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Abstract. In general, there are countless types of problems encountered from
different disciplines that can be represented by differential equations. These
problems can be solved analytically in simpler cases; however, computational
procedures are required for more complicated cases. Right at this point, the
wavelet-based methods have been using to compute these kinds of equations in
a more effective way. The Haar Wavelet is one of the appropriate methods that
belongs to the wavelet family using to solve stiff ordinary differential equations
(ODEs). In this study, The Haar Wavelet method is applied to stiff differential
problems in order to demonstrate the accuracy and efficacy of this method by
comparing the exact solutions. In comparison, similar to the exact solutions, the
Haar wavelet method gives adequate results to stiff differential problems.

1 Introduction

Diverse types of engineering and practical problems are explained and interpreted as stiff
ordinary differential equations (ODEs) [1]. While some problems can be solved by analytical
methods, some cases are not always suitable for having an analytical solution. However,
this factor itself is not the only reason to use numerical approaches. In practical use, even
finding an analytical solution is not always helpful since the required computation power is
exceedingly high[2].

Knowing only the differential equation is not sufficient to find the solutions to the
problem, meaning that the need for extra information is evident. Since the proposed solution
to the given stiff linear ODE is an initial value problem (IVP), the explanation of extra
information can be said as "Initial Conditions". When all the components of y are defined in
terms of X, which is specified at a certain value, then the problem can be classified as "Initial
Value Problem". Therefore, an initial value problem is in the structure of;

y'(x) = f(y(x)), where y (x0) = yo ey
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Various types of other numerical methods have been used to solve these problems previously
[3]. In this paper, the Haar Wavelet Method is used to solve such differential equations
numerically. The proposed method was first used by Chen and Hsiao (1997) and was applied
to the stiff systems of linear ODEs by Lepik (2009) [4-6]. The aim of this work is to discuss
the quality, efficiency and accuracy of the Haar wavelet method for solving linear stiff ODEs
with initial conditions. The resolution and accuracy of the method can be altered by changing
only the value of J, which will be explained in the following sections. Typical computation
time is taken for the solution of such problems, at J = 7, 8,9 which yields to very low errors,
just takes a few seconds in an average commercial computer with 2 core processors. When the
required computation power and low error deviation is taken into consideration, the proposed
solution shows the effectiveness of Haar Wavelet Method.

2 Haar Wavelets Collocation Methods

In 1910, a Hungarian mathematician who is Alfred Haar introduced the general form of Haar
wavelets which are based on the functions. Haar wavelets are the simplest method in the
wavelet families as mathematically and Haar wavelets consist of piecewise constant functions
[5]. The following parameters are used in using this method: The function considered to be
in the interval [A, B], where A and B are constant numbers. The quantity M was defined as
M = 27, where J defines the maximal level of resolution and Ax = %, where Ax is the
length of each equal subinterval [5, 6]. Other two parameters can be identified as

j=0,1,....0

in which j is the dilatation parameter and k is the translation parameter. m, which is intro-
duced in the parameter k, is m = 2J. The wavelet numbers are denoted by the letter i, which
is identified as [6, 7]:

i=m+k+1

The following formula represents the i-th Haar wavelet [5].

1 for x € [£1(i), £&2())
hi(x) = { —1for x € [£(:), &3() , @

0 elsewhere

where
&1(i) = A + 2kuAx, &) = A+ 2k + DuAx
N _M
&) = A+2(k+ Dpdx, p=4
With the help of the parameters described above the Haar function can be determined. Haar

functions are used to define the Haar matrix which consists of only 1,-1,and 0. To solve the
differential equation another operational matrix, which is P, are needed.

B _i .
[ (B-A2T forl=i

fA hi(xX)hy(x)dx = { 0 for [ £ i 3)

The integrals of the Haar functions are required below.
0 for x < &(i)
1 N4 . .
() = o [x=&0)] for x € [£1(i), &2(1)]
Pei) = = &0 —2[x-£O1) forve [H0.60] P

a =& - 2[x- &) +[x - &O]) for x> &)
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Both Haar and operational matrices are constructed in a same way that Lepik (2009) ex-
plained in his work [6]. Moreover, to find the Haar function and p function, we need to use

collocation points. In other words, Haar matrices and P matrices can be calculated with the
help of collocation points [5-7].

3 STIFF ODEs

As it is previously introduced, stiff ordinary differential equations have been using in many

different fields such as in fluid mechanics, elasticity, electrical networks, chemical reactions,
etc.[4, 8]

y = f(x.y), yxo)=yo, a<x<b 5)

Eqn. 5 is the general form of the first-order linear system of ODEs where f(x,y) can be defined

in the interval [a,b]. Stiffness of Eqn. 5 can be checked as[9]; if the following expressions are
valid, then a linear system is stiff,

e Re(14(x)) <0,s=1,2,3,...,m

e max |Re (4y)| > min|Re (4,)|s = 1,2,3,...,m

The ratio of max |[Re (A;)| and min |Re (Ay)| is called the stiffness ratio and A,, which is ex-
pressed in the first and second cases are the eigenvalues of the Jacobian of the system [10].

4 APPLICATIONS

In this section, several stiff differential problems solved by Haar Wavelet method, which is
investigated in previous sections.
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Figure 1. Exact solution and the approximate solutions calculated for / = 6 and i = 128 by Haar
Wavelet for Eqn. 6
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4.1 Example 1

The first example of the first order stiff differential problem is formulated as follows[11]:

4

y:

20y +20sint + cost,

And the exact solution is given as:

Fig. 1 indicates the exact solution and Haar Wavelet solution. The resolution number J is
designated as 6 for this solution. Fig. 1 demonstrated that solution computed by Haar Wavelet

y(t) =sint+e

method converge to the exact solution.

