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Abstract: This present study explored the Bohme abrasion value (BAV) of natural stones through
artificial neural networks (ANNSs). For this purpose, a detailed literature survey was conducted to
collect quantitative data on the BAV of different natural stones from Turkey. As a result of the ANN
analyses, several predictive models (M1-M13) were established by using the rock properties, such
as the dry density (pq), water absorption by weight (w,), Shore hardness value (SHV), pulse wave
velocity (Vp), and uniaxial compressive strength (UCS) of rocks. The performance of the established
predictive models was evaluated by using several statistical indicators, and the performance analyses
indicated that four of the established models (M1, M5, M10, and M11) could be reliably used to
estimate the BAV of natural stones. In addition, explicit mathematical formulations of the proposed
ANN models were also introduced in this study to let users implement them more efficiently. In this
context, the present study is believed to provide practical and straightforward information on the
BAV of natural stones and can be declared a case study on how to model the BAV as a function of
different rock properties.

Keywords: abrasion resistance; Bchme abrasion value; natural stone; artificial neural networks

1. Introduction

The continuous development of construction engineering generates a constant demand
for building materials. In addition to the primary building materials (e.g., concrete, bricks,
etc.), new or improved materials that are environmentally friendly are frequently being
sought [1-3]. However, dimension stones and rock aggregates are among the oldest
natural resources commonly used in geological, mining, and civil engineering applications.
Based on modern approaches to extracting dimension stones, it has been acknowledged
that the variability of natural stone quality comes from the geological, geodynamic, and
geotechnical characteristics of the host rock [4-6]. Therefore, each natural stone has its own
characteristics that should be investigated in detail. From this perspective, natural stone
quality has been mainly measured through numerous laboratory testing methods. For
example, the abrasion resistance of rocks is of prime importance in paving and dimension
stone quality. Therefore, it is mainly quantified through several methods, such as Cerchar,
Bohme, Amsler-Laffon, and Wide wheel tests [7-15]. Based on modern approaches to
quantify the abrasivity of rocks, the Cerchar abrasivity index (CAI) has been determined,
using the method suggested by Alber et al. [16]. On the other hand, the Bohme abrasion
value (BAV), the Amsler-Laffon abrasion value (ALAV), and the Wide wheel abrasion
value (WWA) of rocks have been determined according to EN 14157 [17]. Of the abrasion
tests mentioned above, BAV is one of the most popular quantities to evaluate the quality of
natural stones.

However, the BAV test is laborious and requires special equipment. In addition, Oz-
van and Direk [18] reported that the BAV test is expensive, long-lasting, and has negative
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impacts on the environment. Therefore, several relationships have been proposed to es-
timate the BAV of natural stones as a function of different rock properties. Nevertheless,
these correlations were mainly based on simple linear and non-linear regression analysis
results, considering one or two independent variables. For instance, Yasar and Erdogan [19]
found a significant relationship between the BAV and Shore hardness value (SHV) of rocks.
Similarly, Kili¢ and Teymen [20] stated that the BAV of natural stones could be estimated
from the SHV and pulse wave velocity (V}) of rocks. Teymen et al. [21] revealed strong
correlations between BAV and point load strength (PLS) and SHV of rocks. Deliormanl [22]
strongly correlated the CAI with the BAV of natural stones. He also proposed two con-
verter charts to evaluate the abrasion resistance of rocks as a function of CAI. Engin [23]
investigated the cuttability of rocks by using 42 different rock types from Turkey and found
a remarkable relationship between the cutting depth (CD) and BAV of considered rocks.
Cobanoglu and Celik [24] indicated that the BAV is strongly correlated with the WWA
of rocks. In addition, they also found several relationships between BAV and other rock
properties, such as uniaxial compressive strength (UCS), dry unit weight (y4), effective
porosity (ne), Schmidt hammer rebound value (SHRV), SHV, and V;, of rocks. Bozdag [25]
also investigated the variations in BAV of 20 different rock types from Turkey as a function
of the UCS, SHRY, V,,, water absorption by weight (wa), ne, and dry density (pq) of rocks.

