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Background
Nonlinear problems have always been more attractive than linear ones for scientists. The 
main reason for this is that almost all natural phenomena in nature lead us to nonlinear 
models to describe them. In these models, finding exact solutions are quite difficult or 
sometimes impossible. Because of this reason, it is needed to get at least an approximate 
solution to these types of problems by certain methods.

Singularly perturbed problems occurs frequently in electrical systems, celestial 
mechanics, particle physics, quantum mechanics, (semi/super) conductor systems, fluid 
mechanics, thermal processes and in chemical/biochemical reactions (Kumar 2011). 
These problems are characterized by the presence of a very small positive parameter 
0 < ε ≪ 1 that multiplies the highest order derivative term in the differential equation. 
This small parameter is known as singular perturbation parameter. In the case of ε = 0, 
problem is called as reduced problem since the order of the differential equation reduces. 
Consider the general form of a  singularly perturbed nonlinear second-order ordinary 
differential equation

(1)εy′′(x) = f (x, y(x), y′(x))
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subject to boundary condions

It is a well established fact that a nonlinear second-order two-point boundary value 
problem (1–2) with small parameter plays a critical role in nonlinear physics. Also it is of 
great practical interest to study this nonlinear phenomena. Singular perturbation prob-
lems and the methods used to tackle them are very important concepts because of their 
mathematical properties, physical meanings and applications in engineering sciences. 
We refer the reader to consult the reference Kumar (2011) for more detailed information 
and some significant examples.

The first study in the perturbation theory was presented by Prandtl (1905). But, the 
term singular perturbation was used for the first time by Friedrichs and Wasow (1946). 
Scientists have paid great attention for this theory for more than a century. After the first 
studies, a number of excellent books were published such as O’Malley (1974), Bender 
and Orszag (1978), Kevorkian and Cole (1981), Eckhaus (1973), Eckhaus (1979), Lager-
strom (1988), Hinch (1991), Van Dyke (1975), Johnson (2006), Verhulst (2006), Holmes 
(1995) and Roos et al. (1996). Thanks to these great books and the other works, today we 
have certain traditional asymptotic methods. Some of them are the Method of Matched 
Asymptotic Expansions (MMAE), the Method of Multiple-scale Analysis, the Periodic 
Averaging Method, the Method of Wentzel–Kramers–Brillouin (WKB) Approximation 
and the Method of Strained Coordinates.

Towards the end of 1980s, various methods, apart from the traditional asymptotic 
methods, began to appear. In those years Kadalbajoo, Reddy, Jiwari et al. conducted so 
many significant studies such as Kadalbajoo et al. (1987), Kadalbajoo and Reddy (1987), 
Chawla and Katti (1982), Mo (1993), Kadalbajoo and Patidar (2003), Kadalbajoo and 
Gupta (2010), Mittal and Jiwari (2011), Sharma et al. (2012a) and Sharma et al. (2012b). 
In 2003, Kadalbajoo and Patidar made a detailed survey of singular perturbation prob-
lems in partial differential equations (PDEs) (Kadalbajoo and Patidar 2003). In 2010, 
Kadalbajoo and Gupta in their study Kadalbajoo and Gupta (2010) made a great sur-
vey on the numerical methods for singularly perturbed problems. In 2011, Parul stud-
ied the traditional methods to solve this kind of problems and gave important examples 
occuring in engineering and science (Kumar 2011, 2011). In 2012, Roos made a survey, 
particularly of singularly perturbed convection–reaction–diffusion problems covering 
the years 2008–2012 (Roos 2012). In the mean time, a number of intriguing numeri-
cal methods were presented such as Reproducing Kernel Method (Cui and Geng 2007; 
Geng and Cui 2007; Geng 2011; Geng and Cui 2011; Li et al. 2012), Variational Iteration 
Method (Kumar and Mishra 2014), Haar Wavelet Approach (Pandit and Kumar 2014). 
We must state that there are so many various methods and the above-mentioned meth-
ods are just some of them.

In this paper, we study on an efficient asymptotic method called SCEM that generates 
uniformly valid approximations (UVA) to the solution of singularly perturbed nonlinear 
boundary value problems. Applying the present method, we are able to get rid of tedious 
matching procedure of MMAE. We propose a UVA at the first step and then seek appro-
priate approximations called outer approximation and complementary approximations 
such that the resulting successive approximations satisfy the boundary conditions exactly.

