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a b s t r a c t 

To increase the predictive power of a model, one needs to estimate its unknown param- 

eters. Almost all parameter estimation techniques in ordinary differential equation mod- 

els suffer from either a small convergence region or enormous computational cost. The 

method of multiple shooting, on the other hand, takes its place in between these two 

extremes. The computational cost of the algorithm is mostly due to the calculation of di- 

rectional derivatives of objective and constraint functions. Here we modify the multiple 

shooting algorithm to use the adjoint method in calculating these derivatives. In the lit- 

erature, this method is known to be a more stable and computationally efficient way of 

computing gradients of scalar functions. A predator-prey system is used to show the per- 

formance of the method and supply all necessary information for a successful and efficient 

implementation. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Modeling by ordinary differential equations (ODEs) is used to accurately depict the physical state of a system in many

areas of applied sciences and engineering. Accurately describing the system and finding its parameters allow for future

behavior to be predicted. To estimate parameters in ODEs, we use partially observed noisy data. Fitting (partially) observed

noisy data is a useful way for estimating the unknown parameters of a system of ODEs. Implementing such a procedure

requires using a convenient ODE solver and an optimization routine. 

There are several stochastic and deterministic optimization routines. A detailed discussion of stochastic methods for pa-

rameter estimation in ODEs is given in [1] . Deterministic optimization procedures such as sequential quadratic programming

(SQP), Newton methods or quasi-Newton methods can also be employed to estimate the unknown parameters of an ODE

system. Contrary to stochastic algorithms, deterministic ones are computationally efficient but tend to converge to local

minima. 

For parameter estimation problems, the convergence to local minima is prevalent when the single shooting method

(also known as initial value approach) is employed. This parameter estimation method uses a single initial condition to

produce a trajectory that attempts to fit the noisy data points by minimizing a maximum-likelihood functional with respect

to parameters. Hence, the method is computationally efficient but its convergence is highly sensitive to the initial guesses. 
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The above discussion suggests that there is a trade-off between computational cost and stability of the algorithm. Multi-

ple shooting approach for estimating parameters takes its place in between these two extremes. The method was introduced

in [2] in 1970s and was substantially enhanced and mathematically analysed in [3,4] . In this approach, one allows multiple

initial values and the problem is considered as a multi-point boundary value problem. This is to say that the parameter space

is enlarged and discontinuous trajectories are allowed during the optimization process. Employing this method increases the

convergence significantly; hence the above-mentioned computationally efficient deterministic optimization routines can be 

used to estimate the parameters. We provide the details of this algorithm in the following section. 

We would like to note that the multiple shooting method is effective when a gradient based nonlinear programming

(NLP) solver such as SQP [5,6] , quasi-Newton [7] or generalized Gauss-Newton methods [6,8] is employed. The reason behind

the choice of gradient based NLP solvers is that one can compute the sensitivity equations which is useful in finding the

gradient of the objective and/or constraint functions. With that being said, the computational cost of shooting methods is

strongly dependent on the efficiency of ODE and sensitivity solvers [9] . 

It was claimed in [10] that there are three feasible approaches for calculating the derivatives of trajectories with respect

to the parameters. These methods are external differentiation, internal differentiation and the simultaneous solutions of the

sensitivity equations. The latter approach is claimed to be the most effective approach among these three. This method

requires the simultaneous solution of the original ODE system with the sensitivity systems obtained by differentiating the

original system with respect to each parameter. If the number of parameters is relatively small this approach may be effi-

cient. On the other hand, the forward sensitivity approach is intractable when the number of state variables and the number

of parameters are large. In [11,12] , it was claimed that the sensitivities with respect to parameters can be computed more

efficiently by employing the adjoint method if the number of parameters is large. Moreover, it was discussed in [13] that

the adjoint method is the most suitable method to compute sensitivities of a function provided that this function is scalar. 

The adjoint method is used in [14] to calculate sensitivities for estimating the parameters via single shooting algorithm.