Based on the single and multiple regression analyses, several relationships were
established to estimate the BAV as a function of the above rock properties. Bayram [26]
used data-mining techniques, such as support vector machine (SVM) and random forest
(RF), to estimate the BAV of different natural stones from Turkey. Based on 32 different
rock types, the p4, ne, modulus of elasticity (E), UCS, tensile strength (TS), SHV, and
PLS of the rocks were effectively used in modeling the BAV of these rocks. Recently,
Mohammed et al. [27] also established several predictive models based on 22 different
rocks to estimate the BAV of natural stones as a function of y4, ne, and UCS of the rocks.

Some empirical relationships to evaluate the BAV of different rock types are listed
in Table 1. Accordingly, it can be claimed that most of the physical and mechanical rock
properties could be used to estimate the BAV of natural stones. Although regression-based
relationships to estimate any rock property can be practical and easy to understand, they
are mainly valid for small-scale datasets and, therefore, can have some limitations when
dealing with broader datasets. Additionally, these usually consider single rock properties
(e.g., UCS, wy,, etc.). In this direction, it is logical to suppose that soft computing methods,
which can handle a large number of datasets much easier than regression-based ones,
should be attempted to provide more general empirical formulae to assess the BAV of
natural stones.

In contrast to traditional computing methods, soft computing deals with approximate
models and gives reliable solutions to complex problems in various engineering fields [27].
Nowadays, soft computing methods are widely used in many areas of science. In the
literature, one can see numerous scientific papers that have used soft computing methods
in mining [28-31] and engineering geology [32-37]. However, in terms of determining the
relationship between natural stone properties, noticing such works is difficult. This work
aims to present more comprehensive empirical formulations for evaluating the BAV of
rocks based on soft computing methods. This novel approach presents much more reliable
empirical formulations that consider multiple independent variables, while incorporating
many datasets. Empirical models for BAV assessment, which are present in the literature,
appear to be less flexible and comprehensive, as they assess the abrasion of a stone based on
one different property of the stone that does not necessarily represent the actual abrasion
process of the stone. Considering several rock properties as independent variables, the BAV
may be evaluated more effectively. The use of soft computing tools to quantify natural stone
quality or modeling a rock property by measuring the natural stone quality is essential for
critical stones in limited resources and high demand. Using empirical formulas to assess
rock BAV also eliminates the need for long-term and complex laboratory tests.
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Table 1. Regression-based models to evaluate the BAV of natural stones.
Independent Number of . 2
Variable Rock Type Datasets, 1 Empirical Formula R* Reference

WWA (mm) Basalt, Granite, Limestone, 13 BAV = 3.057WWA — 53.607 * 0.92 [18]

ALV (%) Travertine, ignimbrite BAV = 2.516AIV — 45.086 * 0.91

SHV () Limestone, Marble, Basalt, 6 BAV = —1.2363SHV + 94.648 066  [19]
Sandstone

SHV (-) Diorite Quartzite Sandstone BAV = 10553SHV ~1:6868 0.92

Vp (km/s) Granodiorite Basalt Limestone BAV = 579.97V,, —24279 0.85

PLS (MPa) Trachyte Travertine Andesite, 19 BAV = 69.578PLS 14807 076  [20]

SHRV (—) Tuff BAV = 136910SHRV —23621 0.91

ne (%) Marble BAV = 8.935 exp(0.0857n¢) 0.89

PLS (MPA) . BAV = 50.685 exp(—0.2134PLS) 0.85

SHV (—) Marble, Travertine 14 BAV = 112.87 exp(—0.043SHV) 075 21

CAI(—-) Marble 15 BAV = —4.64CAI + 25.06 0.83 [22]
Marble, Limestone, Sandstone,
Travertine, Granite, Andesite, . _ "

CD (mm) Diabase, Tuff, 42 BAV = 11.5741In(CD) — 25.417 0.78 [23]
Marl

WWA (mm) BAV = 5.192WWA — 81.4333 * 0.94

Ya (KN/m?) Limestone, Travertine, BAV = —7.8496v4 + 223.5 0.81

Ne (+) Dolomite, Granite, Marble, BAV = 4.8095n, + 12.046 0.83

SHRV (—) Andesite, Serpentine, Latite, 32 BAV = —2.1805SHRV + 139.22 0.39 [24]

