 77.8 83.5 

RF+DeepCNF(3) 7 83.0 87.5 77.8 85.6 

Overall Accuracy: 82.1 85.8 76.6 84.2 

 

Table 6.4.2.7.2              accuracies of the RF and Deep CNF with 3 hidden layers 

model averaging ensemble method for test on CB513 dataset. 

 

Table 6.4.2.7.1 and 6.4.2.7.2 shows the result of combination of random 

forests and deep CNF with 3 hidden layers. After making model averaging on 

RF and Deep CNF with 3 hidden layers, new accuracies rates are found. The 

overall accuracy for    we get was 82.1% for validation and test dataset. 
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6.4.2.8 Random Forest and Deep CNF with 4 Hidden Layers 

Eighth method is for combination of Radom forest and deep 

convolutional neural field with 4 hidden layers classifiers. According to results 

of classifiers individually, the probability scores are arranged and the average of 

these scores is taken. Then class label which gave maximum score is obtained 

and prediction results are determined. 

Method Fold Number             

RF+DeepCNF(4) 1 82.0 86.0 73.0 87.0 

RF+DeepCNF(4) 2 82.0 84.4 67.7 85.2 

RF+DeepCNF(4) 3 82.0 84.7 75.6 87.8 

RF+DeepCNF(4) 4 82.0 84.7 78.2 86.0 

RF+DeepCNF(4) 5 82.0 86.2 79.3 84.4 

RF+DeepCNF(4) 6 82.0 83.8 72.0 85.2 

RF+DeepCNF(4) 7 83.0 83.7 76.0 85.8 

Overall Accuracy: 82.1 84.8 74.5 86.0 

 

Table 6.4.2.8.1              accuracies of the RF and Deep CNF with 4 hidden layers 

combination model averaging ensemble method for validation on CB513 dataset. 

 

Method Fold Number             

RF+DeepCNF(4) 1 82.0 85.4 73.0 85.5 

RF+DeepCNF(4) 2 82.0 85.4 76.8 83.5 

RF+DeepCNF(4) 3 82.0 85.0 76.2 85.5 

RF+DeepCNF(4) 4 82.0 85.3 76.2 84.5 

RF+DeepCNF(4) 5 84.5 77.8 82.7 84.5 

RF+DeepCNF(4) 6 85.0 77.4 84.0 85.0 

RF+DeepCNF(4) 7 88.0 78.4 85.3 88.0 

Overall Accuracy: 82.8 85.6 76.5 84.4 
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Table 6.4.2.8.2              accuracies of the RF and Deep CNF with 4 hidden layers 

combination model averaging ensemble method for test on CB513 dataset. 

 

 

Table 6.4.2.8.1 and 6.4.2.8.2 shows the result of combination of random 

forests and deep CNF with 4 hidden layers. After making model averaging on 

RF and Deep CNF with 4 hidden layers, new accuracies rates are found. The 

overall accuracy for    we get was 82.1% for validation dataset and 82.8% for 

test dataset. 

6.4.2.9 Random Forest and Deep CNF with 5 Hidden Layers 

Ninth method is for combination random forest and deep convolutional 

neural field with 5 hidden layers classifiers. According to results of classifiers 

individually, the probability scores are arranged and the average of these scores 

is taken. Then class label which gave maximum score is obtained and prediction 

results are determined. 

Method 
Fold 

Number 
            

RF+DeepCNF(5) 1 82.2 86.0 74.0 86.3 

RF+DeepCNF(5) 2 82.3 84.2 68.0 85.3 

RF+DeepCNF(5) 3 82.2 84.8 76.2 87.7 

RF+DeepCNF(5) 4 82.2 84.8 77.5 85.0 

RF+DeepCNF(5) 5 82.3 87.0 79.2 84.2 

RF+DeepCNF(5) 6 82.3 84.0 71.5 85.3 

RF+DeepCNF(5) 7 83.3 83.7 760 85.8 

Overall Accuracy: 82.5 85.0 74.6 85.6 

 

Table 6.4.2.9.1               accuracies of the RF and Deep CNF with 5 hidden layers 

combination model averaging ensemble method for validation on CB513 dataset. 
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Method 
Fold 