(2)y(0) = α, y(1) = β , (α,β ∈ R).
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The paper is organized as follows: “About asymptotic expansions” section gives a brief 
description of the asymptotic expansions. The overview of SCEM is given in “Successive 
Complementary Expansion Method” section. In “Numerical examples” section, we con-
sider four numerical problems for comparison with existing methods. The conclusion is 
given in the last section.

About asymptotic expansions
In this section, we briefly review the basic concepts of asymptotic approximation theory.

The limit process is fundamental tool of mathematical analysis. It is defined for a 
given real continuous function f: given any δ > 0 there exists a number n0(δ) such that 
∣

∣f (x)− f
∣

∣ < δ for any n � n0(δ). This definition gives information about the behav-
ior of the function f as x → a, but not about how. Therefore, asymptotic approxi-
mation theory requires another definition that enables us to describe the behavior 
of functions and compare them in a more precise way under the limit process: Bach-
mann–Landau notations. Consider real and continuous functions f (ε) and g(ε), where 
0 < ε ≤ ε0 ≪ 1. f (ε) = O

(

g(ε)
)

, ε → 0 if there exist positive constants K and ε0 such 
that 

∣

∣f (ε)
∣

∣ ≤ K
∣

∣g(ε)
∣

∣ for ε → 0 in (0, ε0]. f (ε) = o
(

g(ε)
)

, for ε → 0 if limε→0
f (ε)
g(ε) = 0 . 

f (ε) and g(ε) are said to be asymptotically equivalent, f (ε) ≈ g(ε) as ε → 0 if 
f (ε) = O

(

g(ε)
)

 and g(ε) = O
(

f (ε)
)

 for ε → 0. f (ε) = OS

(

g(ε)
)

 if f (ε) = O
(

g(ε)
)

 and 
f (ε) �= o

(

g(ε)
)

 for ε → 0. Here the subscript S denotes sharp estimate. Now consider a 
sequence of functions {φn+1}, n = 0, 1, . . . . Such a sequence is an asymptotic sequence if 
φn+1(ε) = o(φn(ε)) for ε → 0 and n = 0, 1, . . . Let y(x, ε) be defined in some domain � of 
x and some neighborhood of ε = 0. The series

is called regular asymptotic expansion (Poincaré expansion) of y(x, ε) as ε → 0 if the 
condition

is satisfied. And generalized asymptotic expansions are defined as

Interesting cases occur when the function y(x, ε) is not regular in �, so expansion (3) is 
uniformly valid only in a restricted region �0 ∈ � that is called outer region. In this case, 
the asymptotic expansion that is valid in outer region is often called outer expansion and 
(3) can be given as

(3)ya(x, ε) =

n
∑

i=0

φi(ε)yi(x)

y(x, ε)−

n
∑

i=0

φi(ε)yi(x) = o(φi(ε))

y(x, ε) =

n
∑

i=0

φi(ε)yi(x, ε) = OS(φi+1(ε)), ε → 0.

(4)ya(x, ε) = E0φ =

n
∑

i=0

φ
(0)
i (ε)y

(0)
i (x),
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where φ(0)
i (ε) is an asymptotic sequence and the special operator E0 called the outer 

expansion operator at a given order φ(ε).
On the other hand, we encounter with a singular perturbation problem and we must 

introduce boundary layer domains. Here, in the simplest case (we assume that the prob-
lem has boundary layer near the origin x = 0), we introduce an inner region which can 
be formally denoted �1 = �−�0 and located near the origin. The boundary layer varia-
ble is x = x

ξ(ε)
, ξ(ε) being the order of thickness of this boundary layer. If a regular expan-

sion can be constructed in �1, we can write

This inner expansion operator E1 is defined in �1 at the same order φ(ε) as the outer 
expansion operator E0; thus, y(x, ε)− E1y(x, ε) = o(φ(ε)) and so