SHV (—) Autoclaved Aerated Concrete, BAV = 143.14 exp(—0.039SHV) 0.70

Vp (km/s) Briquette BAV = —25.577V), +181.91 0.54

UCS (MPa) BAV = —37.17In(UCS) + 193.7 0.70

UCS (MPa) BAV = —10.798 In(UCS) + 57.199 0.89

SHRV (—) . . BAV = —23.2741n(SHRV) + 95.272 0.85

Wa (%) E}Iﬁ'bﬁ“%e(ff;;iféa;‘gf;erﬁne 20 BAV = 0.028w,2 + 0.346w, + 8.951 041  [25]

Vp (km/s) ’ ¢ BAV = 3.419V,% — 31.398V,, + 83.364  0.77

pq (g/cm3) BAV = 13.997p42% — 75.882p4 + 110.675  0.45

vq (KN/m?3) . BAV = —35.431n(yq) + 116.06 0.88

Wa (%) g:rfji ﬁé‘f:sff;eiicfilet 2 BAV = 1.0408w, + 0.5077 094  [26]

UCS (MPa) ’ BAV = 1378.4UCS~ 1766 0.65

Explanations: BAV, Bohme abrasion value (cm?/50cm?); v4, dry unit weight; w,, water absorption by weight;
UCS, uniaxial compressive strength; PLS, point load strength; SHV, Shore hardness value; CD, cutting depth;
SHRYV, Schmidt hammer rebounding value; Vo, pulse wave velocity; pq, dry density; WWA, wide wheel abrasion
value; AIV, aggregate impact value; ne, effective porosity; CAl, Cerchar abrasivity index. * The empirical formula
was modified by reversing the original one.

Within this context, a detailed literature survey was conducted to compile a large
number of datasets, which were documented for different rocks that were used for cladding,
flooring, and facade purposes in Turkey. The BAV of these natural stones was investigated
through artificial neural networks (ANNSs) based on different rock properties. As a result
of the ANN analyses, several predictive models were established. The performance of the
established models was evaluated by using several statistical indices. Given the statistical
performance indices, six different predictive models were proposed to evaluate the BAV of
the rock types investigated. Explicit mathematical formulations of the proposed models
were also introduced to let users implement them more efficiently.

2. Data Documentation and Methods

Compiling datasets for the ANN analyses was based on a comprehensive literature
survey. Consequently, the different datasets considered in this study are listed in Table 2.
Based on this table, it is clearly seen that the pg, wa, SHV, V,, and UCS values are mainly
considered to evaluate the BAV of different natural stones. Although there is a great deal of
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works in the literature on the BAV of natural stones, there are limited datasets available
for detailed analyses. Therefore, it is necessary to collect all possible datasets to obtain
more comprehensive predictive models, which can be used to estimate the BAV of natural
stones. From this perspective, Ozvan and Direk [18] considered the WWA and AIV as
independent variables for the evaluation of BAV. In addition, Yasar and Erdogan [19], Kilig
and Teymen [20], Teymen and Kili¢ [21], and Cobanoglu and Celik [22] adopted the SHV as
an important rock property to estimate the BAV of natural stones. The UCS values were also
adopted in the previous literature to assess the BAV of different natural stones [24,25,38].
In this study, the rock properties of pq, wa, SHV, V,, and UCS were adopted with different
combinations to build such predictive models that can be used to estimate the BAV of
different natural stones.

Table 2. Datasets adopted in this study.