Number 
            

RF+DeepCNF(5) 1 82.2 86.0 73.2 85.5 

RF+DeepCNF(5) 2 82.2 85.8 77.2 83.0 

RF+DeepCNF(5) 3 82.3 85.4 76.3 85.7 

RF+DeepCNF(5) 4 82.3 85.7 76.5 83.3 

RF+DeepCNF(5) 5 82.1 84.6 78.0 82.4 

RF+DeepCNF(5) 6 82.4 85.4 77.2 84.0 

RF+DeepCNF(5) 7 83.0 87.8 78.0 85.0 

Overall Accuracy: 82.5 85.9 76.6 84.1 

 

Table 6.4.2.9.2               accuracies of the RF and Deep CNF with 5 hidden layers 

combination model averaging ensemble method for test on CB513 dataset. 

 

Table 6.4.2.9.1 and 6.4.2.9.2 shows the result of combination of random 

forests and deep CNF with 5 hidden layers. After making model averaging on 

RF and Deep CNF with 5 hidden layers, new accuracies rates are found. The 

overall accuracy for    we get was 82.5% for validation test dataset. 

6.4.2.10 Support Vector Machines, Random Forest and Deep CNF 

Tenth method is for combination of support vector machines, random 

forest and deepCNF classifiers. Here, we used three classifiers as an ensemble 

method. The predictive probability score of 3 classes for each amino acid in 

each protein is prepared according to result of individual classifier execution. 

Then, we obtained the class label that gave the maximum value by taking 

average of these scores. According to results, overall accuracy score for this 

ensemble method is calculated. 

Method 
Fold 

Number 
            

SVM+RF+DeepCNF 1 82.0 86.3 74.2 87.0 
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SVM+RF+DeepCNF 2 82.0 85.0 69.7 85.4 

SVM+RF+DeepCNF 3 83.0 85.2 76.6 87.7 

SVM+RF+DeepCNF 4 83.0 84.6 78.2 86.0 

SVM+RF+DeepCNF 5 82.0 86.8 79.3 84.6 

SVM+RF+DeepCNF 6 83.0 84.2 72.2 85.5 

SVM+RF+DeepCNF 7 83.0 83.7 77.0 86.2 

Overall Accuracy: 82.6 85.1 75.3 86.0 

 

Table 6.4.2.10.1              accuracies of the SVM, RF and Deep CNF with hidden 

layer combination model averaging ensemble method for validation on CB513 dataset. 

 

Method 
Fold 

Number 
            

SVM+RF+DeepCNF 1 82.0 85.5 72.5 86.0 

SVM+RF+DeepCNF 2 82.0 85.0 76.6 84.0 

SVM+RF+DeepCNF 3 83.0 84.5 75.0 86.4 

SVM+RF+DeepCNF 4 83.0 85.0 76.0 84.4 

SVM+RF+DeepCNF 5 82.0 84.0 77.7 82.5 

SVM+RF+DeepCNF 6 83.0 85.0 76.7 84.5 

SVM+RF+DeepCNF 7 83.0 87.4 77.0 86.0 

Overall Accuracy: 82.6 85.3 76.0 84.8 

 

Table 6.4.2.10.2              accuracies of the SVM, RF and Deep CNF with hidden 

layer combination model averaging ensemble method for test on CB513 dataset. 

 

 

Table 6.4.2.10.1 and 6.4.2.10.2 shows the result of ensemble of SVM, 

random forests and deep CNF with hidden layer combination. After making 
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model averaging on SVM, RF and Deep CNF with hidden layer combination, 

new accuracies rates are found. The overall accuracy for    we get was 82.6% 

for validation and test dataset. 

6.4.2.11 Support Vector Machine, Random Forest and Deep CNF with 3 

Hidden Layers 

Eleventh method is for combination of support vector machines, random 

forest and deep convolutional neural field with 3 hidden layers. According to 

results of classifiers individually, the probability scores are arranged and the 

average of these scores is taken. Then class label which gave maximum score is 

obtained and prediction results are determined. 