—20¢

0<t<2, withy(0) = 1

Table 1. Numerical results, exact solutions and errors for Example 1 for J=8

t

Haar Solution

Exact Solution

Absolute Error

Logarithmic Error

0.002
0.2
04
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0.964359136
0.217686034
0.390109793
0.564326139
0.719258524
0.842524622
0.932463058
0.985516034
0.999584932
0.973222747
0.910108502

0.963643725
0.217709067
0.390110954
0.564326226
0.719258571
0.842524659
0.932463084
0.985516048
0.999584933
0.973222735
0.910108479

7.15E - 04
2.30E - 05
1.16E — 06
8.71E - 08
4.71E - 08
3.69E - 08
2.59E - 08
1.39E - 08
1.34E - 09
1.15E - 08
2.34E - 08

-3.1457
-4.6383
-5.9355
-7.0600
-7.3270
-7.4330
-7.5867
-7.8570
-8.8729
-7.9393
-7.6308

Table 1 represents the numerical solutions and exact solution at selected values of time
for J = 8. Absolute error or the numerical solutions are also represented in the tables at the
last column. To be able to compare the effect of J, one can use Table 1 and Table 2 which
represents solutions for J = 12.

Table 2. Numerical results , exact solutions and errors for Example 1 for J=12

t

Haar Solution

Exact Solution

Absolute Error

Logarithmic Error

0.00012
0.2
04
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0.997686610
0.217029850
0.389776123
0.564628470
0.717305173
0.841536935
0.932065623
0.985453879
0.999574316
0.973864269
0.909348219

0.997683642
0.217029941
0.389776128
0.564628470
0.717305173
0.841536935
0.932065623
0.985453879
0.999574316
0.973864269
0.909348219

2.97E - 06
9.11E - 08
4.56E - 09
3.40E - 10
1.85E - 10
1.44E-10
1.01E - 10
543E - 11
5.15E - 12
442E - 11
9.18E - 11

-5.5275
-7.0403
-8.3407
-9.4689
-9.7334
-9.8406
-9.9943
-10.2651
-11.2879
-10.3545
-10.0371
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4.2 Example 2
The second example of the first order stiff differential problem is formulated as follows[12]:

y + 250y = 250sint + cost, 0<t<1, withy(0) =1 8)

The Exact Solution is given as;
y(t) = e % 4 sint

©))

Fig. 2 provides the solutions which belong to Exact solution and Haar Wavelet method
respectively. This particular solution computed by Haar Wavelet method for J = 6. The
results of the Haar wavelet method and results of exact solution are matching precisely.
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Figure 2. Exact solution and the approximate solutions calculated for / = 6 and i = 128 by Haar
Wavelet for Eqn. 8

Table 3. Numerical results, exact solutions and errors for Example 2 for J=6

t Haar Solution | Exact Solution | Absolute Error | Logarithmic Error
0.0039 | 0.509835084 | 0.380509691 0.1293 -0.8883
0.1 0.097501083 | 0.097501104 2.03E - 08 -7.6929
0.2 0.197903573 | 0.197903593 2.00E - 08 -7.6998
0.3 0.296266454 | 0.296266473 1.95E - 08 -7.7109
04 0.391575989 | 0.391576007 1.88E — 08 -7.7269
0.5 0.482849911 | 0.482849929 1.79E - 08 -7.7482
0.6 0.562706527 | 0.562706544 1.69E - 08 -7.7730
0.7 0.643619942 | 0.643619958 1.56E - 08 -7.8062
0.8 0.71790016 0.717900174 1.42E - 08 -7.8470
0.9 0.784781643 | 0.784781655 1.28E - 08 -7.8971
1 0.839354003 | 0.839354014 1.11E - 08 -7.9536
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Table 3 represents the numerical solutions and exact solution at selected values of x for J = 6.
Absolute error or the numerical solutions are also represented in the tables at the last column.
To be able to compare the effect of J, one can use Table 3 and Table 4 which represents
solutions for J = 10.

Table 4. Numerical results and exact solutions for Example 2 for J=10

t Haar Solution | Exact Solution | Absolute Error | Logarithmic Error
0.00024 | 0.942719981 | 0.941034305 0.0017 -2.7732
0.1 0.099687663 | 0.099687663 7.95E - 11 -10.099
0.2 0.198621476 | 0.198621476 7.80E — 11 -10.107
0.3 0.295566854 | 0.295566854 7.60E — 11 -10.1189
04 0.389553259 | 0.389553259 7.34E - 11 -10.1341
0.5 0.479639778 | 0.479639778 7.00E - 11 -10.1550
0.6 0.564521568 | 0.564521569 6.61E - 11 -10.1797
0.7 0.644180341 | 0.644180341 6.10E — 11 -10.2145
0.8 0.717390109 | 0.717390109 5.56E - 11 -10.2550
0.9 0.783417957 | 0.783417957 5.00E - 11 -10.3014
1 0.84133905 0.84133905 430E - 11 -10.3662

5 CONCLUSION

The Haar wavelet has a wide range of usage areas such as linear and nonlinear ODE as de-
noted at earlier of the study. The investigation indicates the applicability of the Haar Wavelet
which belongs to the Wavelet family to the several types of linear stiff differential initial prob-
lems. The results of example 1 and 2 are computed by the Haar wavelet method compared
with their exact solution results. Consequently, the numerical values and graphs show that
this approach is efficient and the results can be obtained rapidly with the aid of the construc-
tion of the Haar matrices.
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