Wa

SHV Vp ucCs BAV

(g/giﬁ) (%) (-) (km/s) (MPa) (cm3/50cm?) " Reference

1.33-3.07 0.19-27.41 NR 1.88-6.17 11.65-150.68 5.58-87.02 13 [18]
252-2.72 NR 53.05-63.09 NR 40.10-111.51 13.25-28.25 6 [19]
NR NR 11.00-82.00 1.47-6.75 6.20-239.00 5.00-181.60 19 [20]
2.36-2.70 0.10-2.09 40.70-66.50 NR NR 6.21-20.30 14 [21]
1.51-2.93 0.02-17.35 14.60-110.20 NR 13.60-256.40 3.05-28.58 42 [23]
2.23-2.80 0.09-4.34 21.70-73.50 455-7.14 32.37-253.97 6.83-89.32 30 [24]
1.41-2.81 0.27-24.43 NR 2.03-6.03 10.50-188.13 1.62-35.11 20 [25]
2.10-2.71 NR 36.00-67.00 NR 42.00-126.80 6.84-27.70 32 [26]
2.76-2.86 0.04-0.15 36.98-51.65 NR 67.70-159.21 18.01-34.01 12 [39]
1.40 23.00 NR 1.80 9.00 48.00 1 [40]
2.59-2.76 0.14-3.40 NR NR 62.40-65.00 18.35-30.48 2 [41]
2.55-2.80 0.61-2.91 NR NR 90.20-93.40 21.70-25.50 2 [42]
2.65-2.73 0.03-1.57 49.56-65.14 494-6.47 50.70-169.80 2.89-14.51 18 [43]
2.70 0.18 NR 592 NR 18.47 1 [44]
1.25-2.68 0.32-28.23 NR 2.02-6.21 7.57-141.56 5.21-46.74 2 [45]
1.34-2.68 0.11-25.51 NR 1.33-521 5.84-59.90 14.55-80.85 17 [46]
2.69 0.22 NR 6.47 109.70 8.86 1 [47]
2.72-2.75 0.10-0.90 NR NR 61.20-184.70 10.30-24.60 8 [48]
271 0.11 NR 5.64 81.80 10.28 1 [49]

2.61 1.29 NR 5.96 99.00 9.13 1 [50]

1.09-1.73 13.26-39.34 NR 1.80-3.00 2.75-87.50 15.50-92.00 9 [51]

2.63-2.67 0.87-1.81 NR 5.22-5.83 121.60-158.40 6.12-7.47 3 [52]
2.72 0.02 NR NR 100.40 11.01 1 [53]
2.84 0.22 NR 5.11 179.40 12.43 1 [54]
2.62 0.42 90.80 NR 206.13 7.64 1 [55]
2.74 0.16 57.20 NR 69.84 11.80 1 [56]
271 0.25 NR NR 69.55 12.65 1 [57]

2.69-2.70 0.19-0.22 NR 4.73-6.07 72.35-97.00 10.55-15.02 3 [58]
2.60 0.81 NR 427 117.08 20.57 1 [59]

2.14-2.72 0.06-5.05 NR 5.25-6.40 57.10-110.70 8.59-27.70 4 [60]

Explanations: pq, dry density; wa, water absorption by weight; SHV, Shore hardness value; Vy,, pulse wave velocity;
UCS, uniaxial compressive strength; BAV, Bochme abrasion value; n, number of samples; NR, not reported.

It is clearly seen from Table 2 that some of the rock properties were not reported
(NR) in related documents. Therefore, it is logical to suppose that the BAV should be
investigated based on different subdivided datasets. In this way, different rock properties
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can be included in the ANN analyses that pave the way for comparing the performance of
different models adopting different rock properties.

In this manner, the documented database (Table 2) was divided into different sub-
groups in terms of different rock properties (i.e., pq, wa, SHY, Vp, and UCS) to evaluate the
BAV of natural stones deeply. The database was divided into subgroups, focusing on the
independent variables available for ANN analyses. Consecutively, 13 different subdivided
datasets (Set 1 to Set 13) were considered in this study (Table 3). Based on these subdivided

datasets, detailed ANN analyses were performed.

Table 3. Subdivided datasets for ANN analyses.

Dataset No.

Independent Variable

Number of Datasets, n

Additional Information

Set 1

Pd, Wa, SHV

115

pq = 1.510-2.929 g/cm?

W, = 0.023-17.35%

SHV = 14.60-110.20

BAV = 2.89-89.32 cm? /50cm?

Set 2

Pd, Wa, Vp

145

pq = 1.087-3.070 g/cm3
w, = 0.023-39.34%
Vp =1.33-7.14km/s

BAV = 1.62-92.00 cm®/50cm?

Set 3

pd, Wa, UCS

213

pq = 1.087-3.070 g/cm?®

wa = 0.023-39.34%

UCS = 2.75-256.40 MPa

BAV = 1.62-92.00 cm?3 /50cm?

Set 4

Pd, Wa

230

pq = 1.087-3.070 g/cm3
wa = 0.023-39.34%
BAV=1.62-92.00 cm?/50cm?