Method Fold             

SVM+RF+DeepCNF(3) 1 82.0 86.3 74.0 86.6 

SVM+RF+DeepCNF(3) 2 82.0 85.0 69.7 85.4 

SVM+RF+DeepCNF(3) 3 83.0 85.2 76.4 87.4 

SVM+RF+DeepCNF(3) 4 83.0 84.3 78.3 86.0 

SVM+RF+DeepCNF(3) 5 82.0 86.8 79.3 84.6 

SVM+RF+DeepCNF(3) 6 82.0 84.6 71.2 86.2 

SVM+RF+DeepCNF(3) 7 83.0 84.0 77.0 86.2 

Overall Accuracy: 82.4 85.2 75.1 86.0 

 

Table 6.4.2.11.1              accuracies of the SVM, RF and Deep CNF with 3 hidden 

layers model averaging ensemble method for test and validation on CB513 dataset. 

 

Method Fold             

SVM+RF+DeepCNF(3) 1 82.0 85.5 72.7 85.6 

SVM+RF+DeepCNF(3) 2 82.0 85.0 76.5 84.0 



63 

 

SVM+RF+DeepCNF(3) 3 83.0 84.5 75.0 86.4 

SVM+RF+DeepCNF(3) 4 83.0 85.0 75.6 85.0 

SVM+RF+DeepCNF(3) 5 82.0 84.0 77.8 83.0 

SVM+RF+DeepCNF(3) 6 82.0 85.0 77.0 84.3 

SVM+RF+DeepCNF(3) 7 83.0 87.4 77.0 86.0 

Overall Accuracy: 82.4 85.3 76.0 84.8 

 

Table 6.4.2.11.2              accuracies of the SVM, RF and Deep CNF with 3 hidden 

layers model averaging ensemble method for test and validation on CB513 dataset. 

 

Table 6.4.2.11.1 and 6.4.2.11.2 shows the result of combination of SVM, 

random forests and deep CNF with 3 hidden layers. After making model 

averaging on SVM, RF and Deep CNF with 3 hidden layers, new accuracies 

rates are found. The overall accuracy for    we get was 82.4% for validation 

and test dataset. 

6.4.2.12 Support Vector Machine, Random Forest and Deep CNF with 4 

Hidden Layers 

Twelfth method is for combination of Support Vector Machines, Radom 

forest and deep convolutional neural field with 4 hidden layers classifiers. 

According to results of classifiers individually, the probability scores are 

arranged and the average of these scores is taken. Then class label which gave 

maximum score is obtained and prediction results are determined. 

Method Fold              

SVM+RF+DeepCNF(4) 1 82.0 86.3 74.2 87.0 

SVM+RF+DeepCNF(4) 2 82.0 84.4 68.7 85.7 

SVM+RF+DeepCNF(4) 3 83.0 85.2 76.6 87.7 

SVM+RF+DeepCNF(4) 4 83.0 84.6 78.2 86.0 
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SVM+RF+DeepCNF(4) 5 82.0 86.7 79.7 84.6 

SVM+RF+DeepCNF(4) 6 83.0 84.5 72.4 85.6 

SVM+RF+DeepCNF(4) 7 83.0 83.7 77.3 86.0 

Overall Accuracy: 82.6 85.0 75.3 86.0 

 

Table 6.4.2.12.1               accuracies of the SVM, RF and Deep CNF with 4 hidden 

layers model averaging ensemble method for validation on CB513 dataset. 

 

Method Fold              

SVM+RF+DeepCNF(4) 1 82.0 85.0 72.6 86.2 

SVM+RF+DeepCNF(4) 2 82.0 85.0 76.6 84.0 

SVM+RF+DeepCNF(4) 3 83.0 84.5 75.7 86.0 

SVM+RF+DeepCNF(4) 4 83.0 85.0 75.5 85.0 

SVM+RF+DeepCNF(4) 5 82.0 83.7 78.0 83.0 

SVM+RF+DeepCNF(4) 6 83.0 84.6 76.7 84.8 

SVM+RF+DeepCNF(4) 7 83.0 87.7 77.4 85.6 

Overall Accuracy: 82.6 85.2 76.0 85.0 

 

Table 6.4.2.12.2               accuracies of the SVM, RF and Deep CNF with 4 hidden 

layers model averaging ensemble method for test on CB513 dataset. 