In addition, the adjoint and multiple shooting strategies for optimal control of differential algebraic equations systems are

combined in [15] . To the best of our knowledge, the adjoint method has not been employed to implement a multiple shoot-

ing algorithm for estimating the parameters of a system of ODEs. In this study, we aim to modify the classical multiple

shooting algorithm so that the adjoint method can be applied efficiently. 

The structure of this article is as follows: In the following section, we give a detailed description of the multiple shooting

parameter estimation method for systems of ODEs. In Section 3 , we modify the multiple shooting algorithm and find the

sensitivities with respect to parameters using the adjoint method. In Section 4 , we consider a Lotka-Volterra system and

implement the modified algorithm to estimate its parameters from disturbed data. Lastly, we discuss and summarize our

findings in Section 5 . 

2. The Classical Multiple Shooting Method for Parameter Estimation 

In this section, we recall the classical multiple shooting method whose detailed mathematical analysis was performed in

[3,4] . The method is used to estimate the parameters of the system and some applications of this method to measured data

are given in [16–19] . 

We start by considering a d−dimensional state variable x (t ) ∈ R 

d at time t ∈ I = [ t 0 , t f ] of a continuous time ordinary

differential equation (ODE) satisfying the following initial value problem: 

˙ x (t) = f 
(
x (t ) , t , p 

)
, x (t 0 ) = x 0 . (1) 

We would like to note that the right hand side of the former equality depends on the parameter vector p ∈ R 

m . The mul-

tiple shooting method requires using an enlarged parameter space. This ensures that the procedure has more flexibility

for searching the parameter space and circumventing local minima. This enlargement is realized by subdividing the time

interval with multiple shooting nodes as follows: 

t 0 = τ0 < τ1 < · · · < τK = t f . 

By introducing the discrete trajectory { s j := x (τ j ) | j = 0 , 1 , · · · , K} , one can define the extended parameter vector as: q =
(s 0 , s 1 , · · · , s K , p ) . In each subinterval I j = [ τ j , τ j+1 ] for j = 0 , 1 · · · , K − 1 , we consider K independent initial value prob-

lems 

˙ x j (t) = f 
(
x j (t ) , t , p 

)
, x j (τ j ) = s j , t ∈ [ τ j , τ j+1 ] (2) 

where x j (t) = x j (t; τ j , s j , p ) ∈ R 

d . 

In [7] , it was required that each subinterval I j contains at least one measurement. We require that the following assump-

tion holds throughout the paper. 

Assumption 1. Observable variables are indexed by i = 1 , 2 , · · · , obs and measurements are collected at times τ j , j ∈ M ⊂ {0,

1, 2, ���, K }. 

Here we remark that the number of observable variables are smaller than or equal to d . We also would like to note

that Assumption 1 guarantees that all measurement points are also multiple shooting nodes. As was noted in [20] , these
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two sets can be taken equal i.e. M = { 0 , 1 , 2 , · · · , K} . This assumption will be used in the next section to simplify the ob-

jective function in such a way that it reduces the computational complexity of the algorithm. For a detailed discussion, see

Remark 2 . 

We now introduce the classical multiple shooting algorithm in the following lines following [6,7] . Let the measurements

for a general function of the state variables x ( t ) be given as follows: 

ηi j = g i j 

(
x (τ j ) , q ) + ε i j (3)

where measurement errors εij are independent, Gaussian with zero mean and variances σ 2 
i j 

for i ∈ {1, 2, ���, obs } and j ∈ M .

Hence [ ηij ] is a obs × | M | matrix where |.| is used to denote the cardinality of a set. Here the least squares objective function

for discontinuous trajectories is defined as follows: 

L (q ) := 

obs ∑ 

i =1 

∑ 

j∈ M 

(
l i j (q ) 

)
2 

where l i j (q ) = 

(
ηi j − g i j 

(
x j (τ j ) , q 

))
/σi j . Then we need to consider the following constrained nonlinear optimization prob-

lem: 

minimize 
q 

L (q ) 

subject to G j 

(
x j , q 

)
= 0 for j = 0 , 1 , · · · , K − 1 . 