Set 5

pd, Wa, SHV, UCS

101

pq = 1.510-2.929 g/cm3

W, = 0.023-17.35%

SHV = 14.60-110.20

UCS = 13.60-256.40 MPa
BAV = 2.89-89.32 cm? /50cm?

Set 6

Pd, Wa, SHY, Vp

48

pq = 2.222-2.797 g /cm’
w, = 0.023-4.34%

SHV = 21.70-73.50

Vp =4.55-7.14 km/s

BAV = 2.89-89.32 cm? /50cm?

Set 7

Wa, Vp

145

Wa = 0.023-4.34%
Vp =1.33-7.14 km/s
BAV = 1.62-92.00 cm? /50cm?

Set 8

pg, UCS

251

pq = 1.087-3.070 g/cm?
UCS = 2.75-256.40 MPa
BAV = 1.62-92.00 cm?® /50cm?

Set 9

SHY, V,, UCS

67

SHV = 11.00-82.00

Vp =1.47-7.14km/s

UCS = 6.20-253.97 MPa

BAV = 2.89-181.6 cm? /50cm?

Set 10

pa, Vp, UCS

142

pq = 1.087-3.070 g/cm3

Vp =1.33-7.14km/s

UCS = 2.75-253.97 MPa

BAV = 1.62-92.00 cm® /50cm?

Set 11

wa, SHVY, UCS

101

wa = 0.023-17.35%

SHV = 14.60-110.20

UCS = 13.60-256.40 MPa
BAV = 2.89-89.32 cm? /50cm?

Set 12

w,, SHV

115

w, = 0.023-17.35%
SHV = 14.60-110.20
BAV = 2.89-89.32 cm® /50cm?

Set 13

wa, UCS

213

wa = 0.023-39.34%
UCS = 2.75-256.40 Mpa
BAV = 1.62-92.00 cm® /50cm?
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3. Artificial Neural Network (ANN) Analyses

An artificial neural network (ANN) is a biologically inspired computational model
that imitates the human brain. The applicability of ANN in engineering fields has been con-
firmed in that complex datasets can be modeled by using such ANN methodologies [61-63].
In practical ANN applications, neural networks have been trained by a feedforward back-
propagation algorithm [64] to establish empirical formulae based on the weights and biases
extracted from neural network analyses. In this study, the neural network toolbox (nntool)
was used to establish several neural networks in the MATLAB environment.

For this purpose, the subdivided datasets were randomly divided into training (70%)
and testing/validating (30%) parts (the division is according to the commonly accepted
standards in the ANN methodology). Various ANN network architectures, hidden lay-
ers, and neurons were attempted to determine the most suitable and practical structural
combination. Typical ANN architectures adopted in this study are illustrated in Figure 1.

M1 Hidden M6 M9

Input Hidden
layer layer

layer

Figure 1. Typical ANN architectures adopted in this study (M1, Model 1; M6, Model 6; and M9,
Model 9).

Before performing the ANN analyses, the predefined datasets (Table 3) were normal-
ized by using Equation (1) to increase the training efficiency [65,66]. The normalization
process is also essential to overcome the problems that arise from overfitting.

vN:z<"f"min) _1 1)

Xmax — Xmin

where x; is the relevant parameter to be normalized, and Xy and xmax are the minimum
and maximum values in the dataset (Table 3).

The neural network training was performed by using a feedforward backpropagation
algorithm with the Levenberg-Marquardt training function. Once the ANN analyses were
trained, the predictive equations could be established by using the weights and biases
extracted from each ANN analysis. In this regard, predictive models for estimating the
BAV of natural stones were derived by using Equation (2) [67,68]:

vi = fo{Wolfi(W; x x; + B;)| + Bo} ()

where Wj and W; are the weight vectors of the output and input layers, respectively; By
and B; are the bias vectors of the output and input layers, respectively; x; is the normalized
input parameter; and f( and f; are the transfers functions (tansig).

4. Results and Discussion

The correlations between the adopted rock properties and the BAV of natural stones
were revealed by Pearson’s correlation coefficient (r) and Spearmen’s rho values (Table 4).
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Consequently, the parameters considered have different effects on the BAV of natural
stones. More profoundly, the pgq, SHV, V},, and UCS of natural stones negatively correlate
with the BAV, while w, has a positive correlation. Since the adopted rock properties are
moderately correlated with the BAV of natural stones, they were regarded in ANN analyses
with several combinations.