 

Table 6.4.2.12.1 and 6.4.2.12.2 shows the result of combination of SVM, 

random forests and deep CNF with 4 hidden layers. After making model 

averaging on RF and Deep CNF with 4 hidden layers, new accuracies rates are 

found. The overall accuracy for    we get was 82.6% for validation and test 

dataset. 
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6.4.2.13 Support Vector Machine, Random Forest and Deep CNF with 5 

Hidden Layers 

Thirteenth method is for combination of Support Vector Machines, 

random forest and deep convolutional neural field with 5 hidden layers 

classifiers. According to results of classifiers individually, the probability scores 

are arranged and the average of these scores is taken. Then class label which 

gave maximum score is obtained and prediction results are determined. 

Method Fold             

SVM+RF+DeepCNF(5) 1 82.0 86.4 74.0 86.8 

SVM+RF+DeepCNF(5) 2 82.0 84.2 69.0 85.6 

SVM+RF+DeepCNF(5) 3 83.0 85.0 76.8 87.7 

SVM+RF+DeepCNF(5) 4 83.0 84.7 78.2 86.0 

SVM+RF+DeepCNF(5) 5 82.0 87.1 79.8 84.6 

SVM+RF+DeepCNF(5) 6 83.0 84.2 72.1 85.5 

SVM+RF+DeepCNF(5) 7 83.0 83.7 76.9 86.2 

Overall Accuracy: 82.6 85.0 75.3 86.0 

 

Table 6.4.2.13.1              accuracies of the SVM, RF and Deep CNF with 5 hidden 

layers model averaging ensemble method for validation on CB513 dataset. 

 

Method Fold             

SVM+RF+DeepCNF(5) 1 82.0 85.5 72.5 86.0 

SVM+RF+DeepCNF(5) 2 82.0 85.5 76.8 83.8 

SVM+RF+DeepCNF(5) 3 83.0 85.0 75.6 86.4 

SVM+RF+DeepCNF(5) 4 83.0 85.0 76.0 84.4 

SVM+RF+DeepCNF(5) 5 82.0 84.0 77.7 82.5 

SVM+RF+DeepCNF(5) 6 83.0 85.0 76.7 84.5 

SVM+RF+DeepCNF(5) 7 83.0 87.6 77.2 85.6 

Overall Accuracy: 82.6 85.4 76.0 84.7 
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Table 6.4.2.13.2              accuracies of the SVM, RF and Deep CNF with 5 hidden 

layers model averaging ensemble method for test on CB513 dataset. 

 

Table 6.4.2.13.1 and 6.4.2.13.2 shows the result of combination of SVM, 

random forests and deep CNF with 5 hidden layers. After making model 

averaging on SVM, RF and Deep CNF with 5 hidden layers, new accuracies 

rates are found. The overall accuracy for    we get was 82.6% for validation 

and test dataset. 

Method             

SVM 83.4 85.2 75.7 85.8 

RF 82.0 83.0 72.0 86.0 

         

 

89.8 92.3 87.5 89.3 

         

 

90.0 91.9 87.7 89.6 

         

 

90.1 92.1 88.2 89.1 

             

 

90.2 91.8 87.7 89.3 

SVM+RF 83.2 84.6 74.5 86.5 

SVM+             

 

83.5 85.7 76.3 85.4 

SVM+         

 

82.9 85.0 74.4 85.6 

SVM+         

 

83.5 85.4 76.2 85.6 

SVM+         

 

83.4 85.6 76.3 85.3 

RF+             

 

83.0 85.0 74.6 85.8 

RF+         

 

82.9 85.0 74.4 85.6 

RF+         

 

83.0 84.8 74.5 86.0 

RF+         

 

82.9 85.0 74.6 85.6 

SVM+RF+             

 

83.4 85.0 75.3 86.0 

SVM+RF+         

 

83.3 85.2 75.0 86.0 
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SVM+RF+         

 

83.3 85.0 75.3 86.0 

SVM+RF+         

 

83.3 85.0 75.3 86.0 

 

Table 6.4.2.14.1               accuracies of the all methods used for test and validation 

on CB513 dataset. 