(4)

where the continuity constrains are given by G j 

(
x j , q 

)
= x j (τ j+1 ; τ j , s j , p ) − s j+1 ∈ R 

d . Note that each g j is a 1 × d vector

and does not specify a scalar valued function. We also note that some optional equality or inequality constraints may be

added to this optimization problem (4) (see e.g. [7] ). 

Non-linear optimization problem (4) can be solved iteratively using the generalized-quasi-Newton method [21, pp.24-

25] . An update step �q = (�s 0 , �s 1 , · · · , �s K , �p ) can be calculated by solving the following Linearized Constrained Least

Squares Problem: 

minimize 
q 

(
l i j (q 

0 ) + J q l i j (q 

0 )�q ) 
)

2 

subject to G j 

(
x j , q 

0 
)

+ J q G j 

(
x j , q 

0 
)
�q = 0 for j = 0 , 1 , · · · , K − 1 . 

(5)

for some initial guess q 

0 = 

(
s 0 

0 
, s 0 

1 
, · · · , s 0 

K 
, p 

0 
)
. Here J q denotes the Jacobian with respect to the parameters q of the corre-

sponding function. Hence �q is used to update parameters as follows: q 

l = q 

l−1 + �q . We would like to note that quasi-

Newton algorithms has been used to implement multiple shooting procedures. More detailed description of this iterative

process is given in [8, pp.12-17] . 

Note that one needs to calculate jacobians J q G j ( x j , q 

0 ) in the above-given algorithm. This calculation requires finding the

following derivatives of the trajectory with respect to parameters: 

∂ x j (τ j+1 ; τ j , s j , p ) 

∂ p l 
and 

∂ x j (τ j+1 ; τ j , s j , p ) 

∂s jk 
(6)

for l = 1 , 2 , · · · , m and k = 1 , 2 , · · · , d. To find these derivatives, one needs to solve sensitivity equations that is a flexible and

quite efficient approach (compared to internal or external differentiation [10] ). The cost of calculating the sensitivities is the

simultaneous integration of the sensitivity equations by solving a system of m + d differential equations at each iteration. 

3. The Modified Algorithm and Sensitivity Analysis Using the Adjoint Method 

Here our aim is to employ the adjoint method [12] so that the computational cost of the algorithm decreases. First,

we would like to note that gradients of objective and constraint functions given in (4) can be calculated using the adjoint

method. However, the computational cost of calculating the gradients will be larger than the forward sensitivity analysis

since the adjoint method is only effective to find gradients of scalar valued functions as noted in [13] . This is to say that

one needs to solve d adjoint equations for each one of d elements of vector g j to calculate the gradient of each g j . This

implies that finding a solution to (4) with no modifications requires solving d 2 differential equations in each subinterval per

iteration. 

The above discussion implies that the adjoint method cannot be effectively used to calculate the derivatives given in (6) .

To reduce the computational cost of the algorithm, we need to consider an equivalent optimization problem. First, recall that

one needs to solve a system of d linear differential equations to find the directional derivatives for each scalar function of

the state variables x . Hence we need to reduce the number of appearances of the state vectors x in objective and constraint

functions. 

Using Assumption 1 along with the initial conditions given in (2) and (3) , objective function of (4) can be written as

follows: 

l i j (q ) = σ−1 
i j 

(
ηi j − g i j 

(
s j , q 

))
. (7)
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Remark 2. With this simplification, the objective function does depend on the parameter vector q but not on the state

variables x . Hence, there is no need to use the adjoint method when calculating the gradient of the objective function L ( q ). 

Now we consider the following optimization problem: 

minimize 
q 

L (q ) 

subject to h 

( j) ( x j , q ) = ‖ G j 

(
x j , q 

)‖ 

2 
2 = 0 for j = 0 , 1 , · · · , K − 1 . 

(8) 

One can easily see that this problem is equivalent to (4) . The difference between these two, on the other hand, is that

there is a scalar constraint for each subinterval in the latter while the former contains vector valued constraints. 