is clearly uniformly valid approximation to order δ(ε) satisfying the modified Van Dyke 
principle (MVDP) E1E0y(x, ε) = E0E1y(x, ε). This is the main idea underlying the method 
of matched asymptotic expansions (MMAE). We know that MMAE which has been 
designed for finding uniformly valid approximations to singularly perturbed boundary 
value problems is a powerful mathematical technique. It is based on finding two differ-
ent approximations for different two regions, which are called as inner region (where the 
solution exhibits rapid changes) and outer region (which is far from the inner region). In 
the last step, these two approximations are matched using the limit process to obtain a 
uniformly valid approximation. For more details we refer the reader to O’Malley (1974), 
Bender and Orszag (1978), Kevorkian and Cole (1981), Eckhaus (1973), Eckhaus (1979), 
Lagerstrom (1988), Hinch (1991), Van Dyke (1975), Johnson (2006), Verhulst (2006), 
Mauss and Cousteix (2002), Cousteix and Mauss (2004), Cousteix and Mauss (2009), 
Cathalifaud et al. (2010) and Nayfeh (1973).

Successive Complementary Expansion Method
Sometimes the matching procedure in MMAE can be tedious or impossible. Therefore, we 
wish to present and examine an efficient asymptotic method named as successive comple-
mentary expansion method, which is designed by French scientists J. Mauss and J. Cous-
teix in order to obtain uniformly valid approximations to the boundary layer problems 
occur in fluid mechanics in Mauss and Cousteix (2002). In SCEM, instead of finding two 
different approximations to match later, a uniformly valid approximation that exactly satis-
fies the boundary conditions is proposed at the first step. So, thanks to the SCEM we will 
not be in need of any matching procedure. We can not ignore the fact that SCEM is not 
the first method which does not require any matching procedure. For instance, the WKB 
method and the Method of Multiple-scale Analysis also do not require any matching pro-
cedure (Cousteix and Mauss 2004). But their applicabilities are restricted to some certain 
problems. The uniformly valid SCEM approximation is in the regular form given as follows

(5)
ya(x, ε) = E1φ =

n
∑

i=0

φ
(1)
i (ε)y

(1)
i (x).

ya(x, ε) = E0y(x, ε)+ E1y(x, ε)− E1E0y(x, ε)

(6)yscemn (x, x, ε) =

n
∑

i=0

δi(ε)[yi(x)+�i(x)],



Page 5 of 15Cengizci et al. SpringerPlus  (2016) 5:280 

where δi(ε) is an asymptotic sequence and �i(x) are the complementary approximation 
functions that depends on x. Functions yi(x) are the outer approximations that have been 
found by MMAE and they only depend on x, not also on ε. In its regular form, SCEM is 
equivalent to MMAE. If the functions yi(x) and �i(x) also depend on ε, the uniformly valid 
SCEM approximation is named as generalized SCEM approximation and given in the fol-
lowing form (Cousteix and Mauss 2007; Mauss and Cousteix 2002; Cousteix and Mauss 
2009)

with

The sequence of order functions δi(ε) may or not be same with δi(ε). If only one-term 
SCEM approximation is desired, then one seeks a uniformly valid SCEM approximation 
in the form of

To improve the accuracy of SCEM approximation, the first SCEM approximation can be 
iterated using (7). It means that successive complementary terms will be add to the approx-
imation. To this end, second SCEM approximation will be sought in the form of

In Cousteix and Mauss (2007), error estimates for first and second SCEM approxima-
tions are given as 

∣

∣y− yscem0

∣

∣ < εK0 and 
∣

∣y− yscem1

∣

∣ < ε2K1, where K0 and K1 are positive 
constants independent of ε and y is the exact solution of the problem.

Numerical examples
In this section, we present four numerical experiments to show the efficiency and the 
robustness of the proposed method. All the numerical calculations are performed using 
Shampine et al. (2000).

Example 1 Consider the singular perturbation problem

subject to boundary conditions

This problem has a boundary layer near the point x = 0 and uniformly valid asymp-
totic approximation is given as follows in Bender and Orszag (1978)

(7)yscemng (x, x, ε) =

n
∑

i=0

δi(ε)
[

yi(x, ε)+� i(x, ε)
]

yscemng (x, x, ε) = yscemn (x, x, ε)+ o(δn+1(ε)).

yscem0 (x, x, ε) = y0(x, ε)+�0(x, ε).

yscem1 (x, x, ε) = y0(x, ε)+�0(x, ε)+ ε
(

y1(x, ε)+�1(x, ε)
)

.

(8)εy′′(x)+ 2y′(x)+ ey(x) = 0, x ∈ (0, 1)

(9)y(0) = 0, y(1) = 0.