Table 4. Correlations between the considered rock properties and BAV of natural stones.

BAv Number of
Parameter , . umber o
Pearson’s ‘C.orrelatlon Spearman’s Rho Datasets, 1
Coefficient, r

Pd —0.589 —0.366 268
Wa 0.674 0.469 230
SHV —0.603 —0.742 172
Vp —0.529 —0.512 164
ucs —0.531 —0.680 270

The performance of established predictive models was evaluated based on several
statistical indices, such as the correlation of determination (R?), root means squared error
(RMSE), and variance accounted for (VAF). The above performance indices were calculated
by using Equations (3)-(5):

2
R2 — ny_ xy ; Yxyy - €)
VnE2? — (£0)%/nLy? - (Ty)
fﬁ (yi — x;)°
RMSE = @T @)
_ var(y; — x;)
VAF = (1 - Var(y)> % 100 (5)

where y is the observed data, x is the estimated data, and 7 is the number of datasets.

The performance evaluation of the established models is presented in Table 5. Higher
R? and VAF and lower RMSE values indicate relatively more successful models. In this
direction, one can notice from Table 5 that the performance of the predictive models is
quite different due to the different combinations in rock properties and various ANN
architectures. Nevertheless, ANN analysis results are indicated to be more effective in
assessing BAV than simple correlations between the BAV and adopted rock properties.

For the established predictive models, the R2, RMSE, and VAF values were found to
be between 0.68 and 0.97, 3.260 and 10.111, and 59.78 and 96.81, respectively. It can also
be claimed that the variations in the number of datasets (1) related to the different input
parameters can also be an essential parameter in the performance of the predictive models.
For example, the best R? values among the established predictive models were found for
the M6 and M9 models (R2 > 0.96). For these models, the number of datasets was 48 and
67, respectively. For other models (e.g., M1 and M10), the number of datasets was more
than those, which can also affect the R? values of these models. Therefore, further studies
considering the same length datasets with adopting the same or different rock properties
may be beneficial.

The ANN analysis results also indicated that the quantitative evaluations on BAV
should be performed by adopting at least two—preferably three or four rock properties—to
obtain more successful predictive models. Adopting more rock properties to establish a
predictive model also illustrates the most realistic abrasion process. In addition, it should
be mentioned that different combinations of rock properties seem to affect the number of
hidden layers in the ANN analyses.
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Table 5. Performance evaluation of the ANN-based predictive models.

Model No. ANN Architecture Independent Variables =~ Number of Datasets, n R? RMSE VAF
M1 3-6-1 Pd, Wa, SHV 115 0.87 4.159 87.06
M2 3-10-1 Pd, Wa, Vp 145 0.80 8.202 80.23
M3 3-9-1 P4, Wa, UCS 213 0.79 7.591 78.57
M4 2-14-1 Pd, Wa 230 0.60 9.972 59.78
M5 4-6-1 P4, Wa, SHV, UCS 101 0.89 3.997 89.11
M6 4-4-1 Pd, Wa, SHY, V,, 48 0.96 3.260 95.56
M7 2-8-1 Pd, Vp 145 0.71 10.111 69.97
M8 2-10-1 pq, UCS 251 0.68 8.561 68.01
M9 3-4-1 SHYV, V;,, UCS 67 0.97 5.626 96.81
M10 3-10-1 pa, Vp, UCS 142 0.87 6.842 86.51
Mi11 3-6-1 w,, SHV, UCS 101 0.88 4.311 87.35
M12 2-10-1 wa, SHV 115 0.84 4.643 83.76
M13 2-12-1 wa,, UCS 213 0.69 9.139 68.26

Note: Bolded models (e.g., M5) were proposed to evaluate the BAV in this study.

Among the models of M1-M13, those with R? greater than 0.85 were selected due
to the high fit of the analyzed data. Additionally, although their R? values are greater
than 0.96, for better reliability, the models of M6 and M9 were not proposed as reliable
tools to assess the BAV of natural stones, due to having small-scale datasets. It should be
mentioned that a large number of input data enables the prediction of models with a higher
capability to estimate the BAV. Of the established predictive models, M1, M5, M10, and
M11 (Table 5) can be declared feasible approaches to estimate the BAV of natural stones.
For these models, the predicted and measured BAV values are plotted in Figure 2.
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Figure 2. Predicted and measured BAV values for the proposed ANN models.