Here our aim is to compute the sensitivities 

dh 

( j) 

dq 

(
x j (τ j+1 ) , q 

)
for j = 0 , 1 , · · · , K − 1 (9) 

using the adjoint method. This calculation requires solution of d differential equations on each subinterval rather than m + d

differential equations as in the case of sensitivity equations. 

The Adjoint Method 

Here we consider the initial value problem (2) . For any interval number j between 0 and K − 1 , we have the trajectory

x j (t) = x j (t; τi , s i , p ) then, we consider the following function: 

H j 

(
q 

)
= 

∫ τ j+1 

τ j 

h 

( j) 
(
x j (t) , q 

)
dt 

to obtain desired sensitivities (9) . Let λ( t ) be any vector valued function of dimension d defined for t ∈ [ τ j , τ j+1 ] . Now we

consider the following augmented function: 

L ( q ) = H j ( q ) + 

∫ τ j+1 

τ j 

λT ( t ) 
(

˙ x j ( t ) − f 
(
x j ( t ) , t, p 

))
dt . (10) 

Here we use integration by parts to obtain ∫ τ j+1 

τ j 

λT ˙ x j d t = λT x j 

∣∣∣τ j+1 

τ j 

−
∫ τ j+1 

τ j 

˙ λT x j d t. 

Using this equality in (10) , we obtain 

L (q ) = 

∫ τ j+1 

τ j 

(
h 

( j) 
(
x j (t ) , q 

)
− ˙ λT (t ) x j (t ) − λT (t ) f 

(
x j (t ) , t , p 

))
dt + λT x j 

∣∣∣τ j+1 

τ j 

(11) 

We would like to note that dL 
dq 

= 

dH j 
dq 

. Hence, taking the total derivative of augmented objective function (11) , we obtain: 

dL 

dq 

= 

∫ τ j+1 

τ j 

((
h 

( j) 
x j 

− ˙ λT (t) − λT (t) f x j 
)
x j q 

+ h 

( j) 
q − λT f q 

)
dt + 

(
λT x j 

∣∣τ j+1 

τ j 

)
q . (12) 

To obtain sensitivity of H j ( q ) with respect to parameters q , we require that λ( t ) satisfies the following initial value problem 

˙ λT (t) = h 

( j) 
x j 

− λT (t) f x j , λT (τ j+1 ) = 0 . (13) 

Hence, by (12) , sensitivity of H j can be calculated as follows: 

dH j 

dq 

= 

dL 

dq 

= 

∫ τ j+1 

τ j 

(
h 

( j) 
q − λT f q 

)
dt − λT (τ j ) 

(
s j 

)
q . (14) 

As noted before, we need to calculate the sensitivities of h ( j ) at time τ j+1 (see eq. (9) ) rather than sensitivities of H j . By

Leibnitz integral rule, we have the following equality: 

dh 

( j) 

dq 

(
x j (τ j+1 ) , q 

)
= 

d 

dτ j+1 

dH j 

dq 

Using (14) in the above equality, we obtain: 

dh 

( j) 

dq 

(
x j (τ j+1 ) , q 

)
= 

(
h 

( j) 
q − λT f q 

)
(τ j+1 ) −

∫ τ j+1 

τ j 

λT 
τ j+1 

f q dt − λT 
τ j+1 

(τ j )(s j ) q (15) 

where λT 
τ j+1 

= 

∂λT 

∂τ j+1 
. By (13) , this newly introduced quantity satisfies the following differential equation: 

˙ λT 
τ j+1 

= −λT 
τ j+1 

f x j . (16) 
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By taking the total derivative of the equality λT (τ j+1 ) = 0 as in [12] , we obtain λT 
τ j+1 

(τ j+1 ) = − ˙ λT (τ j+1 ) . This implies by

(13) that λT 
τ j+1 

(τ j+1 ) = − ˙ λT (τ j+1 ) = −h 
( j) 
x j 

(τ j+1 ) . Hence, (15) can be written in the following form: 

dh 

( j) 

dq 

( x j , q ) | t= τ j+1 
= h 

( j) 
q (τ j+1 ) −

∫ τ j+1 

τ j 

λT 
τ j+1 

f q dt − λT 
τ j+1 

(τ j )(s j ) q . (17)

The above-given formula for the calculation of gradients of constraint functions h ( j ) contains only 2 d + m non-zero elements.