(10)y(x) = ln

(

2

x + 1

)

− (ln 2)e
−2x
ε .
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To obtain SCEM approximation for n = 0 (first-term approximation) of (8–9), we seek 
an approximation in the form of

For ε = 0, Eq. (8) yields

and we have the outer solution as follows

Now we look for a uniformly valid SCEM approximation in the form of

where x = x
ε
. Substituting (14) into the Eq. (8) and balancing the terms with respect to 

the powers of parameter ε yields

and consequently, applying the balancing procedure we have

with the boundary conditions

Then,

is the first term of the SCEM approximation. 
The numerical results of the problem are shown in Tables 1, 2 and in Figs. 1, 2. We 

deliberately choose the node points as possible as near the boundary layer (for this prob-
lem, near the point x = 0) in order to see efficiency of the method.

Example 2 Consider the second singular perturbation problem given in O’Malley 
(1974)

subject to boundary conditions

(11)yscem0 (x, x, ε) = y0(x, ε)+�0(x, ε).

(12)2y′(x)+ ey(x) = 0

(13)y0(x, ε) = ln

(

2

x + 1

)

.

(14)yscemng (x, x, ε) = ln

(

2

x + 1

)

+�0(x, ε)+

n
∑

i=1

εn[yi(x, ε)+�i(x, ε)],

(15)ε

(

�0 + ln

(

2

x + 1

))′′

+ 2

(

�0 + ln

(

2

x + 1

))′

+ e

(

�0+ln

(

2
x+1

))

= 0

(16)� ′′
0 (x, ε)+ 2� ′

0(x, ε) = 0

(17)�0(0, ε) = − ln(2), �0

(

1

ε
, ε

)

= 0.

(18)yscem0g (x, x, ε) =

[

ln

(

2

x + 1

)

+�0(x, ε)

]

(19)εy′′(x)+ y(x)y′(x) = 0, x ∈ (−1, 1)

(20)y(−1) = 0, y(1) = −1,
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and with the exact solution

This problem has boundary layer near the point x = −1.

In Table 3 and Figs. 3, 4 we deliberately choose the node points as possible as near the 
boundary layer (for this problem, near the point x = −1) in order to see efficiency of the 
method.

(21)y(x, ε) = −
1− e

−(x+1)
ε

1+ e
−(x+1)

ε

.

Table 1 Numerical results of Example 1 for ε = 0.1

x UVA solution (Bender and Orszag 1978) SCEM approximation Absolute error

0.000 0.000000000000 0.000000000000 0.000000000000

0.001 0.012725733435 0.012725733463 2.828981493e(−11)

0.005 0.060974133872 0.060974134008 1.359571344e(−10)

0.010 0.115695936573 0.115695936832 2.589762846e(−10)

0.100 0.504029730749 0.504029731985 1.2353316147e(−9)

0.200 0.498130190310 0.498130191712 1.4025156036e(−9)

0.300 0.429064776009 0.429064777435 1.4251414492e(−9)

0.400 0.356442418964 0.356442420392 1.4282036109e(−9)

0.500 0.287650603618 0.287650605047 1.4286180016e(−9)

0.600 0.223139292470 0.223139293899 1.4286740679e(−9)

0.700 0.162518353125 0.162518354554 1.4286816729e(−9)

0.800 0.105360437654 0.105360439083 1.4286826582e(−9)

0.900 0.051293283830 0.051293285259 1.4286828040e(−9)

1.000 −0.000000001428 0.000000000000 1.4286828220e(−9)

Table 2 Numerical results of Example 1 for ε = 0.001

x UVA solution (Bender and Orszag 1978) SCEM approximation Absolute error

0.000 0.000000000000 0.000000000000 0.000000000000

0.001 0.598340410221 0.598340410221 0.000000000000

0.005 0.688128170215 0.688128170215 0.000000000000

0.010 0.683196848278 0.683196848278 0.000000000000

0.100 0.597837000755 0.597837000755 0.000000000000

0.200 0.510825623765 0.510825623765 0.000000000000

0.300 0.430782916092 0.430782916092 0.000000000000

0.400 0.356674943938 0.356674943938 0.000000000000

0.500 0.287682072451 0.287682072451 0.000000000000

0.600 0.223143551314 0.223143551314 0.000000000000

0.700 0.162518929497 0.162518929497 0.000000000000

0.800 0.105360515657 0.105360515657 0.000000000000

0.900 0.051293294387 0.051293294387 0.000000000000

1.000 0.000000000000 0.000000000000 0.000000000000
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Example 3 Consider the following singular perturbation problem given in O’Malley 
(1974)

with the boundary conditions

and with the asymptotic solution

This problem has boundary layer near the point x = 0.