 

Method             

SVM 82.8 85.0 76.0 84.5 

RF 81.8 83.2 73.7 85.0 

         

 

82.4 86.0 76.5 83.0 

         

 

82.5 85.6 76.5 83.4 

         

 

82.5 86.4 76.3 82.9 

             

 

82.5 86.1 76.2 83.3 

SVM+RF 82.6 84.5 75.5 85.0 

SVM+             

 

83.0 85.7 76.5 84.3 

SVM+         

 

82.8 85.8 76.6 84.2 

SVM+         

 

83.0 85.6 76.5 84.4 

SVM+         

 

83.0 86.0 76.6 84.0 

RF+             

 

82.8 85.2 75.5 84.6 

RF+         

 

82.8 85.8 76.6 84.2 

RF+         

 

82.8 85.6 76.5 84.4 

RF+         

 

82.7 85.9 76.6 84.0 

SVM+RF+             

 

83.0 85.3 76.0 84.8 

SVM+RF+         

 

83.0 85.3 76.0 84.8 

SVM+RF+         

 

83.0 85.2 76.0 85.0 

SVM+RF+         

 

83.0 85.4 76.0 84.7 
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Table 6.4.2.14.2               accuracies of the all methods used for test and validation 

on CB513 dataset. 

 

 

Table 6.4.2.14.1 and 6.4.2.14.2 shows the accuracies we get at the end of 

all classifiers we used for test and validation dataset.  

 In our thesis, our aim was to improve classifiers performance by applying 

ensemble methods. We have a little improvement by combining classifiers but 

not much. Also, there was no increase on validation datasets when ensemble 

methods are applied. 
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CHAPTER 7 

 
 

 

CONCLUSION 

 
 

 

Bioinformatics is analyzing and processing of biological information 

with computer systems. It develops techniques of biological storage and 

depositing. Then, it organizes and analyzes them. Bioinformatics has lots of 

issues waiting to be solved. One of these problems is protein structure 

prediction. Protein structure prediction is one of the most important goals of 

bioinformatics and theoretical chemistry. 

Protein structure prediction can be defined as the calculation of the three-

dimensional structure of a given amino acid sequence. For this, it is necessary to 

determine the coordinates of the three dimensional ligament of all the atoms in 

the protein molecule. It is an effective and efficient approach to estimate protein 

structure by methods of calculation when experimental methods are inadequate. 

In addition, since there is a relationship between the protein's structure and its 

function, the correct prediction of protein yields important clues for protein 

function. By understanding protein function, diseases can be diagnosed and new 

drugs can be designed.  

It is difficult to directly estimate the 3-D structure of a protein. The 

possibility of estimating the three-dimensional structure is directly related to the 

improvements of the one-dimensional structure estimate. So, improvements in 

one-dimensional structure estimates will allow direct estimation of three-

dimensional structure estimates more accurately. In this way, the amount of 

success in methods of estimating protein function will increase and successful 

drug and enzyme design will be possible. 
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Although lots of researches on protein structure prediction have been 

handled, the structure prediction problem has not been solved yet. For this 

problem, lots of methods have been used. In addition individual methods, 

ensemble methods have begun to be used. According to results of researches in 

recent years, ensemble methods are more successful than individual classifier. 

Ensemble methods are formed from combination of classifiers. It benefits from 

the results of all classifiers used. 

In our thesis, we have aimed to optimize classifiers for protein secondary 

structure prediction and show importance and improvement of ensemble 

methods when applied to datasets. We used distant templates in constructing 

structural profiles matrix setting the percentage of sequence identity threshold to 

20% (i.e. removing templates having greater similarity than this threshold to 

query). Therefore our results are obtained in the most difficult setting. In 

previous studies that has similar with our terms approximately 80% - 83% 

success has been observed. For our study, we take nearly 83% accuracy rate for 

our ensemble models execution. There is no great success when compared with 

individual methods. The rate of increase in success is small. It is nearly between 

1-2%. But, these results show that our general results are better when compared 

to most of previous studies in the literature and our models achieved accuracy 

comparable state of the art. As a future work we are planning to repeat the 

optimization experiments for other difficulty levels and for dihedral angle class 

and solvent accessibility class predictions as well. 
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