The fact that gradient vector of h ( j ) is sparse can be used to efficiently implement an algorithm to solve optimization problem

(8) . In the following section, we calculate the sensitivities for a Lotka-Volterra system using the above equality. 

4. An Application: Classical Lotka-Volterra Predator Prey System 

To describe an ecological system consisting of one predator and one prey, one can consider the following model of Lotka

and Volterra 

˙ x (1) = −p 1 x 
(1) + p 2 x 

(1) x (2) (18)

˙ x (2) = p 3 x 
(2) − p 4 x 

(1) x (1) . 

The measurements at times τ j = j for j = 1 , 2 , · · · , 10 are simulated by numerical integration of (18) with initial conditions

y 1 (0) = 0 . 4 and y 2 (0) = 1 and parameter values p = (1 , 1 , 1 , 1) then they are diturbed by normally distributed pseudo-

random noise ( N (0, σ 2 ) with σ 2 = 0 . 05 . ) 

The Lotka-Volterra system has been used as a test example for parameter estimation algorithms (see, for instance,

[8,21–23] ). The solution has singularities at various combinations of parameters values. We follow [8, p.6] and take

p 0 = (0 . 5 , 0 . 5 , 0 . 5 , −0 . 2) which results in a pole near t = 3 . 3 , where any ODE solver breaks down [21] . Hence, the single

shooting approach with the above-given initial guess p 0 must fail to estimate the parameters p . 

For the above-given parameters, denote the measurements for x (1) and x (2) at τ j by d 1 
j 

and d 2 
j 
, respectively. Then the

constrained nonlinear minimization problem can be written explicitly as follows : 

minimize 
q 

10 ∑ 

j=0 

((
s 1 j − d 1 j 

)
2 + 

(
s 2 j − d 2 j 

)
2 
)

subject to h 

( j) ( x j , q ) = 0 for j = 0 , 1 , · · · , 9 . 

(19)

where h ( j) ( x j , q ) = 

(
x (1) 

j 
(τ j+1 ) − s 1 

j+1 

)
2 + 

(
x (2) 

j 
(τ j+1 ) − s 1 

j+1 

)
2 . 

Here our aim is to calculate the gradient of each function in this nonlinear optimization problem. Since the objective

function contains only the parameters of the discrete trajectory s j for j = 0 , 1 , · · · , 10 one can easily find its gradient. On the

other hand, computing the gradient of h ( j ) with respect to parameters q requires using formula (17) . 

It is obvious from the definition of h ( j ) and (17) that the gradient of each constraint function has a special form. In

particular, one needs to calculate the nonzero elements of the gradient vector ∇h ( j ) i.e. the derivatives with respect to s j ,

s j+1 and p . Finding the derivatives with respect to s j and p requires integration of the following system of nonautonomous

linear differential equations from τ j+1 to τ j : 

[
˙ 	1 (t) ˙ 	2 (t) 

]
= 

[
	1 (t) 	2 (t) 

][−p 1 + p 2 x 
(2) 
j 

(t) p 2 x 
(1) 
j 

(t) 

−p 4 x 
(2) 
j 

(t) p 3 − p 4 x 
(1) 
j 

(t) 

]

satisfying 	i (τ j+1 ) = −2 
(
x (i ) 

j 
(τ j+1 ) − s i 

j+1 

)
for i = 1 , 2 . 