(22)εy′′(x)+ ey(x)y′(x)−
π

2
sin

(πx

2

)

e2y(x) = 0, x ∈ (0, 1),

(23)y(0) = 0, y(1) = 0

(24)y = − ln

[

(

1+ cos
πx

2

)

(

1−
1

2
e−

x
2ε

)]

+ O(ε).

Fig. 1 Comparison of SCEM and UVA solutions of Example 1 for ε = 0.1

Fig. 2 Comparison of SCEM and UVA solutions of Example 1 for ε = 0.001



Page 9 of 15Cengizci et al. SpringerPlus  (2016) 5:280 

Table 3 Numerical results of Example 2 for ε = 0.001

x Exact solution SCEM approximation Absolute error

−1.000 0.000000000000 0.000000000000 0.000000000000

−0.995 −0.986614298151 −0.986614102977 1.95174316e(−7)

−0.990 −0.999909204262 −0.999909184974 1.92884420e(−8)

−0.980 −0.999999995877 −0.999999995802 7.55888684e(−11)

−0.400 −1.000000000000 −1.000000000000 0.000000000000

−0.200 −1.000000000000 −1.000000000000 0.000000000000

0.000 −1.000000000000 −1.000000000000 0.000000000000

0.200 −1.000000000000 −1.000000000000 0.000000000000

0.400 −1.000000000000 −1.000000000000 0.000000000000

0.600 −1.000000000000 −1.000000000000 0.000000000000

0.800 −1.000000000000 −1.000000000000 0.000000000000

1.000 −1.000000000000 −1.000000000000 0.000000000000

Fig. 3 Comparison of SCEM and exact solutions of Example 2 for ε = 0.1

Fig. 4 Comparison of SCEM and exact solutions of Example 2 for ε = 0.01
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In Tables 4, 5 and Figs. 5, 6, 7 we deliberately choose the node points as possible as 
near the boundary layer (for this problem, near the point x = 0) in order to see efficiency 
of the method.  

Example 4 As the last example, let us consider the singular perturbation problem given 
in Kevorkian and Cole (1981)

with the boundary conditions

(25)εy′′(x)+ y(x)y′(x)− y(x) = 0, x ∈ [0, 1]

(26)y(0) = −1, y(1) = 3.9995.

Table 4 Numerical results of Example 3 for ε = 0.01

x Asymptotic solution (O’Malley 1974) SCEM approximation Absolute error

0.000 0.0000000000 0.0000000000 0.0000000000

0.001 −0.0476179808 −0.0476179344 4.633630e(−8)

0.005 −0.1998179193 −0.1998178062 1.130920e(−7)

0.010 −0.3317348800 −0.3317346943 1.857260e(−7)

0.050 −0.6496961369 −0.6496952868 8.501800e(−7)

0.100 −0.6835976643 −0.6835975658 9.854120e(−8)

0.200 −0.6683483288 −0.6683483281 6.84303e(−10)

0.300 −0.6371090868 −0.6371090868 4.61752e(−12)

0.400 −0.5927835996 −0.5927835996 3.10862e(−14)

0.500 −0.5347999967 −0.5347999967 2.22044e(−16)

0.600 −0.4623401221 −0.4623401221 1.11022e(−16)

0.700 −0.3743118452 −0.3743118452 0.0000000000

0.800 −0.2692764695 −0.2692764695 0.0000000000

0.900 −0.1453415344 −0.1453415344 0.0000000000

1.000 0.0000000000 0.0000000000 0.0000000000

Table 5 Numerical results of Example 3 for ε = 0.001

x Asymptotic solution (O’Malley 1974) SCEM approximation Absolute error

0.000 0.0000000000 0.0000000000 0.0000000000

0.001 −0.3317959489 −0.3317935405 2.40830e(−06)

0.005 −0.6512232379 −0.6512204646 2.77327e(−06)