Figure 2 shows that the predicted and measured BAV values are in good agreement.
However, by focusing on different rock properties with several combinations, further
studies can be beneficial in evaluating the BAV of natural stones. Herein, the effects of
the different number of datasets and hidden layers should also be considered in future
ANN models.

Sensitivity analyses were also performed to determine which input parameter is
more influential in the proposed ANN models. In this study, the cosine amplitude method
(CAM) was used to assess the sensitivity of each input parameter used in the ANN analyses.
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Several researchers [69-73] also adopted this method (see Equation (6)) to evaluate the
sensitivity degree of each input parameter by determining the correlation degree (r;)
between the input and output pairs. The higher the value of 7;;, the greater is the effect of
the relevant input parameter.

S ©)

where x; is the input parameter, y; is the output parameter, and 7 is the number of datasets
used in the analysis.

Based on the sensitivity analysis results (Figure 3), it was determined that the pq is
more influential for M1, M5, and M10. For these models, the rij of pq ranged from 0.68 to
0.80. For the other proposed model, M11, the effects of w, (r;; = 0.50), UCS (r;; = 0.65), and
SHYV (r;; = 0.66) are mainly lower than those of the other parameters included in the other
models. To sum up, the sensitivity analyses demonstrated that, when input parameters are
changed, their effects are also changed during the training of ANN models.
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Figure 3. Sensitivity analysis results of the proposed ANN models.

Last but not least, the empirical formulae of the proposed ANN models and their
sub-equation systems are listed in Tables 6 and 7, respectively. Therefore, the ANN models
stated in this study can be easily implemented by coding the given equations in any
computational language. In this way, the BAV of natural stones can be elaborately assessed
with respect to different rock properties. In this context, the present study can be declared
a case study on modeling the BAV of different rock types by using different ANN models.
Furthermore, these models can be reliably used to estimate the BAV of natural stones
without using abrasive powders, negatively affecting people who perform the BAV test in
the laboratory.
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Table 6. Empirical formulae of the proposed ANN models.

Model No. Empirical Formula R?
M1 BAV = 43.215tanh( Y A; —0. 33543) +46.105 0.87
M5 BAV = 43.215tanh( Y Bi+3 4889) +46.105 0.89

M10 BAV = 45.19tanh( Y Ei+1. 0233) +46.81 0.87
MI1 BAV = 43.215tanh< )% —4. 1292) +46.105 0.88

Table 7. Sub-equation systems of the proposed ANN models.

Model 1, M1

Ay = 12.4623tanh (—6.9726"p4 — 1.0128"w, + 6.5392"SHV + 5.7867)
Ay = —13.0293tanh (—6.6434"p, — 1.2408"w, + 6.3398"SHYV + 5.275)
Az = 0.66333tanh (41.9403" p 4 + 25.957"w, + 46.7092"SHV + 28.4786)
Ay = 1.0456tanh (—8.1555" p; — 4.4647"w, — 0.53822"SHV — 1.1943)
As = —0.68409tanh (—8.3198"p, — 0.22724"w, + 5.2452"SHV + 2.5517)
Ap = 0.82104tanh (—2.6995"p, + 4.0335"w, — 0.66263"SHV — 2.7921)

Normalization functions

"py = 1.4085p4 — 3.1268 "w, = 0.1154w, — 1.0023 "SHV = 0.0209SHV — 1.3054

Model 5, M5

B; = —8.443tanh (0.1734" p, + 0.35274"w, + 0.92719"SHV — 0.27225"UCS + 1.2055)
B, = 5.0854tanh (15.6798" p, + 11.9027"w, — 7.1636"SHV + 7.4804"UCS + 0.81768)
B3 = —3.6021tanh (0.92606" p4 + 6.4781"w, + 0.57942"SHV — 9.3195"UCS — 1.6663)
By = 5.4555tanh (—13.1733"p4 — 9.3031"w, + 6.9893"SHV — 6.6755"UCS + 0.08943)
Bs = —3.1808tanh (—0.77901"p4 — 7.9121"w,, — 2.0084"SHV + 10.0399"UCS + 0.31293)
Bg = —1.0385tanh (—15.4378"p, — 10.435"w, — 7.4539"SHV ~+ 12.2823"UCS — 3.7345)