Now one can compute the nonzero elements of the gradient ∇h ( j ) as follows: 

dh 

( j) 

ds i 
j+1 

= −2 

(
x 

(i ) 
j 

(τ j+1 ) − s i j+1 

)
for i = 1 , 2 

dh 

( j) 

ds i 
j 

= 	i (τ j ) for i = 1 , 2 

dh 

( j) 

dp 1 
= 

∫ τ j+1 

τ j 

	1 (t) x (1) 
j 

(t) dt 

dh 

( j) 

dp 2 
= −

∫ τ j+1 

τ j 

	1 (t) x (1) 
j 

(t) x (2) 
j 

(t) dt 

dh 

( j) 

dp 3 
= −

∫ τ j+1 

τ j 

	2 (t) x (2) 
j 

(t) dt 

dh 

( j) 

dp 4 
= 

∫ τ j+1 

τ j 

	2 (t) x (1) 
j 

(t) x (2) 
j 

(t) dt 
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Fig. 1. Multiple shooting trajectories. Panel (a) illustrates the solutions to (18) simulted in each subinterval for the initial guess p 0 = (0 . 5 , 0 . 5 , 0 . 5 , −0 . 2) 

along with the data points. Similarly, panel (b) shows the same solutions with estimated parameters p f = (1 . 0263 , 1 . 04640 . 9784 , 0 . 9688) in 8 iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark 3. As seen in the above formulas, calculation of directional derivatives with respect to parameters p requires inte-

grating some multiplications of state variables x j ( t ) and 	i ( t ) for i = 1 , 2 over the interval I j . Note that using an ODE solver

with constant step size provides a computationally efficient way of approximating these integrals. 

We computed the gradients of the constraint functions h ( j ) using the above-defined formulas and obtained the trajectories

presented in Figure 1 . In the panel ( a ), solutions to the 10 initial value problems with parameters p 0 are illustrated as the

initial multiple shooting trajectories. In Panel (b), on the other hand, solutions to the same initial value problems are shown

for the estimated parameters after 8 iterations of the active set (sqp with a line search) algorithm in Matlab 2015a. Note

that this algorithm uses the quasi-Newton approximation of the Hessian matrix; hence it can be used as the optimization

routine that is needed for the parameter estimation process. 

We also obtained the following estimations of the parameters p = (1 , 1 , 1 , 1) after 8 iterations of the active set algorithm.

We disturbed the data obtained from the simulation of (18) with a Gaussian noise term with σ = 0 . 05 . Repeating parameter

estimation process with 10 times with different realizaions of the noise term we obtained the following means and standard

deviations for the parameters p . 

p 1 p 2 p 3 p 4 

mean 0.9832 0.9870 1.0254 1.0290 

standard deviation 0.0554 0.0590 0.0397 0.0371 

Note that these results are comparable with the results obtained in [8] . 

5. Conclusion 

In this paper, we have modified the classical multiple shooting algorithm for parameter estimation in ODEs. In particular,

the objective function is taken as a function of only the parameters identifying the discrete trajectory s j and the continuity

constraints are taken as scalar functions of the continuous trajectories x j ( t ; τ j , s j , p ) on each subinterval I j . This allowed us

to use so-called the adjoint method to find the gradient vector of each continuity constraint in each of the intervals I j . 

Recall that the classical multiple shooting algorithms require solutions to sensitivity equations to determine the Jacobian

matrix. Since the number of sensitivity equations increases as the number of parameters increases, the adjoint method

provides a computationally efficient alternative for finding such directional derivatives. In addition to this, as claimed in

[12] , the adjoint method is more tractable (compared to the forward sensitivity equations) when the number of parameters

and state variables become large. Finally, we applied this new method to a well-known predator-prey system which has

a singularity for some parameter values. This implies that any ODE solver breaks down, and hence the single shooting

method cannot be used to estimate its parameters. We give the explicit expressions for the adjoint equations and nonzero

components of the gradient vectors for this system. 

Finally, there are several interesting issues that should be further explored or extended. In this paper, we focused on

using the adjoint method to estimate the unknown parameters of a system of ODEs using observed data. We would like

to note that both the adjoint method, and the multiple shooting method for parameter estimation has been developed for

delay differential equations [14,24–26] , differential algebraic equations [12,27] and partial differential equations [21,28–30] .

Hence all of these parameter estimation algorithms for qualitatively different systems can be modified, as done in this paper,

to find directional derivatives with respect to unknown parameters using the adjoint method. Moreover, the adjoint method

can also be employed to solve constrained optimal control problems (see e.g. [31,32] ). 
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