0.010 −0.6897108336 −0.6897104246 4.08988e(−07)

0.050 −0.6916046583 −0.6916046583 2.66675e(−13)

0.100 −0.6869723256 −0.6869723256 0.0000000000

0.200 −0.6683710290 −0.6683710290 0.0000000000

0.300 −0.6371092397 −0.6371092397 0.0000000000

0.400 −0.5927836007 −0.5927836007 0.0000000000

0.500 −0.5347999967 −0.5347999967 0.0000000000

0.600 −0.4623401221 −0.4623401221 0.0000000000

0.700 −0.3743118452 −0.3743118452 0.0000000000

0.800 −0.2692764695 −0.2692764695 0.0000000000

0.900 −0.1453415344 −0.1453415344 0.0000000000

1.000 0.0000000000 0.0000000000 0.0000000000
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Fig. 5 Comparison of SCEM and asymptotic solutions of Example 3 for ε = 0.1

Fig. 6 Comparison of SCEM and asymptotic solutions of Example 3 for ε = 0.01

Fig. 7 Comparison of SCEM and asymptotic solutions of Example 3 for ε = 0.001
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This problem has boundary layer near the point x = 0 and the uniformly valid approx-
imation is given in Kevorkian and Cole (1981) as

where c1 = 2.9995 and c2 = 1
c1
ln

[

c1−1
c1+1

]

.

In Tables 6, 7 and Figs. 8, 9 we deliberately choose the node points as possible as near 
the boundary layer (for this problem, near the point x = 0) in order to see efficiency of 
the method.

Conclusion
In this paper, an efficient method so-called SCEM has been presented for singularly per-
turbed two-point second order nonlinear boundary value problems in ordinary differen-
tial equations and then the results have been compared with those which are previously 

(27)y = x + c1 tanh
((c1

2

)(x

ε
+ c2

))

,

Table 6 Numerical results of Example 4 for ε = 0.01

x UVA solution SCEM approximation Absolute error

0.000 −1.0000000000000 −1.0000000000000 0.0000000000000

0.001 −0.5813960926361 −0.5791385346450 2.2575579e(−3)

0.005 1.1529592608432 1.1618243705484 8.8651097e(−3)

0.010 2.4659396723180 2.4727365388982 6.7968665e(−3)

0.050 3.0494963201391 3.0494968235068 5.0336773e(−7)

0.070 3.0694999908694 3.0694999930517 2.1823303e(−9)

0.100 3.0994999999988 3.0994999999993 4.689582e(−13)

0.200 3.1995000000000 3.1995000000000 0.000000000000

0.400 3.3995000000000 3.3995000000000 0.000000000000

0.600 3.5995000000000 3.5995000000000 0.000000000000

0.800 3.7995000000000 3.7995000000000 0.000000000000

1.000 3.9995000000000 3.9995000000000 0.000000000000

Table 7 Numerical results of Example 4 for ε = 0.001

x UVA solution SCEM approximation Absolute error

0.000 −1.0000000000000 −1.0000000000000 0.000000000000

0.001 2.4569396723180 2.4576445075493 7.0483523e(−4)

0.005 3.0044963201391 3.0044963670615 4.6922397e(−8)

0.010 3.0094999999988 3.0094999981336 1.8652617e(−9)

0.050 3.0495000000000 3.0495000000101 1.01216812e(−11)

0.070 3.0695000000000 3.0694999930517 7.23865412e(−13)

0.100 3.0995000000000 3.0995000000000 1.02140518e(−14)

0.200 3.1995000000000 3.1995000000000 0.000000000000

0.400 3.3995000000000 3.3995000000000 0.000000000000

0.600 3.5995000000000 3.5995000000000 0.000000000000

0.800 3.7995000000000 3.7995000000000 0.000000000000

1.000 3.9995000000000 3.9995000000000 0.000000000000
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obtained by various methods in literature. SCEM is very easy to implement using a math-
ematical software. As a result of our study, even though only one-term SCEM approxi-
mations are used in numerical examples, we obtain highly accurate approximations. As 
one can see in the numerical examples, SCEM does not require any matching proce-
dures. Moreover, the boundary conditions are satisfied exactly, not asymptotically. Con-
sequently, the present method is well-suited for solving nonlinear singular perturbation 
problems.
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