Normalization functions

"pgq = 1.4094p4 — 3.1283 "w, = 0.1154w, — 1.0027
"SHV = 0.0209SHV — 1.3054 "UCS = 0.0082UCS — 1.112

Model 10, M10

E; = —0.78948tanh (0.45826" pg — 1.5562"V}, + 1.4814"UCS — 4.0742)
E, = —7.3318tanh (3.6404" pg + 6.231"V,, — 1.9816"UCS + 6.2999)
E3 = —6.7869tanh (—16.7298" p4 — 8.2141"V,, — 4.4633"UCS — 5.9214)
Ey = 7.3084tanh (—1.922" py + 1.1762"V,, — 2.2753"UCS + 0.2467)
Es = —9.8086tanh (—3.1249" 4 + 1.044"V}, — 2.4611"UCS + 0.81496)

= —6.664tanh (22.0246" pg — 3.5822"V}, + 10.4282"UCS + 6.7415)
E; = —0.27279tanh (—2.6309" py + 19.0258"V}, — 16.2483"UCS — 2.2838)
Es = —3.4797tanh (6.0836" pg — 0.54222"V,, + 2.5712"UCS — 2.5026)
Eg = 13.4292tanh (12.7002" pg + 9.0008"V,, — 11.4326"UCS + 5.3285)
E1o = —9.0046tanh (20.3148" py + 9.631"V, — 15.7653"UCS + 6.8938)

Normalization functions

"pg = 1.0101p4 — 2.101 "V}, = 0.3442V,, — 1.4578 "UCS = 0.008UCS — 1.0219

Model 11, M11

F; = 3.3586tanh(2.7968"w, — 3.2106"SHV — 1.7192"UCS — 2.6267)

F, = 2.8111tanh(—6.9362"w, — 3.2793"SHV + 7.9886"UCS — 2.4465)

F3 = —3.2889tanh(—4.5788"w, — 1.7085"SHV + 6.7829"UCS — 0.61604)
= 3.873%tanh(—6.6335"w, — 0.0497"SHV — 1.9314"UCS — 3.7471)

F5 = —0.63548tanh(—4.5811"w, + 4.4011"SHV — 0.13051"UCS — 3.8339)
Fs = —3.1414tanh(—1.7301"w, — 0.48243"SHV — 2.7502"UCS — 4.4435)

g

Normalization function

"w, = 0.1154w, — 1.0023 "SHV = 0.0209SHV — 1.3054 "UCS = 0.0082UCS — 1.1121
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5. Conclusions

The present study encompassed a comprehensive literature survey to evaluate the
BAV of different natural stones from Turkey. It was observed during the literature survey
that most previous studies to assess the BAV are based on regression analyses. In these
analyses, various rock properties with small-scale datasets were considered to estimate
the BAV of different natural stones. In this study, the BAV of different natural stones was
investigated by using ANN analyses based on relatively large-scale datasets. Based on the
collected data, 13 different subdivided datasets were created for the ANN analyses. In these
analyses, different rock properties, such as pgq, wa, SHV, Vp, and UCS, were considered. As
a result of the ANN analyses, 13 different predictive models (M1-M13) were established in
this study.

The performance of the established predictive models was evaluated by using several
statistical indicators. In light of these indicators, four different predictive models (M1, M5,
M10, and M11) were proposed to estimate the BAV of natural stones. These models provide
promising results when comparing the predicted and measured BAV values. Furthermore,
the sensitivity analyses revealed the effectiveness of the input parameters in the proposed
ANN models. Consequently, different rock properties become prominent when the model
architecture changes. Explicit mathematical formulations of the proposed ANN models
were also introduced to let users implement the proposed models more efficiently.

This work demonstrated that the BAV could be predicted reliably from some physical
and mechanical rock properties. Models for BAV assessment allow for the avoidance of
long-term and complex laboratory tests, which additionally cause damage to the stone
during the abrasion process. The present study, in this context, provides practical and
straightforward knowledge about the BAV of natural stones and can be successfully used
for modeling the BAV as a function of different rock properties.
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